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and
Department of Applied Mathematics and Business Informatics

Faculty of Economics, Technical University
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Department of Applied Mathematics and Business Informatics
Faculty of Economics, Technical University
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Abstract

Let P and Q be additive and hereditary graph properties, r, s ∈ N,
r ≥ s, and [Zr]

s be the set of all s-element subsets of Zr. An (r, s)-fractional
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(P,Q)-total coloring of G is an assignment h : V (G) ∪ E(G) → [Zr]
s such

that for each i ∈ Zr the following holds: the vertices of G whose color sets
contain color i induce a subgraph of G with property P, edges with color
sets containing color i induce a subgraph of G with property Q, and the
color sets of incident vertices and edges are disjoint. If each vertex and
edge of G is colored with a set of s consecutive elements of Zr we obtain
an (r, s)-circular (P,Q)-total coloring of G. In this paper we present basic
results on (r, s)-fractional/circular (P,Q)-total colorings. We introduce the
fractional and circular (P,Q)-total chromatic number of a graph and we
determine this number for complete graphs and some classes of additive and
hereditary properties.

Keywords: graph property, (P,Q)-total coloring, circular coloring, frac-
tional coloring, fractional (P,Q)-total chromatic number, circular (P,Q)-
total chromatic number.

2010 Mathematics Subject Classification: 05C15, 05C75.

1. Introduction

In this paper we study graph invariants which combine different types of graph
colorings, namely generalized P-colorings, fractional or circular colorings, and
total colorings of graphs.

Let r, s ∈ N, r ≥ s. Throughout this paper we consider simple, finite and
undirected graphs. Let I denote the set of these graphs. For simplifying the
notation we will write a ∈ Zr instead of residue class ar ∈ Zr, if there is no
confusion. The set {a, a + 1, . . . , b} (elements reduced modulo r) of consecutive
elements of Zr = {0, 1, . . . , r − 1} will be denoted by [a, b], the same notation
[a, b] is also used for consecutive integers. We will denote by [Zr]

s the set of all
s-element subsets of Zr. Consider an assignment h : V (G)∪E(G) → [Zr]

s for the
graph G. Then the subgraph of G induced by the set Vi,h = {v ∈ V (G) : i ∈ h(v)}
or induced by the set Ei,h = {e ∈ E(G) : i ∈ h(e)} is denoted byG[Vi,h] orG[Ei,h],
respectively.

A graph property P is any non-empty isomorphism closed subset of I. The
set of graphs without edges is a property denoted by O. A property P of graphs is
called hereditary if it is closed under taking subgraphs and additive if it is closed
under disjoint union of graphs. All graph properties considered in this paper are
both hereditary and additive. The completeness of a hereditary graph property
P is the number c(P) = max{k : Kk+1 ∈ P}. Obviously, for additive properties
P it holds c(P) = 0 if and only if P = O. We list several well-known hereditary
and additive properties with completeness k and we use the following notations
of graph properties introduced in [3].
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Ok = {G ∈ I : each component of G has at most k + 1 vertices},
Sk = {G ∈ I : ∆(G) ≤ k},
Dk = {G ∈ I : δ(H) ≤ k for each H ⊆ G},
Ik = {G ∈ I : G contains no Kk+2}.

A proper graph coloring requires that for each color i the corresponding color
class is an independent set of vertices, i.e., that the subgraph induced by vertices
with color i has property O. By using the class of hereditary properties there is a
natural generalization of proper colorings. We obtain a P-coloring by replacing
the property O in the definition of a proper coloring by any other hereditary
graph property P. The concept of P-colorings was introduced by several authors
(see e.g. [8]) and investigated in many papers (see [3, 4, 12]).

(P,Q)-total k-colorings were introduced in [2] as colorings of the elements
(vertices and edges) of G such that for each color i ∈ [0, k − 1] the set of all
vertices of color i induce a subgraph with property P, the set of all edges of color
i induce a subgraph with property Q, and incident vertices and edges are colored
differently. The (P,Q)-total chromatic number of G, denoted by χ′′

P,Q(G), is the
minimum number k of colors of a (P,Q)-total k-coloring of G.

Other generalizations of total colorings are fractional or circular total color-
ings. We describe the definitions of these two colorings simultaneously: Let r, s
be positive integers with r ≥ s. An (r, s)-fractional/circular total coloring of G
is an assignment of s-element subsets of arbitrary/consecutive elements of Zr to
the vertices and edges of G such that every two adjacent or incident elements of
V (G) ∪ E(G) are colored with disjoint color sets. The fractional total chromatic
number of G, denoted by χ′′

f (G), is defined as

χ′′
f (G) = inf

{r

s
: G has an (r, s)-fractional total coloring

}

and the circular total chromatic number of G, denoted by χ′′
c (G), is defined as

χ′′
c (G) = inf

{r

s
: G has an (r, s)-circular total coloring

}

.

Both χ′′
f (G) and χ

′′
c (G) are rational. Moreover, in the definition of χ′′

f and χ′′
c we

can replace the infimum by the minimum (see, e.g., [13] p. 4, 30, [7]). For more
information and details we refer the reader to [7, 10, 13].

