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Abstract

This paper introduces a trivariate graph polynomial that is a common
generalization of the domination polynomial, the Ising polynomial, the match-
ing polynomial, and the cut polynomial of a graph. This new graph poly-
nomial, called the bipartition polynomial, permits a variety of interesting
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representations, for instance as a sum ranging over all spanning forests. As
a consequence, the bipartition polynomial is a powerful tool for proving
properties of other graph polynomials and graph invariants. We apply this
approach to show that, analogously to the Tutte polynomial, the Ising poly-
nomial introduced by Andrén and Markström in [3], can be represented as
a sum over spanning forests.
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1. Introduction

A dominating set W of an undirected graph G is a vertex set such that any
vertex not belonging to W is a neighbor of a vertex of W . One of the earliest
approaches to the enumeration and counting of dominating sets is related to the
dominating queens problem on a chessboard [1]. For general graphs there exist
various exponential time algorithms for counting dominating sets, see e.g. [22].
The domination polynomial of a graph is the ordinary generating function for the
number of dominating sets. It was introduced by Arocha and Llano [5].

In this paper we consider finite simple undirected graphs, which we simply
call graphs. Let G = (V,E) be a graph with vertex set V and edge set E. The
open neighborhood NG(v) of a vertex v ∈ V is the set of all vertices that are
adjacent to v in G. The closed neighborhood of v is NG(v) ∪ {v}. Analogously,
we define

NG(W ) =
⋃

v∈W

NG(v) \W and NG[W ] = NG(W ) ∪W

for any vertex subset W ⊆ V . For a given vertex subset W ⊆ V , let ∂W be the
set of all edges of G with exactly one of their end vertices in W , i.e.,

∂W = {{u, v} ∈ E | u ∈ W, v ∈ V \W}.

A vertex set W ⊆ V is called a dominating set of G if NG[W ] = V . The
domination polynomial of a graph G is the ordinary generating function for the
number of dominating sets of G:

D(G, x) =
∑

W⊆V
NG[W ]=V

x|W |.

In [16], it is proved that the domination polynomial is closely related to
bipartite spanning subgraphs. It can be used to show that the number D(G, 1)
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of dominating sets of a graph is odd and to derive other non-trivial properties of
this number.

Graphs of different size or with a different number of components may have
the same domination polynomial. The reason is that the domination polynomial
does not provide any information about edges that are necessary in order to link
dominating vertices to those vertices covered by a dominating set. A natural
way to extend the definition of the domination polynomial is to allow any vertex
subset W but to count the vertices and edges that are necessary to cover W .
This provides the following definition.

Definition 1. Let G = (V,E) be a graph. The bipartition polynomial of G is

(1) B(G;x, y, z) =
∑

W⊆V

x|W |
∑

F⊆∂W

y|N(V,F )(W )|z|F |.

The smallest pair of non-isomorphic graphs with the same bipartition poly-
nomial is of order 10. We could show by exhaustive computer search that all
non-isomorphic trees with up to 15 vertices and all graphs with up to 9 vertices
can be distinguished by their bipartition polynomial.

We show that the bipartition polynomial has a spanning tree expansion.
This is reminiscent of the tree expansion definition of the Tutte polynomial from
Tutte’s classical 1954 paper [21]. The Tutte polynomial had arisen independently
in statistical mechanics as the partition function of the Potts model. As we will
see, a closely related graph polynomial, the bivariate Ising polynomial, is a spe-
cialization of the bipartition polynomial. As a consequence, the bivariate Ising
polynomial has a spanning tree expansion. The same is true for the domina-
tion polynomial, the cut polynomial and, on regular graphs, the independence
polynomial.

This paper is organized as follows. Section 2 presents different representa-
tions of the bipartition polynomial that will be subsequently employed in order
to prove properties of graph invariants. Section 3 gives an overview of graph
polynomials and invariants that are encoded in the bipartition polynomial. A
recursive representation of the bipartition polynomial is given in Section 4. The
paper concludes with remarks and open problems.

