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Abstract

The maximum independent set problem is an NP-hard problem. In this
paper, we consider Algorithm MAX, which is a polynomial time algorithm
for finding a maximal independent set in a graph G. We present a set
of forbidden induced subgraphs such that Algorithm MAX always results in
finding a maximum independent set ofG. We also describe two modifications
of Algorithm MAX and sets of forbidden induced subgraphs for the new
algorithms.
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1. Introduction

In a simple graph G = (V,E), a set of vertices is independent (or stable) if no
two vertices in this set are adjacent. The cardinality of a maximum size indepen-
dent set in G is called the independence number (or the stability number) of G,
denoted by α(G). The problem of determining an independent set of maximum
cardinality, so-called Maximum Independent Set (or MIS for short) problem,
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finds important applications in various fields, some examples are computer vision
and pattern recognition. It is well-known that the problem is generally NP-hard.
Alekseev has shown in [1] that if a graph H has a connected component not of the
form Si,j,k, where Si,j,k is the graph consisting of three induced paths of lengths
i, j and k, with a common initial vertex, then the MIS problem is NP-hard for
H-free graphs. It is shown that the MIS problem is solvable in polynomial time
for S1,1,1-free graphs (claw-free graphs) [28, 34] and for S0,1,2-free graphs (P4-
free graphs) [10]. These results were generalized to S1,1,2-free graphs (fork-free
graphs) [2] and S0,2,2 (P5-free graphs) [21]. Hence, the complexity status of the
MIS problem in the graph classes defined by a single forbidden induced subgraph
of the form Si,j,k was solved for the case i + j + k ≤ 4. For larger i + j + k
(P6, S1,2,2, S2,2,2 and so on), it is still an open question and gained much effort
to solve in some subclasses. Some examples are (Pn,K1,n)-free graphs [22], (P6,
diamond)-free graphs [29], (P6,K2,3)-free graphs [30], (S2,2,2, banner)-free graphs
[12], (S2,2,2, B2, domino, M3,K1,m)-free graphs [20], (S1,2,k, banner, K1,n)-free
graphs [19], (S1,2,5, banner)-free graphs [24], S1,2,k-free planar graphs, S1,k,k-free
graphs of low degree [23], and S2,2,2-free subcubic graphs [26].

Useful techniques for solving the problem are heuristic algorithms, i.e., the
methods giving maximal (inclusion sense) independent sets in polynomial time.
Three well-known algorithms are VO (Vertex Ordering) [27], MIN [31], and MAX
[15]. Moreover, for some restricted graph classes, these algorithms always result
in finding a maximum independent set of G, and hence yield the exact value of
the independence number of G in polynomial time.

If H1, H2, . . . , Hk are graphs, then we say that G is {H1, H2, . . . , Hk}-free if
G does not contain a copy of any of the graphs H1, H2, . . . , Hk as an induced
subgraph. In [27], Mahadev and Reed characterized a class of graphs for which
a maximum independent set can be obtained by VO, that is the F1-free graphs,
where F1 = {F1, F2, F3, F4, F5, F6}.

F3 = 

banner
F1 = P7 F2 = C6

F4 = 

K3,3 + e
F5 F6

Figure 1. Forbidden subgraphs for Algorithm VO.

A set of forbidden induced subgraphs F2, under which Algorithm MIN always
results in finding a maximum independent is given in [17] by Harant, Schiermeyer,
and Ryjác̆ek, where F2 = {F1, F3, F5, F6, F7, F8, F9, F10, F11, F12, F13}.
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F8

F7
F9 F10 F11

F12 F13

F15 = 

domino
F14 = B2 F16

F17
F18 F19 F20 =

K3,3 - e

F21 =

Twin 

House

F22 F23 F24

Figure 2. Some forbidden subgraphs for Algorithm MIN.

Zverovich [35] obtained another set, say F3, of forbidden induced subgraphs
for MIN, where F3 = {F1, F4, F5, F6, F7, F14, F15, F16, F17, F18, F19, F20, F21, F22,
F23, F24}.

Following this direction, we will describe a set of forbidden induced subgraphs
for Algorithm MAX in Section 2.

Given a graph G, Algorithm MAX chooses a maximum degree vertex, deletes
it from the graph together with all incident edges. The process is repeated until
there are no edges remaining. Then the remaining vertices form a maximal inde-
pendent set of G. This idea is based on an assumption that a maximum degree
vertex has very small possibility to belong to some maximum independent set
and hence can be deleted from the graph without (or with very small possibility
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of) changing the independence number. Obviously, it will be better if we can find
and delete only a vertex not belonging to some maximum independent set. Such
vertices are called α-redundant vertices [5].

Definition. [5] Given a graph G, a vertex v of G will be called α-redundant if
α(G− v) = α(G).

Here, for a graph G, and a vertex v of G, we denote by G − v the graph
obtained from G by deleting v and all incident edges. Unfortunately, the problem
of finding such vertices, is polynomially equivalent with the MIS problem and
hence also NP-hard in general. However, in some cases, α-redundant vertices
can be recognized efficiently. In the following, we present some conditions to
recognize α-redundant vertices. First, we have the following obvious fact.

Proposition 1. Given a graph G, a vertex v of G is α-redundant if and only if
there exists some maximum independent set S such that v /∈ S.

Lemma 2 [13]. Let G be a graph containing an induced K1,m, u(v1, v2, . . . , vm),
where u is the center-vertex. Then either u is α-redundant or there exists some

u1, u2, . . . , um such that {u, u1, u2, . . . , um} is independent and there is a perfect

matching between {ui} and {vi}.