Let r, s ∈ N, r ≥ s, and P ⊇ O and Q ⊇ O1 be two additive and hereditary
graph properties. An (r, s)-fractional/circular (P,Q)-total coloring of a graph
G is a coloring of the vertices and edges of G by s-elements subsets of arbi-
trary/consecutive elements of Zr (reduced modulo r) such that for each color i,
0 ≤ i ≤ r−1,the set of vertices colored by subsets containing i induce a subgraph
of G with property P, the set of edges colored by subsets containing i induce
a subgraph of G with property Q, and color sets of incident vertices and edges
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are disjoint. The fractional (P,Q)-total chromatic number of G is defined as

χ′′
f,P,Q(G) = inf

{r

s
: G has an (r, s)-fractional (P,Q)-total coloring

}

and the circular (P,Q)-total chromatic number of G as

χ′′
c,P,Q(G) = inf

{r

s
: G has an (r, s)-circular (P,Q)-total coloring

}

.

If P = O and Q = O1, then χ′′
f,P,Q(G) = χ′′

f (G) and χ′′
c,P,Q(G) = χ′′

c (G)
by the definitions. Therefore, (r, s)-fractional/circular (P,Q)-total colorings are
generalizations of fractional/circular total colorings.

Borowiecki and Mihók [3] showed that the set of all additive and hereditary
properties ordered by inclusion is a complete distributive lattice (La,⊆) with
the least element O and the greatest element I. Moreover, the set of properties
P ∈ L

a with c(P) = k, k ∈ N, with respect to ⊆ is a complete distributive lattice
(La

k,⊆). Its least element is Ok and the greatest Ik. Note that Ok ⊆ Sk ⊂ Dk ⊂
Ik. As we will prove in Section 3 it holds that

χ′′
c,P,Q(Kω(G)) ≤ χ′′

c,P,Q(G) ≤ χ′′
c,P,Q(K|V (G)|) and

χ′′
f,P,Q(Kω(G)) ≤ χ′′

f,P,Q(G) ≤ χ′′
f,P,Q(K|V (G)|)

for arbitrary graphs G with clique number ω(G) and order |V (G)|. Therefore,
it is an interesting task to determine the fractional and the circular (P,Q)-total
chromatic number of complete graphs. While the total fractional and the to-
tal circular chromatic number of a complete graph are equal to its total chro-
matic number, it is very difficult to determine these values in general. For ex-
ample, χ′′

D1,D1
(Kn) = ⌊n/2⌋ + 2, see [2], and we will prove in Section 4 that

χ′′
f,D1,D1

(Kn) = χ′′
c,D1,D1

(Kn) =
n(n+1)
2(n−1) for odd n.

The composition of this paper is as follows: In the second section we present
equivalent definitions of the fractional (P,Q)-total chromatic number of a graph.
Basic properties of (r, s)-fractional/circular (P,Q)-total colorings and some frac-
tional/circular (P,Q)-total chromatic numbers are determined in the third sec-
tion. The fractional/circular (P,Q)-total chromatic numbers of complete graphs
for selected graph properties are studied in Section 4.

2. Equivalent Definitions for χ′′
f,P,Q

Fractional (P,Q)-total colorings may be viewed in several ways. We present the
following equivalent definitions.

Let G = (V (G), E(G)) be a graph and N a subset of V (G) ∪ E(G). Let
us denote NV = N ∩ V (G) and NE = N ∩ E(G). We shall call the set N a
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(P,Q)-total independent set of G if the subgraph G[NV ] induced by NV has the
property P, the subgraph G[NE ] induced by NE has the property Q, and no
vertex of NV is an end-vertex of an edge in NE .

Let P ⊇ O and Q ⊇ O1 be two additive hereditary properties and Γ(G)
be the family of all (P,Q)-total independent sets of a graph G. A fractional
(P,Q)-total coloring is an assignment ϕ : Γ(G) → 〈0, 1〉 such that

(1)
∑

N∈Γ(G):N∋x

ϕ(N) ≥ 1 for all x ∈ V (G) ∪ E(G),

where 〈0, 1〉 is the closed real interval from 0 to 1. The value of the objective
function

(2)
∑

N∈Γ(G)

ϕ(N) → min

in an optimal solution of the linear program (1) is the fractional (P,Q)-total chro-
matic number of a graph G, denoted by χ′′

f,P,Q(G). We show that this definition
is equivalent to the one above.

Let us consider a finite graphG and let
∑

Ni∈Γ(G)bi/si=r/s, s=lcmNi∈Γ(G)(si)
(note that gcd(r, s) may be greater than 1) be one of the rational valued optimal
solutions of the above presented linear program (1) for G. This means that we
have a solution with ϕ(Ni) =

bi
si

= ai
s
for i = 1, . . . , t = |Γ(G)| and a1+· · ·+at = r.

