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Abstract

Let P and Q be additive and hereditary graph properties and let r, s
be integers such that r ≥ s. Then an r

s
-fractional (P,Q)-total coloring

of a finite graph G = (V,E) is a mapping f , which assigns an s-element
subset of the set {1, 2, . . . , r} to each vertex and each edge, moreover, for any
color i all vertices of color i induce a subgraph with property P, all edges
of color i induce a subgraph with property Q and vertices and incident
edges have been assigned disjoint sets of colors. The minimum ratio of
an r

s
-fractional (P,Q)-total coloring of G is called fractional (P,Q)-total

chromatic number χ′′
f,P,Q(G) =

r
s
. We show in this paper that χ′′

f,P,Q of a
graph G with o(V (G)) vertex orbits and o(E(G)) edge orbits can be found
as a solution of a linear program with integer coefficients which consists only
of o(V (G)) + o(E(G)) inequalities.
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1. Introduction

Let G = (V,E) be a finite simple graph with vertex set V and edge set E. We
denote by n the number of vertices of G and by e the number of edges of G. By
elements we will mean the vertices and the edges of a graph G.

A total coloring of a graph G is a coloring of the vertices and the edges
such that each two elements which are adjacent or incident obtain distinct colors.
The minimum number of colors of a total coloring of G is called total chromatic

number χ′′(G) of G.

http://dx.doi.org/10.7151/dmgt.1810
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The following conjecture is known as the Total Coloring Conjecture and it
was formulated independently in the 1960s by Behzad [1] and Vizing [12]. It has
been verified for several special classes of graphs, including for example complete
graphs (see [2, 6] for surveys).

Conjecture 1. If G is a graph with maximum degree ∆(G), then χ′′(G) ≤
∆(G) + 2.

There are several possibilities how to define the fractional version of total
colorings. All definitions can be found in [11]. In this paper we will use only two
of them.

An r
s
-fractional total coloring of a graph G is a coloring of the vertices and

the edges such that each vertex and each edge has been assigned an s-element
subset of the set {1, 2, . . . , r} and each two adjacent or incident elements receive
disjoint sets of colors. The fractional total chromatic number χ′′

f (G) of G is the
infimum ratio r

s
of an r

s
-fractional total coloring of G. Kilakos and Reed [10]

proved that χ′′
f (G) ≤ ∆(G) + 2 for any graph G.

In this paper we deal with generalized fractional total colorings of graphs.
We denote the class of all finite simple graphs by I. A graph property P is a
non-empty isomorphism-closed subclass of I. A property P is called additive if
G ∪H ∈ P whenever G ∈ P and H ∈ P (we mean the disjoint union of graphs).
A property P is called hereditary if G ∈ P and H ⊆ G implies H ∈ P (see [3, 5]).

We use the following standard notations for specific hereditary properties:

O = {G ∈ I : E(G) = ∅},

Ok = {G ∈ I : χ(G) ≤ k},

Dk = {G ∈ I : each subgraph of G contains a vertex of degree at most k},

T = {G ∈ I : G is a planar graph},

Ik = {G ∈ I : G does not contain Kk+2},

Ok = {G ∈ I : each component of G has at most k + 1 vertices},

Sk = {G ∈ I : ∆(G) ≤ k},

where χ(G) is the chromatic number. In the following we will only consider
additive and hereditary graph properties.

The completeness of the property P is an interesting invariant of a graph
property and it is defined as c(P) = sup{i : Ki+1 ∈ P}. Note that c(Ik) =
c(Ok) = c(Dk) = c(Sk) = k, c(T ) = 3, c(O) = 0.

Borowiecki and Mihók [5] dealt with graph properties and showed that the
set of all additive and hereditary properties is a complete distributive lattice
(La,⊆), where O is the smallest element of it and I is the greatest one. The set
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of properties P ∈ L
a with c(P) = k, k ∈ N, is also a complete distributive lattice

(La
k,⊆) with the smallest element Ok and the greatest element Ik.
Let P and Q be two graph properties. We consider a total coloring of a graph

G such that adjacent elements can have the same color assigned but we require
that subgraphs of G induced by a set of vertices of the same color must have
property P and subgraphs of G induced by a set of edges of the same color must
have property Q and incident elements cannot have the same color assigned. For
example, if P = O and Q = O1, then this is an ordinary total coloring of a graph
G. Such properties have also been studied by Borowiecki et al. in [4].