The α-redundant technique was used successfully in [5, 6, 12, 13, 36, 20] to
extend some polynomial results of the MIS problem in some subclasses of P5-
free graphs. Note that, in Lemma 2, for the case m = 1, we have a so-called
neighborhood reduction technique [14]: let a and b be adjacent vertices in a graph
G. If every neighbor vertex of b is also adjacent to a, then for any independent set
S containing a, the set (S\{a}) ∪ {b} is also independent, i.e., a is α-redundant.
And for the case m = 2, we have a so-called vertex deletion technique [4]: let
three vertices a, b, and c induce a P3 with edges ab and bc. If (N(a)∪N(c))\N [b]
is a clique, then the removal of b does not change the independence number of
the graph, i.e., b is α-redundant.

In Section 2, we will describe conditions under which a maximum degree
vertex is not α-redundant in order to describe forbidden subgraphs for Algo-
rithm MAX. In Section 3, we will describe some techniques to recognize some
α-redundant vertex in the neighborhood of a maximum degree vertex u. In case
we succeed, we will delete such a vertex instead of u. It leads us to a new
hybrid algorithm for solving the MIS problem. Our motivation is finding an al-
gorithm better than MAX and VO in the sense of forbidden induced subgraph
set. In Section 4, we will combine Algorithm MAX with K1,m-reduction to use
some polynomial time solution of the MIS problem in some subclass of K1,m-free
graphs. Section 5 is devoted to comparison of the new algorithms with classical
heuristic methods. In Section 6, we will give some discussion around the topic
and related results.
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Now, to some other notions which will be used throughout the paper. In this
paper, we consider only finite undirected, simple graphs G = (V (G), E(G)). For
u, v ∈ V (G), we write u ∼ v if uv ∈ E(G) and u ≁ v if uv /∈ E(G). Denote
by N(x) the neighborhood of a vertex x ∈ V (G), by d(x) = |NG(x)| the degree

of x in G. For a set M ⊆ V (G), denote by G[M ] the induced subgraph of G on
M . For a vertex x, we also denote NM (x) = N(x) ∩M and dM (x) = |NM (x)|.
For an induced subgraph H of G, denote NH(x) = NV (H)(x) and dH(x) =
|NH(x)|. Let ∆(G) = max{d(u) : u ∈ V (G)}. As usual, we also denote by Kp

the complete graph having p vertices and by Km,n the complete bipartite graph
with cardinalities m and n of the two parts. For K1,m, the vertex of degree m is
called the center-vertex. Denote by Pn the induced path having n vertices.

2. Forbidden Subgraphs for Algorithm MAX

First, we recall the well-known greedy Algorithm MAX (see Algorithm 1) for
finding a maximal independent set in a graph, which was introduced in [15].

Algorithm 1 Algorithm MAX (Maximum degree).

Input: G = (V,E).
Output: S, a maximal independent set of G.
1: Hn := G; i := n;
2: while E(Hi) 6= ∅ do
3: Choose a vertex vi ∈ V (Hi) such that dHi

(vi) = ∆(Hi);
4: Hi−1 := Hi − vi; i := i− 1;
5: end while
6: S := V (Hi);
7: return S

Obviously, the set S, generated by Algorithm MAX, is a maximal (but
not necessarily maximum) independent set in G, and hence α(G) ≥ |S|. In
this section, we describe some set of forbidden induced subgraphs, under which
α(G) = |S|. Let G be a graph such that the algorithm fails for G, i.e., the
algorithm chooses and deletes some vertex of maximum degree u of G but the
deletion of u reduces the independence number of G. It implies that u belongs
to every maximum independent set of G or, in other words, u is not α-redundant
by Proposition 1. Now, we consider some conditions, under which u is not α-
redundant.

Lemma 3. Let G be a graph, u be a vertex, v ∈ N(u), and S be a maximum

independent set such that u ∈ S. Then either u is α-redundant or dS(v) ≥ 2.

Proof. If dS(v) = 1, then (S\{u}) ∪ {v} is a maximum independent set not
containing u, i.e., u is α-redundant by Proposition 1.
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Lemma 4. Let G be a graph, E(G) 6= ∅, u be a maximum degree vertex and S
be a maximum independent set such that u ∈ S. Then either u is α-redundant or
there exist some v1, v2 ∈ N(u) such that v1 ≁ v2.

Proof. Let |N(u)| = p. Since u is of maximum degree and E(G) 6= ∅, p > 0.
Assume that N(u) is a clique. Then for every v ∈ N(u), d(v) ≥ p − 1 + 1 =
p = d(u) ≥ d(v). Hence, for every v ∈ N(u), d(v) = p, i.e., N [u] is a clique and
a connected component of G. Now, u is α-redundant because there exists some
maximum independent set S containing a neighbor of u and not containing u.

Lemma 5. Let G be a graph and (v1, u, v2) be an induced P3 (u is the mid-vertex).
Then either u is α-redundant or there exist u1, u2 such that {u1, v1, u, v2, u2}
induces a P5 (u is the mid-vertex) or a banner (F3) (v1 or v2 is of degree three)
or a K2,3 (v1, v2 are of degree three).

Proof. Assume that u is not α-redundant. Then by Lemma 2, there exist u1, u2
such that {u, u1, u2} is independent and there exists a perfect matching between
{u1, u2} and {v1, v2}, i.e., {u1, v1, u, v2, u2} induces a P5, a banner, or a K2,3

depending on the adjacency between {u1, u2} and {v1, v2}.

Given a graph G, denote by kMAX(G) the minimum cardinality of a (maxi-
mal) independent set given by Algorithm MAX. The following result describes a
set of forbidden induced subgraphs, under which Algorithm MAX gives a maxi-
mum independent set.

F25

= P5

F26 F27 F28 F29 F30 = M3

Figure 3. Some forbidden subgraphs for Algorithm MAX and Algorithm MMAX.

Theorem 6 (Forbidden subgraphs for MAX Algorithm). Let G be an F4-free

graph of order n ≥ 7, where F4 = {F4, F15, F19, F20, F21, F24, F25, F26, F27}. Then
kMAX(G) = α(G).