Let F be a union of disjoint sets of colors Fi with |Fi| = ai, i = 1, . . . , t. We
define an assignment h : V (G) ∪ E(G) → P (F ), where P (F ) is the power set of
F , in such a way that

h(x) =
⋃

i

x∈Ni∈Γ(G)

Fi

for every x ∈ V (G) ∪ E(G). Then

|h(x)| =

∣

∣

∣

∣

∣

∣

∣

⋃

i

x∈Ni∈Γ(G)

Fi

∣

∣

∣

∣

∣

∣

∣

=
∑

i

x∈Ni∈Γ(G)

|Fi| =
∑

i

x∈Ni∈Γ(G)

ai = s
∑

i

x∈Ni∈Γ(G)

ϕ(Ni) ≥ s

for all x ∈ V (G) ∪E(G). Now let g(x) be an arbitrary s-element subset of h(x).
Then g is an (r, s)-fractional (P,Q)-total coloring of G.

On the other hand, suppose that G has an (r, s)-fractional (P,Q)-total col-
oring g. Define an assignment ψ : Γ(G)× [0, r − 1] → 〈0, 1〉 such that

ψ(N, i) =

{

1/s for i = 0, . . . , r − 1 and N = {x ∈ V (G) ∪ E(G) : g(x) ∋ i},
0 otherwise.
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Then we define ϕ : Γ(G) → 〈0, 1〉 as follows:

ϕ(N) =

r−1
∑

i=0

ψ(N, i).

It is easy to verify that for all x ∈ V (G) ∪ E(G) it holds that

∑

N∈Γ(G)
x∈N

ϕ(N) =
∑

N∈Γ(G)
x∈N

r−1
∑

i=0

ψ(N, i)

=
∑

N∈Γ(G)
x∈N

∑

i∈g(x)

ψ(N, i)

=
∑

i∈g(x)

∑

N∈Γ(G)
x∈N

ψ(N, i)

=
∑

i∈g(x)

1

s
= s ·

1

s
= 1

and

∑

N∈Γ(G)

ϕ(N) =
∑

N∈Γ(G)

r−1
∑

i=0

ψ(N, i) =
r−1
∑

i=0

∑

N∈Γ(G)

ψ(N, i) ≤
r−1
∑

i=0

1

s
=
r

s
.

Note that the inequality in the last relation is tight if not all colors are used in
the coloring g.

Hence the LP-definition of the fractional (P,Q)-total chromatic number is
equivalent to the one mentioned above.

Karafová [9] showed that if c(P) = k, then the fractional (P,Q)-total chro-
matic number of a complete graph Kn equals the optimum value of the objective
function of the following linear program:

(3)
k+1
∑

i=0

zi → min

(4)
k+1
∑

i=0

izi ≥ n,

(5)
k+1
∑

i=0

aizi ≥

(

n

2

)

,



Generalized Total Colorings of Graphs 523

(6) zi ≥ 0,

for each i = 0, . . . , k+1, where ai is the maximum number of edges in all (P,Q)-
total independent sets of Kn with exactly i vertices.

Theorem 2.1. Let n ≥ 3. Then χ′′
f,D1,D1

(Kn) =
n(n+1)
2(n−1) .

Proof. Since the maximal graphs in the property D1 are trees it holds that
ai = (n− i)− 1 for i = 0, 1, 2 in the linear program (3)–(6). Then the fractional
chromatic number of Kn equals the value of the objective function in an optimal
solution of the following linear program:

z0 + z1 + z2 → min

z1 + 2z2 ≥ n,

(n− 1)z0 + (n− 2)z1 + (n− 3)z2 ≥

(

n

2

)

.

It is easy to see that z = ( n
n−1 , 0,

n
2 ) is an optimal solution and n(n+1)

2(n−1) is the
corresponding value of the objective function.

3. Basic Properties

At first we present several introductory results.

Observation 3.1. For every graph G,

χ′′
f,P,Q(G) ≤ χ′′

c,P,Q(G) ≤ χ′′
P,Q(G) ≤ χ′′(G).

Observation 3.2. If the graph G has an (r, s)-fractional/circular (P,Q)-total
coloring, then G has a (t, s)-fractional/circular (P,Q)-total coloring for each t ∈
N, t ≥ r.

Lemma 3.3. Let G = (V,E) be a graph. Then

(1) χ′′
f,P,Q(G) = χ′′

c,P,Q(G) = 1 if and only if E = ∅,

(2) χ′′
f,P,Q(G) = χ′′

c,P,Q(G) = 2 if and only if G ∈ P and G ∈ Q, and E 6= ∅,

(3) χ′′
f,P,Q(G) > 2 and χ′′

c,P,Q(G) > 2 if and only if G /∈ P or G /∈ Q.
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Proof. (1) It holds that χ′′
c,P,Q(G) ≥ χ′′

f,P,Q(G) = r
s

≥ 1 since r ≥ s. If
χ′′
c,P,Q(G) = 1, then all elements of G must have the same color set in an (r, s)-

circular (P,Q)-total coloring since r = s. This implies E = ∅.
If E = ∅ then G ∈ O ⊆ P and therefore all vertices can be colored the same

which implies χ′′
c,P,Q(G) = 1.

(2) If χ′′
f,P,Q(G) = χ′′

c,P,Q(G) = 2, then E 6= ∅ by (1). Since r = 2s, all
vertices must obtain the same color set and also all edges must be colored the
same in each component of G. Therefore, all components belong to P ∩Q which
implies G ∈ P ∩Q since P and Q are additive properties.