2. Representations and Properties of the Bipartition Polynomial

Let G = (V,E) be a simple graph with n vertices and m edges. We denote by
bijk(G) the number of triples (W,T, F ), where W and T are disjoint vertex sets
of G with |W | = i and |T | = j, whereas F is an edge subset of G with exactly k
edges such that each edge of F links a vertex of W with a vertex of T and each
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vertex of T is an end vertex of at least one edge of F . Its not hard to see that
bijk(G) are the coefficients of the bipartition polynomial and therefore

(2) B(G;x, y, z) =
n
∑

i=0

n−i
∑

j=0

m
∑

k=0

bijk(G)xiyjzk.

Let G = (V,E) be a graph and F ⊆ E. As all graphs considered here are
assumed to be simple, we can identify an edge e ∈ F with a two-element subset of
V . Then

⋃

F =
⋃

e∈F e is the set of end vertices of edges of F . The edge-induced
subgraph G[F ] of G is the graph (∪F, F ). Now we can rewrite Definition 1 in the
following form:

(3) B(G;x, y, z) =
∑

W⊆V

x|W |
∑

F⊆∂W

y|∪F\W |z|F |.

More interesting is the representation that we obtain by reversing the order of
summation. In order to derive this result, we prove first that the bipartition
polynomial is multiplicative with respect to components of a graph.

Lemma 2. Let G = (V,E) be a graph with two components G1 = (V 1, E1) and
G2 = (V 2, E2). Then

B(G;x, y, z) = B(G1;x, y, z)B(G2;x, y, z).

Proof. The representation of V and E as disjoint union V = V 1 ∪ V 2 and
E = E1 ∪ E2, respectively, implies that for all W ′ ⊆ V 1 and W ′′ ⊆ V 2 the set
∂(W ′ ∪W ′′) is the disjoint union of ∂W ′ and ∂W ′′, which yields

B(G;x, y, z)=
∑

W⊆V 1∪V 2

x|W |
∑

F⊆∂W

y|∪F\W |z|F |

=
∑

W ′⊆V 1

x|W
′|

∑

W ′′⊆V 2

x|W
′′|

∑

F⊆∂(W ′∪W ′′)

y|∪F\(W ′∪W ′′)|z|F |

=
∑

W ′⊆V 1

x|W
′|

∑

W ′′⊆V 2

x|W
′′|

∑

F ′⊆∂W ′

y|∪F
′\W ′|z|F

′|
∑

F ′′⊆∂W ′′

y|∪F
′′\W ′′|z|F

′′|

=
∑

W ′⊆V 1

x|W
′|

∑

F ′⊆∂W ′

y|∪F
′\W ′|z|F

′|
∑

W ′′⊆V 2

x|W
′′|

∑

F ′′⊆∂W ′′

y|∪F
′′\W ′′|z|F

′′|

=B(G1;x, y, z)B(G2;x, y, z).

For a given spanning subgraph (V, F ) of a graph G = (V,E), we denote by
iso(V, F ) the number of isolated vertices and by Comp(V, F ) the set of proper
components of (V, F ), where a component is called proper if it contains at least
one edge. The next theorem is the motivation for the name of the bipartition
polynomial.



The Bipartition Polynomial, the Ising Model and Domination... 339

Theorem 3. The bipartition polynomial satisfies

B(G;x, y, z) =
∑

F⊆E
(V,F ) is bipartite

z|F |(1 + x)iso(V,F )
∏

(V1∪V2,A)∈Comp(V,F )

(

x|V1|y|V2| + x|V2|y|V1|
)

,

where V1 and V2 are the bipartition sets of a proper component of (V, F ) with
edge set A.

Proof. All edge subsets involved in the inner sum of (3) link vertices of W with
vertices of N(W ). Hence (V, F ) is in any case a bipartite graph. Consequently, if
we take first the sum ranging over edge subsets, then the sum has to be restricted
to edge subsets that form bipartite spanning subgraphs. We need spanning sub-
graphs as to allow the choice of all compatible vertex subsets of G. Now consider
a spanning subgraph (V, F ). If v ∈ V is an isolated vertex of (V, F ) then the
subset F appears twice in (3), namely with v ∈ W and with v /∈ W , providing
the factor (1 + x). By Lemma 2, the bipartition polynomial of the subgraph
consisting of all isolated vertices is (1 + x)iso(V,F ).
A proper component of (V, F ) is itself a bipartite graph inducing a bipartition
V1∪V2 of its vertex set. If V1 ⊆ W in (3) then V2 ⊆ ∪F \W , which results in the
factor x|V1|y|V2| of the generating function. The exchange of the roles of V1 and V2