An r
s
-fractional (P,Q)-total coloring of a finite graph G is a mapping f ,

which assigns an s-element subset of the set {1, 2, . . . , r} to each vertex and each

edge
(

f : V ∪ E →
(

{1,2,...,r}
s

)

)

, moreover, for any color i all vertices of color i

induce a subgraph with property P, all edges of color i induce a subgraph with
property Q and vertices and incident edges have been assigned disjoint sets of
colors. The infimum ratio r

s
of an r

s
-fractional (P,Q)-total coloring of G is called

the fractional (P,Q)-total chromatic number χ′′
f,P,Q(G) =

r
s
of G.

An automorphism π of a graph G is an isomorphism from G to itself. Thus,
the vertex bijection πV is a permutation on V (G), and the edge bijection πE is a
permutation on E(G). The action of the automorphism group A(G) on a graph
G partitions V (G) into vertex-orbits. That is, the vertices u and v are in the
same orbit if there exists an automorphism π such that π(u) = v. Similary, A(G)
partitions E(G) into edge-orbits. More about automorphism and orbits can be
found in [7].

The vertices and edges of each graph can be separated into several disjoint
orbits. We denote the number of vertex orbits by o(V (G)) and the number of
edge orbits by o(E(G)). Let o(G) = o(V (G)) + o(E(G)).

There are two equivalent definitions of fractional colorings and also of gener-
alized (P,Q)-total colorings of a graph. The equivalence has been shown in [9],
and so we state both of these definitions here.

Definition 1. Let G be a simple graph. Let r, s ∈ N and r ≥ s. An r
s
-fractional

(P,Q)-total coloring of G is a mapping f : V ∪E →
(

{1,2,...,r}
s

)

such that for each
color i all vertices of color i induce a subgraph with property P, all edges of color
i induce a subgraph with property Q, moreover, each incident vertex and edge
have been assigned disjoint sets of colors. The fractional (P,Q)-total chromatic

number is χ′′
1,f,P,Q(G) = inf{ r

s
: G has an r

s
-fractional (P,Q)-total coloring}.

For the second definition we need to define generalized independent sets of
graphs. A (P,Q)-independent set is a subset of V ∪ E such that the vertices in
this set induce a graph with property P, the edges induce a graph with property
Q and, moreover, vertices and edges are not incident.
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Definition 2. Let I1, I2, . . . , It, t ∈ N, be all (maximal) (P,Q)-independent sets
in G. A fractional (P,Q)-total coloring of G is a mapping g, which assigns a non-
negative weight g(Ij) to each set Ij , j = 1, . . . , t, such that

∑

u∈Ij
g(Ij) ≥ 1 for

each element u ∈ V ∪E. The fractional (P,Q)-total chromatic number χ′′
2,f,P,Q(G)

of G is the least total weight of a fractional (P,Q)-total coloring of G.

As we have mentioned above, Definitions 1 and 2 of the fractional total
chromatic numbers χ′′

1,f,P,Q(G) and χ
′′
2,f,P,Q(G) are equivalent. In the following

we will use the common notation of the fractional chromatic number χ′′
f,P,Q(G).

In Definition 2 we consider only the maximal (P,Q)-independent sets Ij , j =
1, . . . , t, because we can take a maximal independent set instead of a non-maximal
one and so more elements (vertices and edges) can get the same weight.

For determining χ′′
f,P,Q(G) according to Definition 2, we have to solve the

following linear program:

h1 :
∑t

j=1
f(Ij) → min

∑

Ij∋u
f(Ij) ≥ 1, u ∈ V ∪ E,

f(Ij) ≥ 0, j = 1, . . . , t.

(1)

Our aim in the next two sections is to prove that we can reduce the number
of conditions in this linear program to o(G) and also reduce the number of the
variables to µ (with µ ≤ t) defined below in Section 2. There we also show
the construction of that linear program by using the orbits of G. In Section 3
we prove the equivalence between the linear program (1) and the reduced linear
program from Section 2. An example can be found in Section 4 and finally we
mention a result from [8] for the complete graphs in the last section.