If E 6= ∅ then χ′′
c,P,Q(G) ≥ χ′′

f,P,Q(G) ≥ 2 by (1). If G ∈ P ∩ Q then there
exists a (2, 1)-circular (P,Q)-total coloring of G which implies χ′′

c,P,Q(G) ≤ 2.

(3) Obviously, if χ′′
c,P,Q(G) > 2 and χ′′

f,P,Q(G) > 2, then G /∈ P ∩ Q by (1)
and (2), and vice versa.

Lemma 3.4. If H⊆G, then χ′′
f,P,Q(H)≤χ′′

f,P,Q(G), and χ
′′
c,P,Q(H)≤χ′′

c,P,Q(G).

Proof. Let h be an (r, s)-fractional/circular (P,Q)-total coloring of G. By re-
stricting this coloring to the set V (H)∪E(H) we obtain an (r, s)-fractional/circu-
lar (P,Q)-total coloring of the graph H.

Lemma 3.5. If P1 ⊆ P2 and Q1 ⊆ Q2, then χ′′
f,P1,Q1

(G) ≥ χ′′
f,P2,Q2

(G), and
χ′′
c,P1,Q1

(G) ≥ χ′′
c,P2,Q2

(G).

Proof. Let h be an (r, s)-fractional/circular (P1,Q1)-total coloring of G. Then
G[Vi,h] ∈ P1 and G[Ei,h] ∈ Q1 for all i ∈ Zr. Since P1 ⊆ P2 and Q1 ⊆ Q2, it holds
that G[Vi,h] ∈ P2 and G[Ei,h] ∈ Q2 for all i ∈ Zr; thus, the coloring h is also
an (r, s)-fractional/circular (P2,Q2)-total coloring of G, and so χ′′

f,P1,Q1
(G) ≥

χ′′
f,P2,Q2

(G) and χ′′
c,P1,Q1

(G) ≥ χ′′
c,P2,Q2

(G).

Because the considered invariants are monotone and Kω(G) ⊆ G ⊆ K|V (G)|

for every graph G, we can formulate the following statements.

Corollary 3.6. χ′′
f,P,Q(Kω(G)) ≤ χ′′

f,P,Q(G) ≤ χ′′
f,P,Q(K|V (G)|),

χ′′
c,P,Q(Kω(G)) ≤ χ′′

c,P,Q(G) ≤ χ′′
c,P,Q(K|V (G)|).

Corollary 3.7. χ′′
f,Ic(P),Ic(Q)

(Kω(G)) ≤ χ′′
f,P,Q(G) ≤ χ′′

f,Oc(P),Oc(Q)
(K|V (G)|),

χ′′
c,Ic(P),Ic(Q)

(Kω(G)) ≤ χ′′
c,P,Q(G) ≤ χ′′

c,Oc(P),Oc(Q)
(K|V (G)|).

Lemma 3.8. Let n ∈ N be an arbitrary integer. Then the graph G has an (r, s)-
circular (P,Q)-total coloring if and only if G has an (nr, ns)-circular (P,Q)-total
coloring.
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Proof. Let n ∈ N and h : V (G)∪E(G) → [Zr]
s be an (r, s)-circular (P,Q)-total

coloring of G. Define a new (nr, ns)-circular (P,Q)-total coloring g : V (G) ∪
E(G) → [Znr]

ns of G in the following way: for each x ∈ V (G) ∪E(G) let g(x) =
[na, na+ns−1] if h(x) = [a, a+s−1]. For each element x ∈ V (G)∪E(G) and color
i ∈ Zr, we have that i ∈ h(x) if and only if ni, . . . , n(i + 1) − 1 ∈ g(x) (reduced
modulo nr). Consequently, for each color i ∈ Zr, the graph G[Vi,h] (or G[Ei,h])
is isomorphic to the graph G[Vj,g] (or G[Ej,g]) for each j ∈ [ni, n(i + 1) − 1].
If G[Vi,h] ∈ P (or G[Ei,h] ∈ Q), then G[Vj,g] ∈ P (or G[Ej,g] ∈ Q) for each
j ∈ [ni, n(i+1)− 1]. Moreover, color sets of incident vertices and edges given by
the coloring g are disjoint since h(x) ∩ h(y) = ∅ if and only if g(x) ∩ g(y) = ∅ for
each x, y ∈ V (G) ∪ E(G).

Conversely, suppose that G has an (nr, ns)-circular (P,Q)-total coloring g.
Define an (r, s)-circular (P,Q)-total coloring h of G in the following way: for
each x ∈ V (G) ∪E(G) let h(x) = [⌈a/n⌉, ⌈a/n⌉+ s− 1] if g(x) = [a, a+ ns− 1].
For each i ∈ Zr, G[Vi,h] ∼= G[Vni,g] and G[Ei,h] ∼= G[Eni,g], thus G[Vi,h] ∈ P and
G[Ei,h] ∈ Q. Finally, color sets of incident vertices and edges given by h are
disjoint by the same argument as above.

The following result is an immediate consequence of Lemma 3.8.

Corollary 3.9. If the graph G has an (r, s)-circular (P,Q)-total coloring, then
it has an (a, b)-circular (P,Q)-total coloring with a/b = r/s and gcd(a, b) = 1.