Proof. Assume that the statement in the theorem is not correct. That means
there exists a (without loss of generality) connected graph G satisfying the as-
sumption of the theorem and some vertex u ∈ V (G) such that

1. u is of maximum degree in G and
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2. u belongs to every maximum independent set of G,

i.e., Algorithm MAX will fail.
Let S be a maximum independent set of G (hence u ∈ S) and T = V (G)\S.

Since G is P5-free and u is not α-redundant, we obtain the following observation
from Lemma 5.

Claim 7. Let v1, v2 ∈ N(u) be two non-adjacent vertices. Then there exists some

u′ ∈ S such that v1, v2 ∈ N(u) ∩N(u′).

Also by Lemma 5, for two non-adjacent neighbors v1, v2 of u, there exist some
u1, u2 such that {u, u1, u2, v1, v2} induces a P5, or a K2,3, or an F3. The first case
cannot happen because G is P5-free. We consider the two other cases by Claims
8 and 9.

Claim 8. There are no vertices v1, v2 ∈ T and u1, u2 ∈ S such that {v1, v2, u, u1,
u2} induces a K2,3.

Proof. Suppose that {v1, v2, u, u1, u2} induces a K2,3, for some v1, v2 ∈ T and
u1, u2 ∈ S. Let H be a maximal (by inclusion) induced complete bipartite sub-
graph of G with parts A and B such that {u, u1, u2} ⊆ A ⊆ S and {v1, v2} ⊆
B ⊆ T .

Case 1. |B| < |A|. Since d(u) ≥ d(v2), there exists v3 ∈ T\V (H) such that
v3 ∼ u and v3 ≁ v2.

If NA(v3) = A, then v3 ∼ v for some v ∈ B (otherwise, H is not maximal).
Without loss of generality, let v = v1. Then {u, u1, u2, v1, v2, v3} induces an F4,
a contradiction.

Hence, there exists some v3 ∈ T\V (H) such that v3 ∼ u, v3 ≁ v1, and v3 ≁ u′

for some u′ ∈ A, say v3 ≁ u1.
If v3 ≁ u′ ∀u′ ∈ A\{u}, then, by Claim 7, there exists some u3 ∈ S\A such

that u3 is adjacent to v1 and v3. Moreover, v ≁ u3 for some v ∈ B (otherwise
we have a contradiction with the maximality of H). Assume that v2 ≁ u3.
Then v3 ∼ v2, otherwise {u2, v2, u, v3, u3} induces a P5, a contradiction. Now,
{u, u1, u3, v1, v2, v3} induces an F28, a contradiction.

Hence, u3 ∼ u′ for some u′ ∈ A, say u′ = u2. But then {u, u1, u2, v1, v2, v3}
induces an F20 or an F21, depending on v3 ∼ v2 or not, a contradiction.

Case 2. |B| ≥ |A|, i.e, there exists v3 ∈ B\{v1, v2}. The set S′ = (S\A) ∪B
cannot be an independent set of G, otherwise, since |S′| ≥ |S| and u /∈ S′, u
is α-redundant. Hence, there exists some u3 ∈ S\A such that u3 ∼ v for some
v ∈ B, say v = v1. Moreover, the maximality of H implies that u3 cannot be
adjacent to every vertex of B. Without loss of generality, assume that u3 ≁ v2.
Then {u, u1, u2, u3, v1, v2, v3} induces an F24 or an F20, depending on v3 ∼ u3 or
not, a contradiction.
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Claim 9. There are no vertices v1, v2 ∈ T and u1, u2 ∈ S such that {v1, v2, u, u1,
u2} induces an F3.

Proof. For contradiction, let v1, v2 ∈ T and u1, u2 ∈ S be vertices such that
{u, u1, u2, v1, v2} induces an F3 (without loss of generality, assume that u2 is the
vertex of degree one in the F3).

Let H = G[{u, u1, u2, v1, v2}]. Since dH(v1) > dH(u), there exists some
v3 /∈ V (H) such that u ∼ v3 and v3 ≁ v1. By Claim 8, v3 ≁ u1 or v3 ≁ u2.

If v3 ∼ u1 and v3 ≁ u2, then {u, u1, u2, v1, v2, v3} induces an F20 or an F26,
depending on v2 ∼ v3 or not, a contradiction.

If v3 ∼ u2 and v3 ≁ u1, then {u, u1, u2, v1, v2, v3} induces an F15 or an F19,
depending on v2 ∼ v3 or not, a contradiction.

If v3 ≁ u1 and v3 ≁ u2, then by Claim 7, there exists some u3 ∈ S such
that u3 ∼ v3, u3 ∼ v1. Moreover, by Claim 8, v2 ≁ u3. Now, {u, u1, u2, v1, v2, v3}
induces an F15 or an F27, depending on v2 ∼ v3 or not, a contradiction.

Lemmas 4, 5 and Claims 7, 8, 9 finish the proof of the theorem.

3. A Modification of Algorithm MAX

Algorithms MAX, MIN, VO are heuristic methods, i.e., for a graph G, they
give a maximal (and not necessarily maximum) independent set in polynomial
time. Some other useful techniques for solving the problem are transformation
methods. Transformation methods include graph transformation (changing some
part of the graph) with controlled changing of the independence number. Some
examples of graph transformation methods are STRUCTION [11], Magnet [16],
BAT [18], vertex folding [8], and vertex splitting [2, 32]. Other transformation
methods are deletion (or insertion) of an edge [7] or deletion of a vertex (along
with deletion of all incident edges) [4], simplicial reduction [33], neighborhood
reduction [14], and twin reduction [9]. We can repeat the deletion of a vertex
or an edge until we obtain a simple (enough) graph, i.e., a graph for which we
already have some efficient algorithm for solving the problem.

In this section, we describe a modification of Algorithm MAX using α-
redundant technique. The idea here is to pick a maximum degree vertex u of
G, but before deleting u from G, we check if some neighbor of u is α-redundant
(in the sense of Lemma 2) and delete it instead of u in the case it is. Algorithm
2 is the pseudo-code of our new algorithm.

