Discussiones Mathematicae Graph Theory 35 (2015) 475–482 doi:10.7151/dmgt.1813

STRONG *f*-STAR FACTORS OF GRAPHS

Zheng Yan

Yangtze University, Jingzhou Hubei, China

e-mail: yanzhenghubei@163.com

Abstract

Let G be a graph and $f: V(G) \to \{2,3,\ldots\}$. A spanning subgraph F is called strong f-star of G if each component of F is a star whose center x satisfies $\deg_F(x) \leq f(x)$ and F is an induced subgraph of G. In this paper, we prove that G has a strong f-star factor if and only if $oddca(G-S) \leq \sum_{x \in S} f(x)$ for all $S \subset V(G)$, where oddca(G) denotes the number of odd complete-cacti of G.

Keywords: *f*-star factor, strong *f*-star factor, complete-cactus, factor of graph.

2010 Mathematics Subject Classification: 05C70.

1. INTRODUCTION

We consider simple graphs, which have neither loops nor multiple edges. For a graph G, let V(G) and E(G) denote the set of vertices and the set of edges of G, respectively. We write |G| for the order of G (i.e., |G| = |V(G)|). For a vertex v of G, we denote by $\deg_G(v)$ the degree of v in G. For a vertex set S of G, let G-S denote the subgraph of G induced by V(G) - S. Let Iso(G) and iso(G) denote the set of isolated vertices and the number of isolated vertices of G, respectively. A graph G is called a *complete-cactus* if G is connected and every block of G is a complete graph. A complete-cactus is called an *odd complete-cactus* if all its blocks are complete graphs of odd order. Note that K_1 is an odd complete-cactus.

For a set S of connected graphs, a spanning subgraph F of a graph G is called an *S*-factor of G if each component of F is isomorphic to an element of S. A complete bipartite graph $K_{1,n}$ is called a *star*, and its vertex of degree n is called the *center*. For $K_{1,1}$, an arbitrarily chosen vertex is its center.

The following theorem was independently obtained by Las Vergnas [6] and by Amahashi and Kano [2].

Theorem 1 [2, 6]. Let $n \ge 2$ be an integer. Then a graph G has a $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$ -factor if and only if $iso(G - S) \le n|S|$ for all $S \subset V(G)$.

Let G be a graph and let $f : V(G) \to \{2, 3, 4, ...\}$ be a function defined on V(G). Then a spanning subgraph F is called an *f*-star factor of G if each component of F is a star and its center x satisfies $\deg_F(x) \leq f(x)$. The following theorem gives a criterion for a graph to have an *f*-star factor.

Theorem 2 [3]. Let G be a graph and let $f : V(G) \to \{2, 3, ...\}$ be a function. Then G has an f-star factor if and only if $iso(G - S) \leq \sum_{x \in S} f(x)$ for all $S \subset V(G)$.

For a set S of connected graphs, a subgraph H of G is called a *strong* Ssubgraph if every component of H is isomorphic to an element of S and is an induced subgraph of G. A spanning strong S-subgraph is called a *strong* S-factor. A strong $\{K_{1,1}, K_{1,2}, \ldots\}$ -factor is briefly called a *strong star factor*. Kelmans [7] and Saito and Watanabe [8] proved independently the following theorem.

Theorem 3 [7, 8]. A connected graph G has a strong star factor if and only if G is not an odd complete-cactus.

For a graph G, let OddCa(G) denote the set of components of G that are odd complete-cacti, and let oddca(G) = |OddCa(G)| denote the number of odd complete-cacti of G. Egawa, Kano and Kelmans [4] generalized the above theorem as follows by considering a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$ -factor.

Theorem 4 [4]. Let $n \ge 2$ be an integer. Then a graph G has a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$ -factor if and only if $oddca(G-S) \le n|S|$ for all $S \subset V(G)$.

A subgraph H is called a *strong* f-star subgraph of G if each component of H is a star, whose center x satisfies $\deg_H(x) \leq f(x)$, and H is an induced subgraph of G. A spanning f-star subgraph of G is called a *strong* f-star factor of G. Obviously, if f(x) = n for all $x \in V(G)$, then a strong f-star factor of G is a strong $\{K_{1,1}, K_{1,2}, \ldots, K_{1,n}\}$ -factor. In this paper, we obtain the following result which is a generalization of Theorem 4.