Lemma 3.10. Let n ∈ N. If the graph G has an (r, s)-fractional (P,Q)-total
coloring, then it has an (nr, ns)-fractional (P,Q)-total coloring.

Proof. Let n ∈ N and assume that G has an (r, s)-fractional (P,Q)-total coloring
h. Define an (nr, ns)-fractional (P,Q)-total coloring g : V (G) ∪ E(G) → [Znr]

ns

of G in the following way: for each x ∈ V (G)∪E(G) let g(x) = [nh1, n(h1+1)−
1] ∪ [nh2, n(h2 + 1)− 1] ∪ · · · ∪ [nhs, n(hs + 1)− 1] if h(x) = {h1, h2, . . . , hs}. By
the definition of g, for each element x ∈ V (G) ∪ E(G) it holds that i ∈ h(x) if
and only if [ni, n(i + 1) − 1] ⊆ g(x). Hence, G[Vi,h] ∈ P (or G[Ei,h] ∈ Q) if and
only if G[Vj,g] ∈ P (or G[Ej,g] ∈ Q, respectively) for each j ∈ [ni, n(i + 1) − 1].
Moreover, color sets of incident vertices and edges given by the coloring g are
disjoint.

The converse of this lemma is not true. The Kneser graph KGn,k is the
graph with vertex set [Zn]

k and with edges joining disjoint k-element subsets.
Then KG6,2 has a (6, 2)-fractional (O, I)-total coloring by definition, but it has
no (3, 1)-fractional (O, I)-total coloring. Lovász proved Kneser’s conjecture in
[11] somewhat later Bárány [1] gave a simple proof χ(KGn,k) = n− 2k + 2, i.e.,
χ(KG6,2) = 4.
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Lemma 3.11. Let a, b, r, s ∈ N, a ≥ b and r ≥ s. If G has an (r, s)-circular
(P,Q)-total coloring, then it has also an (a, b)-circular (P,Q)-total coloring for
each a/b ≥ r/s.

Proof. Suppose that a graph G has an (r, s)-circular (P,Q)-total coloring, a/b ≥
r/s and ms = nb = lcm(s, b). By Lemma 3.8, G has an (mr,ms)-circular (P,Q)-
total coloring g. Since a/b ≥ r/s, we have na ≥ mr, thus g is also an (na, nb)-
circular (P,Q)-total coloring of G (see Observation 3.2). Then, by Lemma 3.8,
the graph G has an (a, b)-circular (P,Q)-total coloring.

Theorem 3.12. χ′′
P,Q(G)− 1 < χ′′

c,P,Q(G) ≤ χ′′
P,Q(G).

Proof. Since each (P,Q)-total r-coloring of a graph G is also an (r, 1)-circular
(P,Q)-total coloring, we have χ′′

c,P,Q(G) ≤ χ′′
P,Q(G).

If χ′′
P,Q(G) − 1 ≥ χ′′

c,P,Q(G), then there exists an (r, s)-circular (P,Q)-total
coloring of G such that r/s ≤ χ′′

P,Q(G) − 1. Then, by Lemma 3.11, there exists
a (χ′′

P,Q(G)− 1, 1)-circular (P,Q)-total coloring of G which is also a (P,Q)-total
(χ′′

P,Q(G)− 1)-coloring contradicting the definition of such colorings.

Lemma 3.13. Let G have an (r, s)-circular (P,Q)-total coloring h with gcd(r, s)
= 1, and suppose that there exist an i ∈ Zr such that [i, i + s − 1] 6= h(x) for
each x ∈ V (G)∪E(G). Then G has an (a, b)-circular (P,Q)-total coloring g with
a/b < r/s and a < r.

Proof. Suppose that a graph G has an (r, s)-circular (P,Q)-total coloring h1 =
h : V (G)∪E(G) → [Zr]

s and define ĥ : V (G)∪E(G) → Zr by h(x) = [ĥ(x), ĥ(x)+
s−1]. In this coloring at least one color set is not used; without loss of generality
let it be the set [s, 2s− 1] (otherwise the graph can be cyclically recolored).

If s ≥ 2 then assign to each element x ∈ V (G)∪E(G) with color set [2s, 3s−1]
the new color set [2s−1, 3s−2]. By this recoloring, we obtain a coloring h2 which
satisfies G[Vi,h2 ] ∈ P for all i ∈ Zr: Obviously, Vi,h2 = Vi,h for i 6= 2s − 1, 3s − 1
and V3s−1,h2 ⊆ V3s−1,h which implies G[Vi,h2 ] ∈ P for i 6= 2s− 1. Since s ≥ 2 and
since the set [s, 2s− 1] does not occur in the coloring h and therefore not in h2,
each element x ∈ V (G)∪E(G) with 2s− 1 ∈ h2(x) must also have 2s ∈ h2(x). It
follows that V2s−1,h2 ⊆ V2s,h2 = V2s,h and therefore G[V2s−1,h2 ] ∈ P. Analogously,
G[Ei,h2 ] ∈ Q for all i ∈ Zr. It also holds that h2(x) ∩ h2(y) = ∅ for incident
elements x ∈ V (G), y ∈ E(G), since h(x) ∩ h(y) = ∅ and since the set [s, 2s− 1]
does not occur in h2. Therefore, h2 is an (r, s)-circular (P,Q)-total coloring of
G. Note that the coloring h2 uses at most r − 2 color sets.