yields the second term, x|V2|y|V1|. If A is the vertex set of the proper component
then z|A|(x|V1|y|V2| + x|V2|y|V1|) is the bipartition polynomial of this component.
Applying Lemma 2 again, we obtain the statement of the theorem.

Definition 4. Let G = (V,E) be a graph with m edges. We define a linear
ordering of the edge set by numbering the edges, i.e., E = {e1, . . . , em}. Let
H = (V, F ) be a spanning forest of G. We call an edge ej ∈ E \ F externally
active with respect to H if ej is the largest edge in the unique even cycle of
H + ej . Observe that we define an edge to be externally active only in case it
closes an even cycle, which differs from the original definition as used for the Tutte
polynomial. The external activity of a spanning forest H, denoted by ext(H), is
the number of externally active edges of H.

The following statement is a consequence of Theorem 3.

Corollary 5. The bipartition polynomial of a graph G = (V,E) with n vertices
and m linearly ordered edges can be represented as a sum over spanning forests
of G as

B(G;x, y, z) =
∑

H spanning
forest of G

(1 + x)iso(H)zn−k(H)(1 + z)ext(H)

×
∏

(V1∪V2,F )∈Comp(H)

(

x|V1|y|V2| + x|V2|y|V1|
)

,
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where k(H) denotes the number of components of H.

Remark 6. Observe that a spanning forest of G is defined here as a forest that
contains all vertices of G. This does not imply that all components of a spanning
forest are spanning trees of the components of G. Thus a spanning forest of G
may have more components than G.

Proof. Let (V, F ) be a spanning bipartite subgraph of G and denote by C(V, F )
the set of components of (V, F ). Then we define

π(V, F ) = {{V1, V2} | (V1 ∪ V2, A) ∈ C(V, F )}

as a nested partition of the vertex set of G. Observe that the product

(1 + x)iso(V,F )
∏

(V1∪V2,A)∈Comp(V,F )

(

x|V1|y|V2| + x|V2|y|V1|
)

in Theorem 3 depends only on the partition π(V, F ); it is independent of the edge
set of a component as long as the induced bipartition is the same. Consequently,
we can count first those spanning subgraphs with a minimum number of edges
that induce a certain nested partition, that is spanning forests. Let e = {u, v} ∈
E(G) \F be an edge such that u and v belong to the same component of (V, F ).
If (V, F ∪{e}) does not contain an odd cycle, then π(V, F ∪{e}) = π(V, F ). Every
bipartite spanning subgraph of G can be obtained from a spanning forest of G by
insertion of edges. In order to create each bipartite spanning subgraph exactly
once, we use a linear ordering of the edges and insert an edge e only if it is the
maximum edge in the unique cycle generated by inserting e in a spanning forest
of G. The polynomial (1 + z)ext(H) counts the additional edges, whereas zn−k(H)

counts the edges in a spanning forest H with k(H) components.

If f(x, y, z) is a polynomial in the variables x, y, z, then we denote by

[xiyjzk]f(x, y, z)

the coefficient of xiyjzk in the expanded form of f(x, y, z). The interpretation of
the coefficients of the bipartition polynomial leads to the following observation.

Theorem 7. The bipartition polynomial has the following multiplicative repre-
sentation:

(4) B(G;x, y, z) =
∑

W⊆V

x|W |
∏

v∈NG(W )

[

y
[

(1 + z)|NG(v)∩W | − 1
]

+ 1
]

.