Theorem 5. Let G be a graph and let $f : V(G) \to \{2, 3, ...\}$ be a function. Then G has a strong f-star factor if and only if

(1)
$$oddca(G-S) \leq \sum_{x \in S} f(x), \text{ for all } S \subset V(G).$$

A strong f-star subgraph H of a graph G is said to be maximum if G has no strong f-star subgraph H' such that |H'| > |H|. A formula for the order of a maximum strong f-star subgraph of a graph is easily obtained as a maximum matching, which is given in the following theorem. **Theorem 6.** Let G be a graph and let $f : V(G) \to \{2, 3, 4, ...\}$ be a function. Then the order of a maximum strong f-star subgraph H of G is given by

(2)
$$|H| = |G| - \max_{X \subset V(G)} \left\{ oddca(G - X) - \sum_{x \in X} f(x) \right\}.$$

Finally, we consider a problem of covering a given vertex subset with a strong f-star subgraph. The condition for the existence of such a subgraph, which is given in the following theorem, is a natural extension of the criterion for the existence of a strong f-star factor.

Theorem 7. Let G be a graph and let $f : V(G) \rightarrow \{2, 3, 4, ...\}$ be a function. Let W be a subset of V(G). Then G has a strong f-star subgraph covering W if and only if

(3)
$$oddca(G-S|W) \le \sum_{x \in S} f(x), \text{ for all } S \subset V(G),$$

where oddca(G - S|W) denotes the number of odd complete-cacti of G - S contained in W.

2. Proof of the Results

We need some other notations. For two sets X and Y, $X \subset Y$ means that X is a proper subset of Y. Let G be a graph. For two vertices x and y of G, we write xy or yx for an edge joining x to y. For a vertex v of G, we denote by $N_G(v)$ the neighborhood of v. For a subset S of V(G), we define $N_G(S) := \bigcup_{x \in S} N_G(x)$. For convenience, we briefly call a complete-cactus a cactus in the following proofs. Analogously, an odd complete-cactus is called an odd cactus. Every block of a cactus is a complete graph, and we call it an odd block or even block according to its order.

In order to prove Theorem 5, we need the following lemmas.

- **Lemma 8** [4]. (i) Let G be an odd complete-cactus. Then for every vertex v of G, G v has a 1-factor.
- (ii) An odd complete-cactus does not have a strong star factor.

Lemma 9 [5]. Let G be a bipartite graph with bipartition (A, B), and let g, f: $V(G) \to \mathbb{Z}$ be functions such that $g(x) \leq f(x)$ for all $x \in V(G)$. Then G has a (g, f)-factor if and only if

$$\begin{split} \gamma^*(X,Y) &= \sum_{x \in X} f(x) + \sum_{x \in Y} (\deg_G(x) - g(x)) - e_G(X, \ Y) \ge 0, \\ and \\ \gamma^*(Y,X) &= \sum_{x \in Y} f(x) + \sum_{x \in X} (\deg_G(x) - g(x)) - e_G(Y, \ X) \ge 0, \end{split}$$

for all subsets $X \subseteq A$ and $Y \subseteq B$.

Lemma 10. Let G be a bipartite graph with bipartition (A, B). Let $f : V(G) \rightarrow \{1, 2, 3, ...\}$ be a function such that $f(x) \ge 2$ for all $x \in A$, and f(x) = 1 for all $x \in B$. Then G has a (1, f)-factor if and only if

(4)
$$|N_G(X)| \ge |X| \text{ for all } X \subseteq A, \text{ and}$$
$$\sum_{x \in N_G(Y)} f(x) \ge |Y| \text{ for all } Y \subseteq B.$$

Proof. If G has a (1, f)-factor F, then (4) follows from

$$|N_G(X)| \ge |N_F(X)| \ge |X|$$
 and $\sum_{x \in N_G(Y)} f(x) \ge \sum_{x \in N_F(Y)} f(x) \ge |Y|.$