Consider an arbitrary simple graph G, let n = |V (G)|. Clearly, MMAX gives
a maximal independent set. The algorithm repeatedly checks if the remaining
graph still contains edges and chooses a maximum degree vertex u (Step 3). In
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Algorithm 2 Algorithm MMAX (Modification of MAX).

Input: G = (V,E).
Output: S, a maximal independent set of G.
1: Hn := G; i := n; S := ∅
2: while E(Hi) 6= ∅ do
3: Choose a vertex u ∈ V (Hi) such that dHi

(u) = ∆(Hi);
4: for v ∈ NHi

(u) do
5: if there exists some u1 ∈ NHi

(v)\NHi
[u] such that there exists no v1 ∈

NHi
(u1)\NHi

[v] then
6: Hi−1 := Hi − v; i := i− 1; break;
7: end if
8: if there exist some u1, u2 ∈ NHi

(v)\N [u] and u1 ≁ u2 such that there
exist no v1, v2, v3 ∈ NHi

(u)\NHi
[v] and v1 ∼ u, v2 ∼ u1, v3 ∼ u2 then

9: Hi−1 := Hi − v; i := i− 1; break;
10: end if
11: end for
12: Hi−1 := Hi − u; i := i− 1;
13: end while
14: S := V (Hi);
15: return S

Steps 5 and 8, the algorithm checks and removes a vertex v ∈ N(u) if v is α-
redundant by applying Lemma 2 for the case m = 1 and m = 3, respectively. If
no vertex in N(u) is α-redundant in this sense, then Step 12 removes u with the
assumption that u is α-redundant. In the case that there is no remaining edge,
the remaining vertices form a maximal independent set (Step 14).

We can find a maximum degree vertex u of G in time O(n2). Then |N(u)| is
at most n− 1. For v ∈ N(u), we can check if v is α-redundant in time O(n2) in
Step 5, and in time O(n5) in Step 8. The removal of vertices will be performed
at most n times. Therefore, we obtain the following result.

Theorem 10. For an arbitrary graph G, Algorithm MMAX finds a maximal

independent set in time O(n7).

Given a graph G, denote by kMMAX(G) the minimum cardinality of a maxi-
mal independent set found by Algorithm MMAX. The following theorem provides
a set of forbidden induced subgraphs for Algorithm MMAX.

Theorem 11. Let G be an F5-free graph of order n ≥ 7, where F5 = {F1, F5, F7,
F8, F14, F15, F18, F20, F21, F24, F28, F29, F30}. Then MMAX(G) = α(G).

Proof. We basically follow the idea of the proof of Theorem 6. Assume that the
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statement in the theorem is not correct, that means there exists some graph G
satisfying the assumption of Theorem 11 and a vertex u0 ∈ V (G) such that:

1. u0 is of maximum degree in G,

2. for every vertex v ∈ N(u0), v is not α-redundant (as described in Steps 4.1
and 4.2), and

3. u0 belongs to every maximum independent set of G,

i.e., the MMAX algorithm will fail.

Let S be a maximum independent set of G, i.e., u0 ∈ S. Denote T = V (G)\S,
i.e., N(u0) ⊂ T . We have the following observations.

Claim 12. There exists v0 ∈ N(u0) and u1, u2 ∈ S such that {v0, u0, u1, u2}
induces K1,3, where v0 is the center-vertex.

Proof. By Lemma 4, there exist v1, v2 ∈ N(u0) such that v1 ≁ v2. Since u0
is not α-redundant, by Lemma 5, the only case we have to consider is that
there exists u1, u2 ∈ S such that {u1, v1, u0, v2, u2} induces a P5, because for the
remaining cases (say K2,3 and banner), we have a desired K1,3. Since v1, v2 are
not α-redundant, by applying Lemma 2 for the case m = 1, N(u1)\N [v1] and
N(u2)\N [v2] are not empty. We process by considering the following cases.

Case 1. There exists some v3 ∈ (N(u1)\N [v1]) ∩ (N(u2)\N [v2]). If v3 ∼ u0,
then v3 is such a vertex v0 of the conclusion of the claim. Hence, we assume
that v3 ≁ u0. Since (S\{u0, u1, u2})∪{v1, v2, v3} is not independent, there exists
some u3 ∈ S\{u0, u1, u2} such that u3 is adjacent to at least one vertex among
v1, v2, v3. Now, u3 is adjacent to at least two vertices among {v1, v2, v3}, otherwise
{u0, u1, u2, u3, v1, v2} induces an F7, a contradiction. Hence, v1 or v2 is such a
vertex v0 of the conclusion of the claim.

Case 2. There exists some v3∈N(u1)\(N [v1]∪N(u2)) and v4 ∈ N(u2)\(N [v2]
∪N(u1)).

Subcase 2.1. v3 ∼ v4.

Subcase 2.1.1. v3 ∼ u0 (similar for the case v4 ∼ u0). Then v3 ∼ v2,
otherwise {u2, v2, u0, v1, u1, v3} induces an F14, a contradiction. Moreover, v4 ≁

v1, otherwise {u1, u2, v1, v2, v3, v4} induces an F15, a contradiction. Hence, v4 ∼
u0, otherwise {u2, v4, v3, u1, v1, u0} induces an F14, a contradiction. But now,
{u1, v1, u0, v2, u2, v4} induces an F14, a contradiction.