The Bipartition Polynomial, the Ising Model and Domination... 341

Proof. Let W be a given subset of V and k ∈ {0, 1, . . . , |NG(W )|}. Then the
coefficient of x|W |yk is an ordinary generating function in z presenting the number
of ways to select an edge subset F ⊆ ∂W such that |∪F \W | = k. A vertex
v ∈ NG(W ) contributes to the exponent k of yk if and only if at least one the
|NG(v) ∩W | edges that link v with vertices from W belongs to F . The generating
function for the choice of a nonempty subset of NG(v)∩W is (1+z)|NG(v)∩W |−1.
Now the polynomial y

[

(1 + z)|NG(v)∩W | − 1
]

+ 1 represents the two alternatives,
namely to select a nonempty subset of NG(v) ∩ W or to choose the empty set,
where in the latter case the factor y disappears as v is not connected to W .

3. Encoded Graph Invariants

We consider first some other graph polynomials that can be obtained from the
bipartition polynomial by substitution of variables. The first one is the so-called
Ising model, that has its roots in statistical mechanics. The following more graph
theoretical definition of the Ising polynomial is essentially equivalent to that one
given by Andrén and Markström [3]. Uniqueness with respect to the 2-state Potts
model partition function, which is contained both in the Ising polynomial and
the Tutte polynomial, was studied recently in [9]. For complexity studies of the
Ising polynomial, see [15]. Recently, [8] studied graph polynomials arising from
partition functions in statistical mechanics under a general framework. The Ising
and cut polynomials can also be represented as partition functions [20].

3.1. The Ising polynomial

Definition 8. The Ising polynomial of a graph G = (V,E) with n vertices and
m edges is defined by

(5) Z(G;x, y) = xnym
∑

W⊆V

x−|W |y−|∂W |.

Remark 9. Observe that the Ising polynomial is given in [3] as a Laurent poly-
nomial. Let Ẑ(G;x, y) be the Ising polynomial given in [3]. Then the two poly-
nomials can be transformed by

Ẑ(G;x, y) = x−ny−mZ(G;x2, y2).

Theorem 10. The Ising polynomial of a graph G = (V,E) with n vertices and
m edges is given by

Z(G;x, y) = xnymB

(

G;
1

x
, 1,

1

y
− 1

)

.
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Proof. By Theorem 7 we can easily verify, that

B(G;x, 1, z − 1) =
∑

W⊆V

x|W |z|∂W |.

Comparing this polynomial with

Z(G;x, y) = xnym
∑

W⊆V

x−|W |y−|∂W |

yields the statement.

The proof also shows that the degree generating function of a graph G =
(V,E) is

∑

v∈V

tdeg v =
[

x1
]

B(G;x, 1, t− 1).

Combining Corollary 5 and Theorem 10, we obtain the following result.

Theorem 11. The Ising polynomial of a graph G = (V,E) with n vertices and
m edges is given by

Z(G;x, y) =
∑

H spanning
forest of G

ym−n+k(H)(1 + x)iso(H)(1− y)n−k(H)

∏

(S∪T,F )∈Comp(H)

(

x|S| + x|T |
)

.

3.2. The independence polynomial

An independent set of a graph G(V,E) is a vertex set W ⊆ V such that u, v ∈ W
implies {u, v} /∈ E. The independence polynomial [4, 12, 14] of G is defined by

I(G; t) =
∑

W⊆V
W ind. in G

t|W |.

Andrén and Markström [3] showed that the independence polynomial can
be obtained from the Ising polynomial of a r-regular graph. The next theorem
gives a direct way to obtain the independence polynomial from the bipartition
polynomial in r-regular graphs.

Theorem 12. Let G = (V,E) be a simple r-regular graph. Then the indepen-
dence polynomial of G is given by

I(G, t) = lim
x→0

B

(

G; txr, 1,
1

x
− 1

)

.
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Proof. If W is an independent set of G, then |∂W | = r|W |, whereas for any
dependent set W the relation |∂W | < r|W | follows. Now consider the polynomial

B

(

G; txr, 1,
1

x
− 1

)

=
∑

W⊆V

t|W |xr|W |−|∂W |,

which we may verify again by Theorem 7. Any term tjx0 in this polynomial
corresponds to an independent set of size j. Dependent sets are counted by tjxk

with k > 0, hence

I(G, t) =
[

x0
]

B

(

G; txr, 1,
1

x
− 1

)

.