Conversely, assume that (4) holds. We may assume that G is connected, since otherwise each component satisfies (4) and has a (1, f)-factor by induction, and hence G itself has a (1, f)-factor. For any subsets $X \subseteq A$ and $Y \subseteq B$, it follows from (4) that

$$\begin{split} \gamma^*(X,Y) &= \sum_{x \in X} f(x) + \sum_{y \in Y} (\deg_{G-X}(y) - 1) \\ &\geq \sum_{x \in X} f(x) - |S| \geq \sum_{x \in N_G(S)} f(x) - |S| \geq 0, \end{split}$$

where $S = Iso(G - X) \cap Y \subseteq B$, $N_G(S) \subseteq X$.

$$\gamma^*(Y, X) = \sum_{y \in Y} f(y) + \sum_{x \in X} (\deg_{G-Y}(x) - 1)$$

$$\geq |Y| - |T| \geq |N_G(T)| - |T| \geq 0,$$

where $T = Iso(G - Y) \cap X \subseteq A$, $N_G(T) \subseteq Y$.

Therefore by Lemma 9, G has the desired (1, f)-factor.

Proof of Theorem 5. Suppose that G has a strong f-star factor F. Let $\emptyset \neq S \subset V(G)$. Since every odd cactus D of G - S does not have a strong f-star by Lemma 8, F has an edge joining D to S. It is obvious that for every vertex $s \in S$, F has at most f(x) edges joining x to odd cacti in G - S. Hence $oddca(G - S) \leq \sum_{x \in S} f(x)$. We shall prove the sufficiency of Theorem 5 by induction on $\sum_{x \in V(G)} f(x)$.

We shall prove the sufficiency of Theorem 5 by induction on $\sum_{x \in V(G)} f(x)$. We may assume that $|G| \geq 3$ and G is connected, since otherwise by applying the induction hypothesis to each component, we can obtain the desired strong star-factor of G. By taking $S = \emptyset$, it follows that G is not an odd cactus.

Obviously, $\sum_{x \in V(G)} f(x) \ge 2|G|$, since $f(x) \ge 2$ for all $x \in V(G)$. If $\sum_{x \in V(G)} f(x) = 2|G|$, then f(x) = 2 for all $x \in V(G)$. Thus the condition (1) becomes

$$oddca(G-S) \leq 2|S|$$
, for all $S \subset V(G)$.

By Theorem 4, G has a strong $\{K_{1,1}, K_{1,2}\}$ -factor, which is the desired strong f-factor of G. So we may assume that $\sum_{x \in V(G)} f(x) \ge 2|G| + 1$. Then there exists a vertex $w \in V(G)$ such that $f(w) \ge 3$.

Let us define the number β by

$$\beta = \min_{\emptyset \neq X \subset V(G)} \left\{ \sum_{x \in X} f(x) - oddca(G - X) \right\}.$$

Then $\beta \geq 0$ by (1), and it follows from the definition of β that

(5)
$$oddca(G-Y) \le \sum_{x \in Y} f(x) - \beta$$
, for all $\emptyset \ne Y \subset V(G)$.

Take a maximal subset S of V(G) such that

(6)
$$\sum_{x \in S} f(x) - oddca(G - S) = \beta$$

Claim 1. $\beta = 0$.

Proof. Suppose that $\beta \geq 1$. Define $f^* : V(G) \rightarrow \{2, 3, 4, \ldots\}$ by

$$f^*(x) = \begin{cases} f(x) - 1 & \text{if } x = w, \\ f(x) & \text{otherwise.} \end{cases}$$

Let $\emptyset \neq X \subset V(G)$. Then we have

$$oddca(G-X) \le \sum_{x \in X} f(x) - \beta \le \sum_{x \in X} f(x) - 1 \le \sum_{x \in X} f^*(x).$$

Hence, G has a strong star-factor F^* with respect to f^* by induction, which is also the strong f-star factor of G.

Hereafter we assume $\beta = 0$.

Claim 2. Every component of G - S which is not an odd cactus has a strong f-star factor.