Subcase 2.1.2. u0 is adjacent to neither v3 nor v4. If v3 ∼ v2 (similar for
the case v4 ∼ v1), then v1 ∼ v4, otherwise {v1, u0, v2, u2, v4, v3} induces an F14, a
contradiction. Now, {u1, u2, v1, v2, v3, v4} induces an F15, a contradiction.
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Hence, we assume that v1 ≁ v4 and v2 ≁ v3. Since (S\{u1, u0, u2}) ∪
{v1, v2, v3} (and (S\{u1, u0, u2})∪{v1, v2, v4} either) is not indepedent, there ex-
ists some u3 ∈ S\{u0, u1, u2} such that u3 is adjacent to at least one vertex among
{v1, v2, v3, v4}. Hence, u3 is adjacent to v1 or v2, otherwise {u0, u1, u2, u3, v1, v2, v3,
v4} induces an F1, a contradiction. Now, v1 or v2 is such a vertex v0 of the con-
clusion of the claim.

Subcase 2.2. v3 ≁ v4.

Subcase 2.2.1. v3 ∼ u0 (similar for the case v4 ∼ u0). Then v3 ∼ v2, otherwise
{u2, v2, u0, v1, u1, v3} induces an F14, a contradiction. Now, v1 ∼ v4 if and only if
v4 ∼ u0, otherwise {u2, v4, u0, v1, u1, v3} induces an F14, a contradiction. Hence,
we have the two following subcases.

(i) v4 is adjacent to v1, u0. Then {u0, u1, u2, v1, v2, v3, v4} induces an F28, a
contradiction.

(ii) v4 is not adjacent to u0 and v1. Since (S\{u0, u1, u2})∪{v1, v2, v4} is not
independent, there exists some u3 ∈ S\{u0, u1, u2} such that u3 is adjacent to
at least one vertex among v1, v2, v4. Hence u3 is adjacent to v1 or v2, otherwise
u3 ∼ v4 and {u3, v4, u2, v2, u0, v1, u1} induces an F1, a contradiction. Now, v1 or
v2 is such a vertex v0 of the conclusion of the lemma.

Subcase 2.2.2. u0 is not adjacent to v3, v4.
(i) v3 ∼ v2 (similar for the case v4 ∼ v1). Then v4 ≁ v1, otherwise {u0, u1, u2,

v1, v2, v3, v4} induces an F29, a contradiction. Since (S\{u0, u1, u2})∪{v1, v2, v4}
is not independent, there exists some u3 ∈ S\{u0, u1, u2} such that u3 is adjacent
to at least one vertex among v1, v2, v4. Hence u3 is adjacent to v1 or v2, otherwise
u3 ∼ v4 and {u3, v4, u2, v2, u0, v1, u1} induces an F1, a contradiction. Now, v1 or
v2 is such a vertex v0 of the conclusion of the claim.

(ii) v3 ≁ v2, i.e., v3 is not adjacent to u0, v2, and v4 and similarly v4 is not
adjacent to v1 and u0. Now, {v3, u1, v1, u0, v2, u2, v4} induces an F1, a contradic-
tion.

Claim 13. Let v0 ∈ N(u0) and u1, u2 ∈ NS(v0)\{u0} be two non-adjacent ver-

tices. Then there exist some v1, v2 such that {u0, u1, u2, v0, v1, v2} induces a K3,3.

Proof. Since {v0, u0, u1, u2} induces aK1,3 and v0 is not α-redundant, by Lemma
2 (for the case m = 3), there exist some v1, v2, v3 ∈ V (G) such that {v0, v1, v2, v3}
is independent and ui ∼ vi+1 for i = 0, 1, 2. Let X = {u0, u1, u2}. By the
symmetry, we consider the following cases.

Case 1. |NX(vi)| = 3 for at least two positive integers i. Then {u0, u1, u2, v0,
v1, v2, v3} induces a K3,3.

Case 2. |NX(v2)| = 2 and NX(v2) = {u1, u2}. Then {u0, u1, u2, v0, v1, v2}
induces an F14 in the case |NX(v1)| = 1, an F15 in the case |NX(v1)| = 2 or an
F20 in the case |NX(v1)| = 3, a contradiction.
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Case 3. |NX(v1)| = |NX(v2)| = 1 and |NX(v3)| = 3. Then {u0, u1, u2, v0, v1,
v2, v3} induces an F30, a contradiction.

Case 4. |NX(vi)| = 1 for i = 1, 2, 3. Let H be a maximal (inclusion sense)
graph consisting of k induced paths of length two of the form v0uivi+1 where v0
is the common initial vertex. Since (S\{u0, ui}) ∪ {v0, vi+1} is not independent
for every i, for each i (2 ≤ i ≤ k), there exists some wi ∈ S\{u0, ui−1} such that
wi is adjacent to v0 or vi. The rest of the proof is processed by considering the
following subcases.

Subcase 4.1. There exists some i such that wi ∼ vi, without loss of generality,
assume that w2 ∼ v2. By Lemma 3, there exists some u ∈ NS(v1)\{u0}. If
u = w2, then {u0, u1, u2, w2, v0, v1, v2} induces an F15 or an F7 depending on
w2 ∼ v0 or not, a contradiction. If u 6= w2, then {u, v1, u0, v0, u1, v2, w2} induces
an F1, an F7, an F14, or an F15 depending on the adjacency between {u,w2} and
{v0, v1, v2}, a contradiction.

Subcase 4.2. There exists some w ∈ S such that w is not adjacent to any vi for
i ≥ 2 and w ∼ v0. Then w ≁ v1, otherwise {v2, u1, v0, u0, v1, w} induces an F15,
a contradiction. Since v0 is not α-redundant, by Lemma 2 (for the case m = 1),
there exists some t ∈ N(w)\N [v0] and by the maximality of H, t is adjacent to
some vertex ui or vi. Moreover, by Lemma 3, there exists some u ∈ S\V (H) such
that v1 ∼ u.

Subcase 4.2.1. t is not adjacent to any vi. Then t ∼ ui for some ui and
t is adjacent to all others uj , otherwise {vj+1, uj , v0, ui, t, w} induces an F14, a
contradiction. Thus, {u, u0, w, v0, v1, t} induces an F15 or an F14 depending on
t ∼ u or not, a contradiction.