3.3. The domination polynomial

We can obtain the (univariate) domination polynomial from the bipartition poly-
nomial of a graph G.

Theorem 13. The domination polynomial of a graph G with n vertices can be
obtained from the bipartition polynomial by

(6) D(G, x) = [yn]B(G;xy, 1− y,−1).

Proof. We use Theorem 7 and getting:

B(G;xy, 1− y,−1) =
∑

W⊆V

(xy)|W |
∏

v∈NG(W )

(−(1− y) + 1)

=
∑

W⊆V

x|W |y|W |+|NG(W )|.

This gives us the theorem.

The domination number γ(G) of a graph G is the cardinality of a minimum
dominating set of G. We obtain from Equation (6) for a graph of order n,

γ(G) = min
{

k ∈ N | [xkyn]B(G;xy, 1− y,−1) > 0
}

.

A vertex subset W in a graph G = (V,E) is non-dominating if and only if
V \W contains the closed neighborhood of at least one vertex of G. By applying
the principle of inclusion–exclusion, we conclude that the domination polynomial
satisfies the equation

(7) D(G, x) =
∑

W⊆V

(−1)|W |(1 + x)|V |−|N [W ]|,

compare also [7].



344 M. Dod, T. Kotek , J. Preen and P. Tittmann

Proposition 14. The domination polynomial of a graph G of order n satisfies

D(G, x) = (1 + x)nB

(

G;
−1

1 + x
,

x

1 + x
,−1

)

.

Proof. We substitute the variable in the product representation (4) of the bi-
partition polynomial according to the statement of the proposition, which yields

(1 + x)n
∑

W⊆V

(

−1

1 + x

)|W |
∏

v∈NG(W )

[

x

1 + x

(

0|NG(v)∩W | − 1
)

+ 1

]

=
∑

W⊆V

(−1)|W |(1 + x)n−|W |
∏

v∈NG(W )

1

1 + x

=
∑

W⊆V

(−1)|W |(1 + x)n−|NG[W ]|,

which is just the representation (7) of the domination polynomial.

The next theorem was presented in [16]. The bipartition polynomial makes
the proof much simpler than the one given in [16].

Theorem 15. The domination polynomial of any graph G = (V,E) satisfies

D(G, x) =
∑

F⊆E
(V,F ) is bipartite

xiso(V,F )

×
∏

(Y ∪Z,A)∈Comp(V,F )

(−1)|A|
[

(−1)|Y |x|Z| + (−1)|Z|x|Y |
]

.

Proof. Evaluating (1+x)nB
(

G; −1
1+x

, x
1+x

,−1
)

as a sum over bipartite spanning

subgraphs of G according to Theorem 3 gives

D(G, x) = (1 + x)n
∑

F⊆E
(V,F ) is bipartite

(−1)|F |

(

x

1 + x

)iso(V,F )

×
∏

(V1∪V2,A)∈Comp(V,F )

(−1)|V1|x|V2| + (−1)|V2|x|V1|

(1 + x)|V1∪V2|

=
∑

F⊆E
(V,F ) is bipartite

(−1)|F |xiso(V,F )
∏

(V1∪V2,A)∈Comp(V,F )

[

(−1)|V1|x|V2| + (−1)|V2|x|V1|
]

,

which has been shown in [16] as Equation (3).
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The number d(G) of dominating sets of a graph G of order n is obtained by
substituting x = 1 in the domination polynomial; we obtain by Proposition 14

(8) d(G) = 2nB

(

G;−
1

2
,
1

2
,−1

)

.

Let F0(G) be the set of spanning forests of external activity 0 that contain only
trees of even order and, possibly, isolated vertices. We call a tree T of even order
essential if there exists a vertex v in T such that the number of vertices that have
even distance from v in T is odd. Observe that this definition does not depend
on the choice of the vertex v from which we measure the distance. We denote by
ess(H) the number of essential trees of a forest H. Substituting Equation (8) in
Corollary 5, we obtain the following statement.

Theorem 16. The number of dominating sets of a graph G of order n satisfies

d(G) =
∑

H∈F0(G)

2k(H)−iso(H)(−1)n−k(H)+ess(H).