Proof. Let D be a component of G - S which is not an odd cactus, and let $\emptyset \neq X \subset V(D)$. Then by (5), we have

$$oddca(G-S) + oddca(D-X) = oddca(G-S \cup X)$$
$$\leq \sum_{x \in S \cup X} f(x) = \sum_{x \in S} f(x) + \sum_{x \in X} f(x).$$

Thus $oddca(D - X) \leq \sum_{x \in X} f(x)$ by (6), which implies that D has a strong f-star factor by induction.

We construct a bipartite graph B with bipartition (S, OddCa(G - S)) in which two vertices $x \in S$ and a component $C \in OddCa(G - S)$ are joined by an edge of B if and only if x is adjacent to C in G.

Claim 3. For every $\emptyset \neq X \subseteq S$ and $\emptyset \neq Y \subseteq OddCa(G-S)$, it follows that $|N_B(X)| \geq |X|$ and $\sum_{x \in N_B(Y)} f(x) \geq |Y|$.

Proof. Let $\emptyset \neq X \subseteq S$. By (5) and $\beta = 0$, we obtain

$$\sum_{x \in S-X} f(x) \ge oddca(G - (S - X)) \ge oddca(G - S) - |N_B(X)|$$
$$\ge \sum_{x \in S} f(x) - |N_B(X)|,$$

which means $|N_B(X)| \ge \sum_{x \in X} f(x) \ge |X|$. Let $\emptyset \ne Y \subseteq OddCa(G-S)$. Then $N_B(Y) \subseteq S$, and by (1) we have

$$|Y| \le oddca(G - N_B(Y)) \le \sum_{x \in N_B(Y)} f(x).$$

Therefore Claim 3 holds.

By Claim 3, B has a strong f-star factor H given in Lemma 10, which is a (1, f)-factor with minimal edge set, and every component of OddCa(G - S) has degree one in H. Consequently, by Lemma 8(i) and Claim 2, we can obtain a strong f-star factor of G from H.

Proof of Theorem 6. Let $d = \max_{X \subset V(G)} \{ oddca(G - X) - \sum_{x \in X} f(x) \}$. Then $d \ge 0$ by considering the case $X = \emptyset$. Moreover, if d = 0, then (2) follows from Theorem 5. Hence we may assume $d \ge 1$. Let S be a subset of V(G) such that

$$oddca(G-S) - \sum_{x \in S} f(x) = d.$$

Then by considering $\langle S \cup OddCa(G-S) \rangle_G$, which is the subgraph of G induced by $S \cup OddCa(G-S)$, we have that every strong f-star subgraph of G cannot cover at least $oddca(G-S) - \sum_{x \in S} f(x)$ odd cacti of OddCa(G-S). Hence $|H| \leq |G| - d$, when H is a maximum strong f-star subgraph of G.

Next we prove the inverse inequality $|H| \ge |G| - d$ for a maximum strong f-star subgraph H of G. Add 2d new vertices $\{v_i, u_i : 1 \le i \le d\}$ together with d new edges $\{v_i u_i : 1 \le i \le d\}$ to G. Then join every v_i to every vertex of G by new edges. Denote the resulting graph by G^* , and define a function $f^* : V(G^*) \to \{2, 3, 4, \ldots\}$ by $f^*(u_i) = f^*(v_i) = 2$ for all $1 \le i \le d$, and $f^*(x) = f(x)$ for all $x \in V(G)$.

Let Y be a non-empty subset of $V(G^*)$. We may assume that Y contains no vertices of $\{u_1, \ldots, u_d\}$, when we estimate $oddca(G^*-Y)$. If $|\{v_1, \ldots, v_d\} \cap Y| < d$, then

$$oddca(G^* - Y) \le |Y \cap \{v_1, \dots, v_d\}| + 1 \le \sum_{x \in Y} f(x).$$

480

If $\{v_1, \ldots, v_d\} \subset Y$, then all the vertices of $\{u_1, \ldots, u_d\}$ become isolated vertices of $G^* - Y$, and so by the definition of d, we obtain

$$\begin{aligned} oddca(G^* - Y) &\leq oddca(G - (Y \cap V(G))) + d \\ &\leq \sum_{x \in Y \cap V(G)} f(x) + d + d = \sum_{x \in Y} f(x). \end{aligned}$$

Hence by Theorem 5, G^* has a strong f-star factor F^* . Then $H = F^* - \{u_i, v_i : 1 \le i \le d\}$ is a strong f-star subgraph of G, which covers at least |G| - d vertices. Hence $|H| \ge |G| - d$. Consequently, the theorem is proved.