2. The Orbits as a Tool for Reducing the Linear Program (1)

Examples of some terms defined below can be found in example in Section 4.
Let P ⊇ O and Q ⊇ O1 be two additive and hereditary graph properties

and G be a graph with n vertices and e edges. Take an r
s
-fractional (P,Q)-total

coloring ψ of a graph G, where r is the number of used colors, from which we
choose an s-element subset for every element of the graph G. Note that some of
the elements can be assigned more than s colors, but as the denominator of the
ratio r

s
in Definition 1 we consider minu∈V ∪E |ψ(u)|. All elements with the same

color form a (P,Q)-independent set.
We denote the number of elements in orbit Oi by oi, i = 1, . . . , o(G), and

the independent sets of G by Ij , j = 1, . . . , t. As in Definition 2, we consider
only maximal (P,Q)-independent sets. Let I(b1,...,bo(G)) be the set of all Ij with
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exactly bi elements from Oi, where 0 ≤ bi ≤ oi for each i = 1, . . . , o(G). We
will say that Ij ∈ I(b1,...,bo(G)) is an independent set of type b =

(

b1, . . . , bo(G)

)

.

Denote the cardinality of Ib by mb. Denote the set of all b by M .
In the next, if we have colors assigned to the set Ij , then assign the same

colors to each element u from the set Ij . Of course, each element u ∈ Ij gains
colors from every independent set containing u. We will assign colors used exactly
on elements from Ij to the independent set Ij . Denote by xIj the number of colors
assigned to the independent set Ij for each j = 1, . . . , t and then the number of
colors used for independent sets from Ib is xb =

∑

Ij∈Ib
xIj .

Thanks to the transitivity inside the orbits Oi, every u ∈ Ij ∩ Oi, Ij ∈
Ib, belongs to the same number of independent sets from Ib for each b and
each i = 1, . . . , o(G) as is proved in the following Lemma 1. Let p(Ib, u) =
|{Ij : u ∈ Ij ∈ Ib}| be the number of sets of type b that contain u.

Lemma 1. Let u, v ∈ Oi, i = 1, . . . , o(G) and let b ∈ M . Then p(Ib, u) =
p(Ib, v).

Proof. Let u 6= v, u, v ∈ Oi for i = 1, . . . , o(G). Let I1(u), . . . , Ip(Ib,u)(u)
be all independent sets from Ib containing u, and similarly for v we will con-
sider I1(v), . . . , Ip(Ib,v)(v). Let ϕ be an automorphism with ϕ(u) = v. Then
ϕ(I1(u)), . . . , ϕ(Ip(Ib,u)(u)) are different independent sets from Ib containing v

because each element from the orbit Oj can be moved to an element from the
same orbit Oj . Therefore p(Ib, v) ≥ p(Ib, u). The opposite inequality we get by
using ϕ−1. Thus p(Ib, u) = p(Ib, v).

Lemma 2. Let u ∈ Oi and b ∈M . Then

p(Ib, u) =
bi ·mb

oi
.

Proof. Consider a table with oi columns x ∈ Oi, mb rows Ij ∈ Ib and values

aIjx =

{

1, if x ∈ Ij ,

0, otherwise.

The number 1 appears in each column p(Ib, x) = p(Ib, u) times and in each row
bi times. Therefore p(Ib, u) · oi = bi ·mb from which we get the required equality.

This fact is very important for our main result, because it means that we
can divide colors/weights assigned to Ib evenly among all Ij in Ib. The weight
(defined in Definition 2) assigned to Ib is xb

s
.

The cardinality of the multiset of all colors used for a fractional total coloring
of a graph G is (n + e)s. We need ns multicolors for the vertices and es for
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the edges, but this has to be satisfied for all orbits separately. Let M be the
set of b for which Ib is non-empty (it means that M is the set of types b of
maximal independent sets). We get the following o(G) inequalities sufficient for
determining r for fixed s, what we show in Theorem 1.

h2 :
∑

b∈M
xb → min

∑

b∈M
bixb ≥ ois, i = 1, . . . , o(G),

xb ≥ 0, b ∈M, xb-integer.

(2)

Let x′
b
= xb

s
. We can reformulate the problem (2) as follows:

h3 :
∑

b∈M
x′
b
→ min

∑

b∈M
bix

′
b
≥ oi, i = 1, . . . , o(G),

x′
b
≥ 0, b ∈M, (x′

b
-rational).