There is exactly one term in this sum that is odd, which corresponds to the
edgeless forest. Hence the number of dominating sets of any graph is odd. This
fact has been proven by Brouwer in [6].

A similar result can be obtained for the domination polynomial.

Proposition 17. Let G = (V,E) be a graph of order n and H0(G) the set of
spanning forests of external activity 0 of G. The domination polynomial of G
satisfies

D(G, x) =
∑

H∈H0(G)

(−1)n−k(H)xiso(V,F )
∏

(V1∪V2,A)∈Comp(H)

[

(−1)|V1|x|V2| + (−1)|V2|x|V1|
]

.

Proof. Using Proposition 14 and Corollary 5, we obtain

(1 + x)nB

(

G;
−1

1 + x
,

x

1 + x
,−1

)

= (1 + x)n
∑

H spanning
forest of G

(

x

1 + x

)iso(H)

(−1)n−k(H)0ext(H)

×
∏

(V1∪V2,F )∈Comp(H)

(−1)|V1|x|V2| + (−1)|V2|x|V1|

(1 + x)|V1∪V2|

=
∑

H∈H0(G)

xiso(H)(−1)n−k(H)

×
∏

(V1∪V2,F )∈Comp(H)

[

(−1)|V1|x|V2| + (−1)|V2|x|V1|
]

,

which provides the statement.
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3.4. The cut polynomial

Let G = (V,E) be a graph and W ⊆ V . A cut in G is an edge subset of the form

(W,V \W ) = {{u, v} | u ∈ W, v ∈ V \W}

and C(G, x) is the ordinary generating function for the number of cuts in G.
Observe that ∂W = (W,V \W ). If G is connected and ∂W 6= ∅, then G−∂W ,

i.e., the graph obtained from G by the removal of all edges from ∂W , has at least
two components.

Theorem 18. Let G be a graph and C(G, x) the cut polynomial of the graph.
Then

C(G, z) =
1

2k(G)
B(G; 1, 1, z − 1).

Proof. By Theorem 7,

B(G; 1, 1, z − 1) =
∑

W⊆V

∏

v∈NG(W )

z|NG(v)∩W |

=
∑

W⊆V

z
∑

v∈NG(W )|NG(v)∩W |
=

∑

W⊆V

z|∂W |.

Here each cut is counted 2k(G) times as a set W and its complement induce the
same cut.

The edge connectivity λ(G) of a connected graph G is the minimum number
of edges of G that has to be removed in order to make G disconnected. For a
disconnected graph G, we define λ(G) = 0. The edge connectivity of a graph is
alternatively defined by

λ(G) = min{|∂W | | W ⊂ V,W 6= ∅}.

A graph G is said to be k-edge connected if λ(G) ≥ k.
We obtain the following statements as an immediate consequence of Theorem

18.

Corollary 19. Let k ≥ 2 be an integer. A graph G is k-edge connected if and
only if [zj ]B(G; 1, 1, z − 1) = 0 for all j = 1, . . . , k − 1.

Corollary 20. The edge connectivity of a graph G of order n is

λ(G) = n− deg

[

zn
(

B

(

G; 1, 1,
1

z
− 1

)

− 2

)]

.

Corollary 21. A graph G = (V,E) is bipartite if and only if degB(G; 1, 1, z −
1) = |E|.
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A tree is the only connected graph for which any edge subset is a cut. This
together with Theorem 18 gives the following statement.

Proposition 22. A connected graph of order n is a tree if and only if

B(G; 1, 1, z − 1) = 2(1 + z)n−1.

Proposition 23. The cut polynomial of a graph G of order n satisfies

C(G, z) =
∑

H spanning
forest of G

2k(H)−k(G)(z − 1)n−k(H)zext(H).

Proof. The statement is easily obtained by substituting the variables of the
bipartition polynomial as represented in Corollary 5 according to Theorem 18.

3.5. The matching polynomial

Let G = (V,E) be a graph with n vertices. We denote by mk(G) the number of
matchings of cardinality k of G. The matching polynomial of G is defined by

M(G, x) =

⌊n
2 ⌋

∑

k=0

mk(G)xk.