Proof of Theorem 7. First suppose that G has a strong f-star subgraph F covering W. Then for every odd cactus C of G - S contained in W, F has at least one edge joining C to S. Hence

$$oddca(G-S|W) \le \sum_{x\in S} \deg_F(x).$$

Next we assume that (3) holds. We may assume that G is connected, since otherwise, by applying the induction hypothesis to each component of G, we can obtain the desired factor of G. By Theorem 5, we may assume that W is a proper subset of V(G), and so $V(G) - W \neq \emptyset$. Let n = |V(G) - W|. We construct a new graph H from G by adding two new vertices w_1, w_2 and by joining $w_i(i = 1, 2)$ to every vertex in V(G) - W. Define $f^* : V(H) \to \{2, 3, \ldots\}$ by

$$f^*(x) = \begin{cases} f(x) & \text{if } x \in V(G), \\ \max\{2, n\} & \text{if } x \in \{w_1, w_2\} \end{cases}$$

It is easy to see that G has a strong f-star subgraph covering W if and only if H has a strong f^* -star factor.

Let $X \subset V(H)$. If $w_1, w_2 \in X$, let $S = X - \{w_1, w_2\}$, then

$$oddca(H-X) \leq oddca(G-S|W) + n \leq \sum_{x \in S} f(x) + n < \sum_{x \in X} f^*(x).$$

If $w_1 \in X$ and $w_2 \notin X$, let $S = X - \{w_1\}$, then

$$oddca(H - X) \le oddca(G - S|W) + 1 \le \sum_{x \in S} f(x) + 1 < \sum_{x \in X} f^*(x).$$

If $w_1, w_2 \notin X$, then

$$oddca(H - X) = oddca(G - X|W) \le \sum_{x \in X} f(x).$$

Therefore, by Theorem 5, H has a strong f^* -star factor, and thus G has the desired strong f-star subgraph which covers W.

Acknowledgments

The author would like to thank Prof. Mikio Kano for introducing me to problems on factors of graph and for his valuable suggestions.

References

- J. Akiyama and M. Kano, Factors and Factorizations of Graphs (Lecture Note in Math. 2031 Springer- Verlag Berlin Heidelberg, 2011). doi:10.1007/978-3-642-21919-1
- [2] A. Amahashi and M. Kano, On factors with given components, Discrete Math. 42 (1982) 1–6. doi:10.1016/0012-365X(82)90048-6
- C. Berge and M. Las Vergnas, On the existence of subgraphs with degree constraints, Indag. Math. Proc. 81 (1978) 165–176. doi:10.1016/S1385-7258(78)80007-9
- Y. Egawa, M. Kano and A.K. Kelmans, *Star partitions of graphs*, J. Graph Theory 25 (1997) 185–190.
 doi:10.1002/(SICI)1097-0118(199707)25:3(185::AID-JGT2)3.0.CO;2-H
- [5] J. Folkman and D.R. Fulkerson, *Flows in infinite graphs*, J. Combin. Theory 8 (1970) 30–44.
 doi:10.1016/S0021-9800(70)80006-0
- [6] M. Las Vergnas, An extension of Tutte's 1-factor theorem, Discrete Math. 23 (1978) 241–255. doi:10.1016/0012-365X(78)90006-7
- [7] A.K. Kelmans, Optimal packing of induced stars in a graph, RUTCOR Research Report 26–94, Rutgers University (1994) 1–25.
- [8] A. Saito and M. Watanabe, Partitioning graphs into induced stars, Ars Combin. 36 (1993) 3–6.

Received 27 December 2013

Revised 29 September 2014

Accepted 29 September 2014

482