Subcase 4.2.2. t ∼ vi for some i ≥ 1.

(i) t ≁ v1. Then, without loss of generality, assume that t ∼ v2. Hence, t
is not adjacent to u0, u1, and u, otherwise {u0, u1, u, w, v0, v1, t} induces an F7,
an F14, or an F15, a contradiction. Now, {t, v2, u1, v0, u0, v1, u} induces an F1, a
contradiction.

(ii) t ∼ v1. We consider the three following subcases.

(a) t is adjacent to ui for some i ≥ 1. Then t ∼ u, otherwise {u, v1, t, w, v0, ui}
induces an F14, a contradiction. Now, {t, u, v0, v1, u0, ui} induces an F18 or an F5

depending on t ∼ u0 or not, a contradiction.

(b) t ≁ ui for i ≥ 1 and t ∼ u0. Then t ∼ vi+1 for every i ≥ 1, otherwise
{vi+1, ui, v0, u0, t, w} induces an F14, a contradiction. Now, {v1, t, v0, v2, v3, u1, u2}
induces an F7, a contradiction.

(c) t ≁ ui for every i. Then t ≁ u, otherwise {t, w, v0, u0, v1, u} induces an
F5, a contradiction. Now, {u, v1, t, w, v0, u1, v2} induces an F1, a contradiction.
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Claim 14. There exist no u1, u2 ∈ S and v1, v2, v3 such that {u0, u1, u2, v1, v2, v3}
induces a K3,3.

Proof. Indeed, suppose there exist u1, u2 ∈ S and v1, v2, v3 such that {u0, u1, u2,
v1, v2, v3} induces a K3,3. Let H be a maximal (inclusion sense) induced complete
bipartite subgraph of G with parts A and B such that A = {u0, u1, . . . , up} ⊆ S
and B = {v1, v2, . . . , vq} ⊆ T (p ≥ 2 and q ≥ 3).

Case 1. p < q. The set S′ = (S\A) ∪ B is not an independent set of G,
otherwise we have a maximum independent set not containing u, a contradic-
tion. Hence, there exists some u ∈ S\A such that u ∼ vi for some vi ∈ B, say
u ∼ v1. Moreover, the maximality of H implies that u is not adjacent to some
vertex of B. Without loss of generality, assume that u ≁ v2. Then u is not adja-
cent to any vertex vi ∈ B\{v1}, otherwise {u, u0, u1, v1, v2, vi} induces an F20, a
contradiction. Now, {u, u0, u1, u2, v1, v2, v3} induces an F24, a contradiction.

Case 2. 3 ≤ q ≤ p. Since d(u0) ≥ d(v2), there exists v ∈ T\V (H) such that
v ∼ u0 and v ≁ v2.

Subcase 2.1. NA(v) = A. By the maximality of H, v ∼ vi for some vi ∈ B.
Without loss of generality, assume that v ∼ v1. Now, {u0, u1, u2, u3, v1, v2, v}
induces an F8, a contradiction.

Subcase 2.2. v ≁ ui for some ui, without loss of generality, assume that v ≁

u1. Then v is not adjacent to any vertex ui, i ≥ 2, otherwise {u0, u1, ui, v, v1, v2}
induces an F21 or an F20 depending on v ∼ v1 or not, a contradiction. Now, by
Lemma 3, there exists some u ∈ NS(v)\A.

Subcase 2.2.1. u is adjacent to some vertex vi of B, without loss of generality,
assume that u ∼ v1. By the maximality of H, u is not adjacent to some vertex
vi of B different from v1, without loss of generality, assume that u ≁ v2. Thus,
{u,u0, u1, u2, v1, v2, v3} induces an F20 or an F24 depending on u ∼ v3 or not, a
contradiction.

Subcase 2.2.2. u is not adjacent to any vertex vi of B. So, v is adjacent to
every vertex vi of B\{v2}, otherwise {u, v, u0, v2, u1, vi} induces an F14. Now,
{v, u1, u2, v1, v2, v3} induces an F20, a contradiction.

Together, all above claims give us the theorem.

4. Algorithm MAX and K1,m Reduction

In the literature, there are some results about polynomial time solution for the
MIS problem in subclasses ofK1,m-free graphs, for example (Pk,K1,m)-free graphs
[22], (S1,2,j , banner, K1,m)-free graphs, (S1,2,3, Bk,K1,m)-free graphs [19] and
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(S2,2,2, B2(F14), domino(F15), M3(F30))-free graphs [20]. So one possible heuristic
approach for the MIS problem is to remove all maximum degree vertices which
are the centers of some K1,m and then apply one polynomial solution for some
subclass ofK1,m-free graphs. In this section, we describe the method of combining
Algorithm MAX and K1,m reduction. Recall that in [20] we have shown that
the MIS problem is solvable in time O(nm+2) for (S2,2,2, F14, F15, F30,K1,m)-free
graphs. In this section, we fix m ≥ 3. Now, we combine Algorithm MAX and
this result to obtain the Algorithm MMAX-l (see Algorithm 3).

Algorithm 3 Algorithm MMAX-l (Combination of MAX and K1,l reduction).

Input: G = (V,E), an (S2,2,2, F14, F15, F30)-free graph.
Output: S, an independent set of G.
1: Hn := G; i := n; S := ∅;
2: while Hi contains a K1,l do
3: Choose a vertex u ∈ V (Hi) such that u is the center-vertex of some K1,l

and u is of maximum degree among center vertices of all induced copies of
K1,l in Hi;

4: i := i− 1; Hi := Hi+1 − u;
5: end while
6: Let S be the maximum independent set of Hi obtained by the technique for

(S2,2,2, F14, F15, F30,K1,l)-free graphs described in [20];
7: return S

To find and remove center vertices of all K1,l’s can be done in time O(nl+2)
and Step 6 can be performed in time O(nl+2) [20]. Hence, Algorithm MMAX-l
can be performed in time O(nl+2) and gives us an independent set. Given a graph
G, we denote by kMMAX−l(G) the minimum cardinality of an independent set
given by Algorith MMAX-l. The following theorem describes a set of forbidden
induced subgraphs for this algorithm.