Remark 24. Observe that the matching polynomial of a graph, introduced in
[13], is defined in other contexts as

MG(x) = xnM(G,−x−2).

For more information on matching polynomials, see [10].

Theorem 25. Let G be a graph and bijk(G) the coefficients of the bipartition
polynomial as defined in Equation (2). The matching polynomial of G satisfies

M(G, x) =

⌊n
2 ⌋

∑

k=0

(x

2

)k
k

∑

i=1

(−1)k−i

(

n− k − i

k − i

)

bikk(G).

Proof. Let G be a graph of order n and let k be a given positive integer. We
use the abbreviations bi = bikk(G) and p = n − k. Let Di(G) be the set of
all bipartite subgraphs H = (X ∪ Y, F ) of G with |X| = i, |Y | = k, |F | = k,
such that all vertices of Y have degree 1 in H. Hence the cardinality of Di(G)
is bi. Observe that we consider X ∪ Y as an ordered bipartition, which implies
that bipartite subgraphs that are identical except that the sets X and Y are
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exchanged are counted twice in bi. Let Ci(G) be the subset of Di(G) consisting
of those (ordered) bipartite subgraphs of G that do not have any isolated vertices
in X and define ci = |Ci(G)|. As the end vertices of any edge in a matching can
be arbitrarily assigned to X or Y , we have 2kmk = ck. Each bipartite subgraph in
Di(G) that contains exactly i−j isolated vertices in X is composed of a subgraph
H from Cj(G) and a selection of i− j vertices out of the n− k − j vertices that
do not belong to H. Consequently, we obtain

bi =
i

∑

j=1

(

n− k − j

i− j

)

cj =
i

∑

j=1

(

p− j

i− j

)

cj .(9)

The theorem states that

mk =
1

2k

k
∑

i=1

(−1)k−i

(

n− k − i

k − i

)

bikk(G)

and hence

ck =
k

∑

i=1

(−1)k−i

(

p− i

k − i

)

bi.

Replacing k by j and substituting cj in (9) yields

bi =
i

∑

j=1

(

p− j

i− j

) j
∑

l=1

(−1)j−l

(

p− l

j − l

)

bl

=
∑

l

bl
∑

j

(

p− l

j − l

)(

p− j

i− j

)

(−1)j−l.

Thus it remains to prove that

∑

j

(

p− l

j − l

)(

p− j

i− j

)

(−1)j−l = δil.

Rearranging the binomial coefficients gives

∑

j

(

p− l

j − l

)(

p− j

i− j

)

(−1)j−l =

(

p− l

p− i

)

∑

j

(

i− l

i− j

)

(−1)j−l.

If i = l, then the last sum has only one non-vanishing term, which is 1.

Otherwise, if i 6= l, then the binomial coefficient or the sum vanishes, which
completes the proof.
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4. A Recursive Representation

Lemma 26. Let G = (V,E) be a connected bipartite graph with V = S ∪ T ,
where S and T are the bipartition sets of G. Then

∑

J⊆E

(−1)|J |B(G− J ;x, y, z) =

{

1 + x, if E = ∅,

z|E|
(

x|S|y|T | + x|T |y|S|
)

, otherwise.

Proof. In order to simplify the presentation of the proof, we introduce the no-
tation

f(G) =
∑

J⊆E

(−1)|J |B(G− J ;x, y, z).

If the edge set of G is empty then G consists of a single vertex, otherwise G
would be disconnected. Thus the sum contains only one term yielding f(G) =
B(G;x, y, z) = 1 + x.

Now assume that G is a connected bipartite graph with at least one edge. We
rearrange the sum, use the definition of the bipartition polynomial, and change
the order of summation:

f(G) =
∑

J⊆E

(−1)|E|−|J |B((V, J);x, y, z)