Now perform the described recoloring for color sets [2s, 3s − 1], [3s, 4s −
1], . . . , [σs, (σ+1)s−1], where σs ≡ 1 (mod r) (such a σ exists because gcd(r, s) =
1). Note that the values in the color sets are considered modulo r. If s = 1
then σ = 1 and no recoloring is needed. The coloring hσ uses at most r − σ
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color sets and the corresponding ĥσ uses no color from H = {s, 2s, . . . , σs}. Let
t = σs−1

r
. Rename the colors used by ĥσ by the bijection ϕ : Zr\H → Zr−σ,

ϕ(i) = i − |H ∩ [0, i]| = i − |{c ∈ H : c < i}|. Then we obtain a new as-
signment ĝ : V (G) → Zr−σ with ĝ(x) = ϕ(ĥσ(x)) and a corresponding coloring
g : V (G) → [Zr−σ]

s−t with g(x) = [ĝ(x), ĝ(x)+s−t−1]. For each i ∈ Zr consider
Mi = [i, i + s − 1]. Note that each set Mi, i 6= 1, contains exactly t values of H
and that M1 contains t + 1 values of H, but M1 is not used in the coloring hσ.
It follows that i ∈ hσ(x) if and only if ϕ(i) ∈ g(x) for each i ∈ Zr\H.

Hence, g is an (a, b)-circular (P,Q)-total coloring of G with a = r − σ and
b = s − t. This implies that a < r since σ ≥ 1 and that a

b
= r−σ

s−t
= r−σ

s−σs−1
r

=

r(r−σ)
s(r−σ)+1 <

r
s
.

The following theorem is an immediate consequence of Lemma 3.13.

Theorem 3.14. Let |V (G)| = n and |E(G)| = m. Then χ′′
c,P,Q(G)

= min
{

r
s
: G has an (r, s)-circular (P,Q)-total coloring and r ≤ n+m

}

.

Proof. Let h be an (r, s)-circular (P,Q)-total coloring of G with gcd(r, s) = 1
which is no restriction according to Corollary 3.9.

If r > n + m = |V (G)| + |E(G)|, then there exists an unused color set
[i, i + s − 1], i ∈ Zr. This implies by Lemma 3.13 that G has an (a, b)-circular
(P,Q)-total coloring with a/b < r/s and a < r. Therefore, one can restrict
oneself in the computation of χ′′

c,P,Q(G) to the case r ≤ n + m. Since s ≤ r
by definition there are just finitely many fractions r/s which implies that the
infinum in the definition of χ′′

c,P,Q(G) can be replaced by the minimum.

4. Results for Kn

In this section we consider total colorings of complete graphs.

It is easy to see that, for every n,

χ′′
f,P,Q(Kn) ≤ χ′′

c,P,Q(Kn) ≤ χ′′
P,Q(Kn) ≤ χ′′(Kn).

The generalized edge-chromatic number of a graph G, denoted by χ′
P(G), is

defined as the least integer k for which there exists a decomposition of E(G) =
{E1, . . . , Ek} such that G[Ei] ∈ P for each i = 1, . . . , k (see, e.g., [6]). Because
χ′
O1

(G) = χ′(G) we can say that generalized P-edge colorings are generalizations
of proper edge colorings. We use the following lemma for the proof of the next
theorem.

Lemma 4.1. χ′
I1
(Kn) ≤ ⌈log2n⌉.
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Proof. The proof is by induction on k = ⌈log2n⌉. For k ≤ 1 the statement holds
trivially. In the induction step let n ∈ [2k +1, 2k+1]. We partition the vertices of
Kn into two parts: X with 2k vertices and Y with n − 2k ≤ 2k vertices. Color
the edges of G[X] ∼= K2k and of G[Y ] ⊆ K2k inductively by colors from the set
{1, . . . , k}. A new color k+1 is used for all edges between X and Y . This coloring
contains no monochromatic triangle which completes the proof.

Note that there are better estimations of χ′
I1
(Kn) because this parameter

is connected to Ramsey numbers (see, e.g., [5]). In the following theorem we
determine χ′′

f,P,Q and χ′′
c,P,Q for complete graphs with an arbitrary property P

for the vertices and property Q = Il with (an arbitrary l) for the edges. This
result is indepedent of l and the proof is based on the fact that I1 ⊂ I2 ⊂ · · · .

Theorem 4.2. For each k ∈ N there exists a T (k) such that for each n ≥ T (k),
for each l ∈ N and for each P with c(P) = k it holds that

χ′′
c,P,Il

(Kn) = χ′′
f,P,Il

(Kn) =
n

k + 1
.

Proof. Let c(P) = k. For any (r, s)-fractional (P, Il)-total coloring of Kn it
holds that at most (k + 1) vertices are colored with color sets containing i, for
each i ∈ Zr, and every vertex is colored with an s-element color set. This implies
that r(k + 1) ≥ ns and therefore χ′′

c,P,Il
(Kn) ≥ χ′′

f,P,Il
(Kn) ≥

n
k+1 .