(3)

The linear programs (2) and (3) are equivalent in the following sense: Denote
by µ the cardinality of the set M and let bk, k = 1, . . . , µ, be elements of
M . If (x′

b1
, . . . , x′

bµ
) is an optimal solution of (3) and s is the least common

multiple of denominators of all x′
bk
, bk ∈ M , then

∑

b∈M x′
b
= r

s
with r ∈ N0

and (x′
b1
s, . . . , x′

bµ
s) is an optimal solution of (2) for fixed s and

∑

b∈M x′
b
· s =

∑

b∈M xb = r. Now we prove that (1) is equivalent to (3) for all graphs.

3. The Equivalence Between the Linear Programs (1) and (3)

Theorem 1. Let G be a simple graph, P, Q be two additive and hereditary

graph properties. Then for each optimal solution f(I)=(f(I1), f(I2), . . . , f(It)) of
the linear program (1) there exists a feasible solution x′ = (x′b1 , . . . , x

′
bµ
) of the

linear program (3) with h1(f(I)) = h3(x
′) and vice versa for each optimal solution

x′ = (x′b1 , . . . , x
′
bµ
) of the linear program (3) there exists a feasible solution f(I) =

(f(I1), f(I2), . . . , f(It)) with h3(x
′) = h1(f(I)).

Proof. Let I1, . . . , It, t ∈ N, be all (P,Q)-independent sets of G. Suppose that
there exists an optimal solution f(I)=(f(I1), f(I2), . . . , f(It)) of problem (1).

Set x′
b
=

∑

Ij∈Ib
f(Ij), b ∈M . According to the assumptions it holds that

∑

Ij∋u
f(Ij) ≥ 1, u ∈ V ∪ E and f(Ij) ≥ 0,
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from which we obtain

∑

u∈Oi

∑

Ij∋u
f(Ij) ≥ oi for every i = 1, . . . , o(G).

Then the following inequality is satisfied for each orbit Oi, i = 1, . . . , o(G),

∑

b∈M
bix

′
b
=

∑

b∈M
bi
∑

Ij∈Ib
f(Ij) =

∑

u∈Oi

∑

Ij∋u
f(Ij) ≥ oi.

The last equality holds because on both sides there is the sum of all weights
of the independent sets over all elements in the orbit Oi.

Now we show that the second part of this theorem is true as well. Let
x′ = (x′

b1
, . . . , x′

bµ
) be an optimal solution of linear program (3). Let

f(Ij) =

{

x′

b

mb
, if Ij ∈ Ib,

0, otherwise.

We know that for each orbit Oi, it holds that

∑

b∈M
bix

′
b
≥ oi, i = 1, . . . , o(G).

Consider an element u from an orbit Oi.

∑

Ij∋u
f(Ij) =

∑

b∈M

∑

Ij∋u:Ij∈Ib
f(Ij)

=
∑

b∈M

∑

Ij∋u:Ij∈Ib

x′
b

mb

=
∑

b∈M

x′
b

mb

· p(Ib, u) =
∑

b∈M

x′
b

mb

·
bimb

oi
≥ 1.

The values of the objective functions of problems (1) and (3) are equal:

h1(f(I))=
∑

b∈M

∑

Ij∈Ib
f(Ij) =

∑

b∈M x′
b
= h3(x

′).

4. Example χ′′
f,O1,I1

(K1,1,2)

In the following example we explain the reason for considering only the maximal
independent sets of G. To determine χ′′

f,P,Q(G) we need to find all types b ∈M .

Consider a complete tripartite graph K1,1,2. Let the vertex set be V =
{v1, v2, v3, v4} and the edge set E = {e1, e2, e3, e4, e5}, e1 = {v1, v3}, e2 = {v2, v3},
e3 = {v1, v4}, e4 = {v2, v4}, e5 = {v1, v2}. This graph has two vertex orbits
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Figure 1. K1,1,2.

O1 = {v1, v2}, O2 = {v3, v4} and two edge orbits O3 = {e5}, O4 = {e1, e2, e3, e4}
(see Figure 1).

We want to determine χ′′
f,O1,I1

(K1,1,2). Let us remind that O1 means that
components formed by all vertices of the same color cannot contain three and
more vertices and I1 means that edges with the same color cannot contain a trian-
gle. Sets of maximal independent sets look as follows: I(0,0,0,4), I(0,0,1,2), I(1,0,0,2),
I(0,1,1,1), I(0,1,0,2), I(1,1,0,1), I(2,0,0,0), I(0,2,1,0).

Note that there are two kinds of independent sets in I(0,0,1,2). One of them
is represented by {e5, e1, e4} and the second one by {e5, e1, e3}.