=
∑

J⊆E

(−1)|E|−|J |
∑

W⊆V

x|W |
∑

F⊆∂W∩J

y|N(V,F )(W )|z|F |

=
∑

W⊆V

x|W |
∑

J⊆E

(−1)|E|−|J |
∑

F⊆∂W∩J

y|N(V,F )(W )|z|F |

=
∑

W⊆V

x|W |
∑

F⊆∂W

z|F |y|N(V,F )(W )|
∑

J⊇F

(−1)|E|−|J |

Here the notation J ⊇ F means that J is a superset of F but clearly also a subset
of E. We distinguish three choices for the vertex subset W ⊆ V that is used in
the first sum, namely W = S, W = T , and W different from S and T . Observe
that ∂S = ∂T = E as G is connected and bipartite. Consequently, we obtain

f(G) = x|S|
∑

F⊆E

z|F |y|N(V,F )(S)|
∑

J⊇F

(−1)|E|−|J |

+ x|T |
∑

F⊆E

z|F |y|N(V,F )(T )|
∑

J⊇F

(−1)|E|−|J |

+
∑

W⊆V
W 6=S
W 6=T

x|W |
∑

F⊆∂W

z|F |y|N(V,F )(W )|
∑

J⊇F

(−1)|E|−|J |.
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Now the sum
∑

J⊇F (−1)|E|−|J | vanishes for all F 6= E; in case F = E, it equals
1. The open neighborhood of S in G = (V,E) is T and analogous NG(T ) = S,
which gives

f(G) = x|S|z|F |y|T | + x|T |z|F |y|S|

+
∑

W⊆V
W 6=S
W 6=T

x|W |z|E|[E = ∂W ]y|N(V,E)(W )|.

However, the condition E = ∂W is only satisfied for W = S or W = T . As these
two cases are excluded by the range of summation, the last sum vanishes.

If H is a graph, then we denote by E(H) its edge set and by C(H) the set of
all components of H. The following theorem provides a recursive representation
for the bipartition polynomial.

Theorem 27. Let G = (V,E) be a graph. Then

B(G;x, y, z) =
∑

F⊆E
(V,F ) is bipartite

∏

H∈C((V,F ))

∑

J⊆E(H)

(−1)|J |B(H − J ;x, y, z).

Proof. We rewrite the product representation given in Theorem 3 in the follow-
ing form

B(G;x, y, z) =
∑

F⊆E
(V,F ) is bipartite

(1 + x)iso(V,F )
∏

(V1∪V2,A)∈Comp(V,F )

z|A|
(

x|V1|y|V2| + x|V2|y|V1|
)

=
∑

F⊆E
(V,F ) is bipartite

∏

H∈C((V,F ))

g(H),

where we denote the bipartition of the vertex set of H by S ∪ T and define

g(H) =

{

1 + x, if E(H) = ∅,

z|E(H)|
(

x|S|y|T | + x|T |y|S|
)

, otherwise.

Substituting the function g(H) according to Lemma 26 yields the desired result.

Theorem 27 shows that the bipartition polynomial of a non-bipartite graph
is determined by the set of bipartition polynomials of all its bipartite spanning
subgraphs.
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5. Conclusion and Open Questions

The bipartition polynomial is a powerful tool for proving properties of graph
polynomials and graph invariants that are related to dominating sets, matchings,
independent sets, or the cut structure of graphs. However, in order to cover
also coloring problems, an extension of its definition is required that includes
information about the edges which are completely in W and completely outside
of W . Thus, we cannot expect to find a close relation between the bipartition
polynomial and the Tutte-rank-Potts family of polynomials.

There remain some interesting open questions for future research with respect
to the bipartition polynomial. The bipartition polynomial distinguishes non-
isomorphic graphs quite well. However, it seems to be difficult to characterize
non-isomorphic graphs that have the same bipartition polynomial.

Problem 28. Which properties of two non-isomorphic graphs cannot be distin-
guished by the bipartition polynomial?

Problem 29. Are there two non-isomorphic trees with the same bipartition
polynomial?

Problem 30. Is the bipartition polynomial reconstructible from its polynomial
deck?

We found some nice representations for the bipartition polynomial. However,
the following question is still open.

Problem 31. Is there a recurrence relation for the bipartition polynomial with
respect to elementary vertex and edge operations?

There exists some results for the calculation of domination polynomials of
graph products [17], e.g. for the Cartesian product and the strong product. But
for the bipartition polynomial not such a result exists.

Problem 32. How can we calculate the bipartition polynomial for graph prod-
ucts?
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