To prove the inequality χ′′
c,P,Il

(Kn) ≤
n

k+1 we construct an (n, k+1)-circular
(P, I1)-total coloring h of Kn since χ′′

c,P,Il
(Kn) ≤ χ′′

c,P,I1
(Kn). Let V (Kn) = Zn.

Define the assignment h : V (Kn)∪E(Kn) → [Zn]
k+1 firstly for vertices by h(i) =

[i, k+ i] for each i ∈ Zn. For each color i ∈ Zn the graph G[Vi,h] has exactly k+1
vertices and therefore has property Ok ⊆ P.

Next we denote V0 = [n− k, k], V1 = [k + 1, ⌊n/2⌋], and V2 = V (Kn) \ (V0 ∪
V1) = [⌊n/2⌋+ 1, n− k − 1]. Then |V0| = 2k + 1 and |V2| ≤ |V1| ≤

n−2k
2 . Colors

from [0, k] were used only on vertices from V0 and thus the color set [0, k] can be
assigned to all edges between V1 and V2.

For an arbitrary p there is a sufficiently large np such that for n ≥ np this
coloring uses colors from [2k+1, 2k+ p(k+1)] only on vertices from V1. We can
also state that colors from [n− k− p(k+1), n− (k+1)] are used only on vertices
from V2. Note that it is sufficient to take np = 2p(k + 1) + 4k + 1. Our goal is
to use disjoint color sets [j(k + 1) + k, j(k + 1) + 2k], j = 1, . . . , p− 1, for edges
from E(V2) and from E(V0), color set [p(k + 1) + k, p(k + 1) + 2k] for all edges
between V0 and V2, disjoint color sets [n−k− j(k+1), n− j(k+1)], j = 2, . . . , p,
for edges from E(V1) and finally [n − 2k − 1, n − k − 1] for all edges between
V0 and V1. Therefore, if we take p − 1 ≥ max{χ′

I1
(K|Vi|); i = 0, 1, 2}, then the

coloring can be created in a such way that for each color i ∈ Zn the graph G[Ei,h]
has no triangle and therefore is from I1. Moreover, this coloring uses disjoint
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color sets for incident vertices and edges. Therefore, this is an (n, k+ 1)-circular
(P, I1)-total coloring of Kn.

To finish the proof it is sufficient to show the existence of a number p with
⌊

n−4k−1
2(k+1)

⌋

≥ p ≥
⌈

log2
n−2k

2

⌉

+1. Such a p does exist because of the properties of

linear and logarithmic functions for big values of n.

In the previous theorem we can replace property Il by an arbitrary property
Q ⊇ I1.

Remark 4.3. If n ≥ T (c(P)), then χ′′
c,P,Ib

(Kn) = χ′′
f,P,Ib

(Kn) =
n

c(P)+1 . If n <

T (c(P)), then χ′′
c,P,Ib

(Kn) ≥ χ′′
f,P,Ib

(Kn) ≥
n

c(P)+1 . Thus, we have χ′′
f,P,Ib

(Kn) ≥
n

c(P)+1 for each n ∈ N which implies for an arbitrary graph G

χ′′
f,P,Ib

(G) ≥ χ′′
f,P,Ib

(Kω(G)) ≥
ω(G)

c(P) + 1
.

Borowiecki et al. [2] showed that χ′′
D1,D1

(Kn) = ⌊n/2⌋ + 2. We determine
this number for fractional and circular (D1,D1)-total colorings and odd order n.
Note that χ′′

f,D1,D1
(Kn) is already calculated in Theorem 2.1. Here we present a

different proof.

Theorem 4.4. Let n be odd, n ≥ 3. Then

χ′′
f,D1,D1

(Kn) = χ′′
c,D1,D1

(Kn) =
n(n+ 1)

2(n− 1)
.

Proof. It is sufficient to prove n(n+1)
2(n−1) ≤ χ′′

f,D1,D1
(Kn) and χ

′′
c,D1,D1

(Kn) ≤
n(n+1)
2(n−1) .

For each (r, s)-fractional (D1,D1)-total coloring of Kn and for each i ∈ Zr, the
following holds: at most two vertices are colored with sets containing the color
i, and at most n− 1 vertices or edges may be colored with sets containing i. On
the other hand, each vertex and each edge is assigned with an s-element color
set. This implies that

(n− 1)r ≥

(

n+

(

n

2

))

s,

hence,
r

s
≥
n(n+ 1)

2(n− 1)

and therefore n(n+1)
2(n−1) ≤ χ′′

f,D1,D1
(Kn) for all n.

To prove the inequality χ′′
c,D1,D1

(Kn) ≤
n(n+1)
2(n−1) for odd n, say n = 2t+ 1, we

construct an (n(n+ 1)/2, n− 1)-circular (D1,D1)-total coloring of Kn.
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Let V (K2t+1) = Z2t+1 = [0, 2t]. We define h : V (K2t+1) ∪ E(K2t+1) → [Zr]
s

with r = (2t+ 1)(t+ 1) and s = 2t as follows:

h(i) = [ĥ(i), ĥ(i) + s− 1] for i ∈ Z2t+1,

h(i, j) = [ĥ(i, j), ĥ(i, j) + s− 1] for i, j ∈ Z2t+1, i 6= j,

where the corresponding function ĥ : V (K2t+1)∪E(K2t+1) → Zr is defined below.
Note that arguments of h and ĥ are taken modulo 2t + 1 while the values of ĥ
are taken modulo r = 2t2 + 3t+ 1.