S2,2,2

1

2

m

F
4
m K3,m – e

1

m

2

Figure 4. Some forbidden subgraphs for Algorithm MMAX-l (l ≥ 2m− 2).

Theorem 15 (Forbidden subgraphs for Algorithm MMAX-l). Let G be an F6-

free graph of order n ≥ 7, where F6 = {S2,2,2, F14, F15, F30,K3,m − e, Fm
4 }. Then
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kMMAX−l(G) = α(G) for l ≥ 2m− 2 and m ≥ 4.

Proof. We will follow the proof of Theorem 6. Assume that the statement in
the theorem is not correct. That means there exists a (without loss of generality)
connected graph G satisfying the assumption of the theorem and some vertex
u ∈ V (G) such that

1. u is the center-vertex of some K1,l {u, v1, v2, . . . , vl},

2. u is of maximum degree among such center vertices of K1,l’s in G, and

3. u belongs to every maximum independent set of G,

i.e., the MMAX-l algorithm will fail.

Let S be a maximum independent set of G (hence, u ∈ S) and T = V (G)\S.
Let W = {v1, . . . , vl, . . . , vp} be the maximal (inclusion sense) independent set
such that W ⊂ N(u) ⊂ T . By Lemma 2, there exist u1, u2, . . . , up ∈ S such that
there exists a perfect matching between {ui} and {vi}. Without loss of generality,
assume that ui ∼ vi for 1 ≤ i ≤ p. Let B = {u, u1, . . . , ul}. Then H = (W,B,E)
is a bipartite graph.

Claim 16. There exists some ui ∈ B\{u} such that ui is adjacent to every vertex

of W .

Proof. Since H does not induce an S2,2,2, there exist some ui, vj such that
i 6= j and ui ∼ vj . Let ui be a vertex such that |NW (ui)| is maximum. Assume
that ui ≁ vk for some k. If uk is not adjacent to any vertex of NW (ui), then
{ui, vi, vj , u, vk, uk} induces an F14 for some vj ∈ NW (ui)\{vi}, a contradiction.
Now, assume that uk ∼ vj for some vj ∈ NW (ui). By the choice of ui, uk ≁ vl
for some vl ∈ NW (ui). Now, {u, vl, ui, vk, uk, vj} induces an F15, a contradiction.
Hence, ui is adjacent to every vertex of W .

Without loss of generality, assume that up is adjacent to every vertex of W .

Claim 17. H is 2K2-free.

Proof. Assume that H contains an induced 2K2 uivj + ukvr, for some ui, uk ∈
B\{u} and vj , vr ∈ W . Note that i, k 6= p. Now, W ∪ {u, up, ui, uk, vj , vr, vp}
induces an F30 in the case ui, uk are not adjacent to vp. If ui ∼ vp (similar for
the case uk ∼ vp), then {u, ui, uk, vj , vl, vp} induces an F15 or an F14 depending
on uk ∼ vp or not, a contradiction.

Also by an observation in [13], since H is a 2K2-free connected bipartite
graph, we have the following observation.
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Claim 18 [13]. The vertices of each part of H can be linearly ordered under

inclusion of their neighborhood.

This leads us to the following observation.

Claim 19. H induces a Kp,p.

Proof. By Claim 18, without loss of generality, assume that NW (ui) ⊂ NW (uj)
for i < j, i.e., uj ∼ vi for every i, j such that j ≥ i. Moreover, by the existence
of a perfect matching between B\{u} and W , we have that |NW (ui)| ≥ i for
i = 1, 2, . . ..

If ui ≁ vj , for some i, j such that j > i ≥ m−1, then {u, u2m−2, ui, vj , v1, v2,
. . . , vm−1} induces aK3,m−e, a contradiction. Hence, NW (ui) = W for i ≥ m−1.

If ui ≁ vj for some i, j such that j > i and m− 2 ≥ i ≥ 2, then {v1, vi, vj , ui,
um−1, um, . . . , u2m−3} induces a K3,m − e, a contradiction. Thus, NW (ui) = W
for i ≥ 2 and hence, {u, u2, . . . , up} ∪W induces a Kp,p.

Now, without loss of generality, let H be a maximal (inclusion sense) induced
complete bipartite subgraph of G with parts A and W such that {u, u2, . . . , up} ⊆
A ⊆ S. Let A = {u, u2, . . . , up, . . . , uq}.

Claim 20. There exists some vertex v ∈ T\W such that v ∼ u and v ≁ vi for
some vi ∈ W .

Proof. If p = |W | < |A|, then since d(u) ≥ d(v1) and v1 is also a center-vertex
of some K1,l (say v1(u, u1, . . . , ul−1)), there exists v ∈ T\V (H) such that v ∼ u
and v ≁ v1.

Consider the case p = |W | = |A|. Then the set S′ = (S\A)∪W cannot be an
independent set of G, otherwise, S′ is a maximum independent set not containing
u. Hence, there exists some u′ ∈ S\A such that u′ ∼ v for some v ∈ W . Assume
that u′ ∼ v1. Now, again, since d(u) ≥ d(v1), there exists v ∈ T\V (H) such that
v ∼ u and v ≁ v1.

Without loss of generality, assume that v ≁ v2. Moreover, by the maximality
of W , v ∼ vi for some vi ∈ W . Wihout loss of generality, assume that v ∼ v1.
Note that v has at most m− 1 neighbors in A, otherwise m neighbors of v in A,
together with v, v1, v2 induce an F 4

m, a contradiction. Moreover, v has at most
m−1 neighbors inW , otherwisem−1 neighbors of v inW , together with v, ui, uj ,
and v2 induces a K3,m−e for ui, uj are two non-neighbors of v in A. We consider
the two following cases.