We know that

m(0,0,0,4) = 1, m(0,0,1,2) = 4, m(1,0,0,2) = 2, m(0,1,1,1) = 4,
m(0,1,0,2) = 2, m(1,1,0,1) = 4, m(2,0,0,0) = 1, m(0,2,1,0) = 1.

We can see that M = {(0, 0, 0, 4), (0, 0, 1, 2), . . . , (0, 2, 1, 0)}. It means that
we have |M | = µ = 8 and we use the following variables:

x′(0,0,0,4) = x′1, x
′
(0,0,1,2) = x′2, x

′
(1,0,0,2) = x′3, x

′
(0,1,1,1) = x′4,

x′(0,1,0,2) = x′5, x
′
(1,1,0,1) = x′6, x

′
(2,0,0,0) = x′7, x

′
(0,2,1,0) = x′8.

Our graph has 4 orbits. It means that the linaer program has 4 inequalities:
∑8

i=1 x
′
i → min

x′3 + x′6 + 2x′7 ≥ 2,
x′4 + x′5 + x′6 + 2x′8 ≥ 2,

x′2 + x′4 + x′8 ≥ 1,
4x′1 + 2x′2 + 2x′3 + x′4 + 2x′5 + x′6 ≥ 4,

x′1, . . . , x
′
8 ≥ 0.

Firstly, we show that
∑8

i=1 x
′
i ≥ 3. Therefore the solution listed below will

be one of the optimal solutions. Sum 1
2 of the first and the third inequality and

1
4 of the second, and the fourth one. We get the following statement

∑8

i=1
x′i ≥ x′1 + x′2 + x′3 + x′4 +

3

4
x′5 + x′6 + x′7 + x′8 ≥ 3.
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Take the optimal solution x′=(1, 0, 0, 0, 0, 0, 1, 1) with χ′′
f,O1,I1

(K1,1,2) = 3. This
optimal solution does not contain any fraction, therefore x = x′ = (1, 0, 0, 0, 0, 0, 1,
1). We will assign one color to I(0,0,0,4), another one to I(2,0,0,0) and the last color
to I(0,2,1,0). All of these sets of the independent sets consist of only one maximal
independent set, so we will not divide colors among more members of Ib. See a
coloring in Figure 2.

Figure 2. Optimal coloring of K1,1,2.

Another optimal solution is x′ = (12 , 0, 0, 1, 0, 1,
1
2 , 0). We will assign colors

to the independent sets from I0,0,0,4, I0,1,1,1, I1,1,0,1 and I2,0,0,0.

We have to divide colors assigned to e.g., I(0,1,1,1) among 4 independent sets,
but we have only 1 color. We need one color for each Ij from all used Ib. There-
fore we have to take the least common multiple as s and also we have to mul-
tiply our number of colors and each non-zero x′i by this number. In this case
χ′′
f,O1,I1

(K1,1,2) = 12
4 and a coloring (according to Definition 1) can be seen in

Figure 3.

Figure 3. Optimal coloring of K1,1,2.

Consider the optimal solution x′ = (12 , 0, 0, 1, 0, 1,
1
2 , 0) again and now assign

the weights according to Definition 2 to each element (vertex and edge) of K1,1,2.

Every Ij ∈ Ib gains the weight
x′

b

mb
. Figure 4 shows the weights that each vertex

and each edge gains. The condition that every element must have a total weight
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(the sum of weights of all independent sets containing the element) of at least 1
is satisfied for all vertices and edges of K1,1,2.

Figure 4. Optimal weighting of K1,1,2.

In this case the linear program (1) has 9 inequalities and 19 variables. Note
that it is not trivial to find all orbits and all maximal independent sets of a graph,
but it is easier than to find all independent sets including the non-maximal ones
and then to solve the linear program (1) with so many inequalities and variables.
The linear program (3) will not have the reduced number of inequalities if each
element (vertex and edge) of a graph forms one orbit. This occurs when the
automorphism group consists of the identity only.

5. Complete Graphs

Finally, complete graphs have only one vertex orbit and one edge orbit and so we
get the following linear program with two inequalities for Kn:

h3 :
∑

b∈M

x′(b1,b2) → min

∑

b∈M

b1x
′
(b1,b2)

≥ n,

∑

b∈M

b2x
′
(b1,b2)

≥ e,

x′(b1,b2) ≥ 0, b ∈M.

This result has also been solved in another way and it is published in [8].
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