ĥ(i) = i(t+ 1) for i ∈ Z2t+1,

ĥ(0, j) =

{

2t(t+ 1)− j(t− 1)
2t(j − t)

for j ∈ [1, t],
for j ∈ [t+ 1, 2t],

ĥ(i+ 1, j + 1) = ĥ(i, j) + (t+ 1) for 0 ≤ i < j < 2t,

ĥ(i, j) = ĥ(j, i) for 0 ≤ j < i ≤ 2t.

Now we want to prove that h is an (r, s)-circular (P,Q)-total coloring of Kn,
or equivalently, we need to prove for each color c ∈ Zr that

(A) Kn[Vc,h] ∈ D1,
(B) Kn[Ec,h] ∈ D1, and
(C) if c ∈ h(i, j) for some edge (i, j), then c /∈ h(i) and c /∈ h(j).

We first show that ĥ has the shifting property, i.e., ĥ(i+1) = ĥ(i)+(t+1) for each
i ∈ Zn and ĥ(i+ 1, j + 1) = ĥ(i, j) + (t+ 1) for each i, j ∈ Zn, i 6= j. Obviously,
we need to prove only the second equation just for j = 2t since in the other cases
it follows directly from the definition of ĥ. It holds that ĥ(i+ 1, 0) = ĥ(0, i+ 1)
and ĥ(i, 2t) + (t + 1) = ĥ(0, 2t − i) + i(t + 1) + (t + 1) if i < j = 2t. By
distinguishing the cases for i ∈ [0, t − 1] and i ∈ [t, 2t − 1] we obtain in the first
case the common value 2t2+ t+1− i(t−1), in the second case the common value
−2t2 +2t+ i2t = 5t+1+ i2t (considered modulo r, r = 2t2 +3t+1). Therefore,
it is enough to show properties (A)–(C) for colors c ∈ [0, t] only.

(A) Colors from [0, t] are only used on vertices 0 and 2t, i.e., at most two
vertices contain color c and therefore Kn[Vc,h] ∈ D1.

(C) From the shifting property of ĥ we have h(i+ 1, j + 1) ∩ h(i+ 1) 6= ∅ if
and only if h(i, j) ∩ h(i) 6= ∅. Therefore, we prove (C) only for edges {0, j} and
vertex 0. In this case h(0) = [0, s − 1] = [0, 2t − 1] and we want to show that
ĥ(0, j) ∈ [s, r − s] = [2t, 2t2 + t + 1]. For j ∈ [1, t] (j ∈ [t + 1, 2t], respectively)
ĥ(0, j) = 2t2 + 2t − j(t − 1) ∈ [t2 + 3t, 2t2 + t + 1] ⊆ [2t, 2t2 + t + 1] (ĥ(0, j) =
−2t2 + j2t ∈ [2t, 2t2] ⊆ [2t, 2t2 + t + 1], respectively) and the required property
holds.

(B) Finally, we want to show that Kn[Ec,h], c ∈ [0, t], contains no cycle. To
prove this we give the following orientation of the edges of Kn[Ec,h]: for an edge
{i, j} with i < j (and c ∈ h(i, j)) we choose the orientation which starts at i and
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ends in j (denoted by
−−→
(i, j)). Now we will prove that in this oriented graph each

vertex is an end of at most one arc and thus in this oriented graph there is no
oriented cycle.

We fix vertex j ∈ [0, 2t] and count the number of arcs
−−→
(i, j) (with c ∈ h(

−−→
(i, j))).

If j − i ∈ [t + 1, 2t] (and i < j), then i ∈ [0, t − 1], j ∈ [t + 1, 2t] and ĥ(i, j) =
ĥ(0, j−i)+i(t+1) = 2t(j−i−t)+i(t+1) ∈ [2t(t+1−t)+0, 2t(2t−0−t)+0(t+1)] =
[2t, 2t2] ⊆ [2t, 2t2+ t+1] = [s, r−s] and c /∈ h(i, j). In the other case, j− i ∈ [1, t]
(and i < j). Then ĥ(i, j) = ĥ(0, j−i)+i(t+1) = 2t(t+1)−(j−i)(t−1)+i(t+1) =
2t(t+ 1)− j(t− 1) + i2t. Therefore, the color sets h(i, j) for fixed j are pairwise
disjoint since s = 2t and at most one of them contains the color c.

As Kn ⊆ Kn+1 we obtain by Lemma 3.4 the following result.

Corollary 4.5. Let n be even, n ≥ 4. Then

n(n+ 1)

2(n− 1)
≤ χ′′

c,D1,D1
(Kn) ≤

(n+ 1)(n+ 2)

2n
.

We conjecture that Theorem 4.4 holds for all n ≥ 3, i.e., also for even n.

Conjecture 4.6. Let n be even, n ≥ 4. Then

χ′′
c,D1,D1

(Kn) =
n(n+ 1)

2(n− 1)
.
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