Case 1. v is not adjacent to any vertex of A\{u}, then there exists some
u′ ∈ S\A such that u′ ∼ v, otherwise (S\u) ∪ {v} is a maximum independent
set not containing u, a contradiction. By the maximality of H, there exists some
vertex vi ∈ W such that u′ ≁ vi. If u

′ is adjacent to two vertices vj , vk ∈ W , then
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{u, u′, u2, . . . , um−1, vi, vj , vk} induces a K3,m − e, a contradiction. Hence, u′ is
adjacent to at most one vertex v′ of W . Now, {vj , u2, vk, u, v, u

′} induces an F14,
for vj , vk are two non-neighbors of both v and u′, a contradiction.

Case 2. v is adjacent to some vertex of A\{u}, without loss of generality,
assume that v ∼ u2. Then m− 1 non-neighbors of v in W , together with v, u, u2,
and ui induces a K3,m − e, for some non-neighbor ui of v in A, a contradiction.

5. Comparison

First, we have the following simple observations.

Claim 21. (1) F7, F29, and F30 induce F2 and F25.

(2) F18 induces F3 and F25.

(3) F14, F15, F19, F20, F21, F24, and F30 induce F3.

(4) F8 induces F4.

(5) F39, S2,2,2, F14, and F15 induce F25.

(6) Fm
4 induces F8.

(7) K3,m − e induces F20.

Hence, we have the following results.

Proposition 22. (1) The class of F1-free graphs and the class of F4-free graphs

are subclasses of the F5-free graph class.

(2) The class of F4-free graphs is a subclass of the F6-free graph class.

Proposition 22 shows that Algorithm MMAX and Algorithm MMAX-l are at
least as good as VO and MAX in the sense of forbidden subgraph classes. Now,
we compare the heuristic algorithms MAX, MMAX, MIN, VO in the aspect of
performance for particular graphs. For the MIN algorithm and the VO algorithm,
the full instances can be found in [31] and [27], respectively. For the sake of proofs,
we will only recall the main ideas of the algorithms.

For each step, the MIN algorithm chooses a vertex of minimum degree in the
remaining graph, puts it in the current (maximal) independent set and deletes
the vertex and all its neighbours. The process will be repeated until there is no
more remaining vertex.

The VO algorithm first makes a list of vertices of the graph, in which the
vertices are ordered in an increasing order of degree. The algorithm sequentially
puts vertices into the independent set in the list only if they are not adjacent
with any (already) chosen vertex in the current independent set. The process
will be repeated until we process through all the list.
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We denote by kV O(G), kMIN (G) the minimum cardinalities of independent
sets obtained when applying VO, MIN on G, respectively.

Theorem 23. For every integer p > 2 there is a graph G such that

kMAX(G)− kMIN (G) = kMAX(G)− kV O(G) = kMMAX(G)− kMIN =

= kMMAX − kV O = p− 2.

Proof. Let G1 be an induced coppy of Kp, a complete graph of order p, G2 be
the graph consisting of p independent vertices, and G3 be the single vertex graph.
Let G be the graph obtained by joining an edge for all pairs of vertices x, y for
x ∈ V (Gi), y ∈ V (Gi+1), for i = 1, 2. Then, clearly, kMIN (G) = kV O(G) = 2,
while kMMAX(G) = kMAX(G) = p.

The following result shows that the difference between kMMAX on one hand,
and kMAX , kV O and kMIN on the other hand, can be arbitrarily large.

Theorem 24. For every integer p > 2, there is a graph G such that

kMMAX(G)−kMAX(G) = kMMAX(G)−kV O(G) = kMMAX(G)−kMIN (G)=p−2.

Proof. Let G1, G3 be induced copies of Kp and G2 be the graph consisting of
p independent vertices. Let G be the graph obtained by joining an edge for all
pairs of vertices x, y for x ∈ V (Gi), y ∈ V (Gi+1), for i = 1, 2. Then, clearly,
kMAX(G) = kMIN (G) = kV O(G) = 2, while kMMAX(G) = p.

Remark. Note that the graph G constructed in the proof of Theorem 24 is Kp+1

free. Hence, Algorithm MMAX-l always finds a maximum independent set (of
cardinality p) for l ≥ p+ 1.

6. Conclusion

Recently, the MIS problem in P5-free graphs has been the subject of many re-
searchs. In [5], it is proved that the problem can be solved for (P5, K3,3 − e
(F20), twin-house (F21))-free graphs in time O(n6). In [25], the authors described
a method solving the problem for (P5,K3,3 − e)-free graph. In [21], the first ap-
proach for solving the problem for P5-free graphs in time O(n12) is presented.
The three results are generalizations of the forbidden subgraphs for Algorithm
MAX. On the other hand, it is obvious that Algorithm MAX has the complexity
at most O(n2).

Moreover, there are not many results about polynomial time solution for the
MIS problem in some subclasses of P7-free graphs, except for (P7, banner(F3))-
free graphs [3] and (P7,K1,m)-free graphs [22]. We have a similar situation for
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S2,2,2-free graphs, except (S2,2,2, banner)-free graphs [12], (S2,2,2, B2, domino,M3,
Km,m)-free graphs [20], and S2,2,2-free subcubic graphs [26].

The Algorithm MMAX, as well as MIN and VO, show that the problem can
be solved efficiently in some subclasses of class of P7-free graphs. Our method is
a combination between a heuristic method (Algorithm MAX) and a conditional
exact method (α-redundant technique). The class of forbidden induced subgraphs
of the new algorithm, Algorithm MMAX, is a super class of both MAX and VO.
The class of forbidden induced subgraphs of Algorithm MMAX-l also gives us a
polynomial solution for the MIS problem in a subclass of S2,2,2-free graphs. Note
that the complexity of the problem for the class of P7-free graphs or the class of
S2,2,2-free graphs is still an open question.
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