Discussiones Mathematicae Graph Theory 35 (2015) 585–587 doi:10.7151/dmgt.1807

Note

A NOTE ON TOTAL GRAPHS

S.F. FOROUHANDEH¹, N. JAFARI RAD¹

B.H. VAQARI MOTLAGH¹, H.P. PATIL²

AND

R. PANDIYA RAJ²

 ¹ Department of Mathematics Shahrood University of Technology Shahrood, Iran
² Department of Mathematics Pondicherry Central University Puducherry - India

e-mail: n.jafarirad@gmail.com hpppondy@gmail.com

Abstract

Erratum: Identification and corrections of the existing mistakes in the paper On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory **33** (2013) 361–371.

Keywords: total graph, central graph, middle graph, Mycielski graph.

2010 Mathematics Subject Classification: 05C76, 05C69.

1. Results

In this paper, we correct the Theorems 1, 4, 8 and 11, and their corollaries of [1]. There was omitted t(G), i.e., the number of triangles in G or L(G) in Theorem 1 of [1]. The total graph T(G) contains triangles in G, L(G) and in the incidence graph. All triangles are numbered in the published paper [1] beside triangles in G or L(G). First, we give corrected version of Theorem 1 of [1] as follows by adding the number of omitted triangles t(G), and its proof is in similar lines as before.

586 S.F. FOROUHANDEH, N. JAFARI RAD, B.H. VAQARI MOTLAGH AND et al.

Theorem 1. For any (p,q) graph G,

$$t[T(G)] = 2t(G) + \frac{1}{2} \sum_{i=1}^{p} \left[d_G^2(v_i) + 2m_i \binom{d_G(v_i)}{3} \right],$$

where $m_i = 1$ if $d_G(v_i) \ge 3$; otherwise $m_i = 0$.

Due to the change in the statement of Theorem 1 of [1], the remaining Theorems 4, 8, 11 and their corollaries of [1] are corrected as follows.

Corollary 2. (a) $t[T(C_3)] = 8$ and $t[T(C_n)] = 2n$ if n > 3. (b) For $n \ge 1$, $t[T(K_n)] = \frac{1}{6} [(n^2 - n)(n^2 - 1)]$.

Corollary 3. For $1 \le i \le n$ and $n \ge 2$, $t[T(\Box_{i=1}^n C_{m_i})] = \frac{2Mn}{3}(2n^2+1)$ where $M = m_1m_2\cdots m_n, m_i > 3$.

Theorem 4. Let G be any (p,q)-graph having t(G) triangles and $\delta(G) \ge 2$. Then

$$t[T(\mu(G))] = 8t(G) + \frac{1}{2} \sum_{i=1}^{p} \left[3d_G^3(v_i) + d_g^2(v_i) \right] + \left(\frac{18q + 5p + p^3}{6} \right).$$

Corollary 5. For n > 3, $t(T[\mu(C_n)]) = \left(\frac{n^3 + 107n}{6}\right)$.

Corollary 6. For $n \ge 3$, $t(T[\mu(K_n)]) = \frac{1}{6}(9n^4 - 15n^3 + 6n^2 + 6n)$.

Theorem 7. For any (p,q)-graph G,

$$t[M(G)] = t(G) + \frac{1}{2} \sum_{i=1}^{p} \left[d_G^2(v_i) + 2m_i \binom{d_G(v_i)}{3} \right] - q,$$

where $m_i = 1$ if $d_G(v_i) \ge 3$; otherwise $m_i = 0$.

Corollary 8. For any (p,q)-graph G,

$$t[M(\mu(G))] = 4t(G) + \frac{1}{2} \sum_{i=1}^{p} [3d_G^3(v_i) + d_G^2(v_i)] + \frac{p(p^2 - 1)}{6}.$$

Theorem 9. For any (p,q)-graph G with $p \ge 4$,

$$t[T(C(G))] = 2m + \frac{1}{6}(p^4 - 3p^3 + 5p^2 - 3p + 12q),$$

where m = t(C(G)).

Corollary 10. For $m, n \geq 3$,

$$t[T(C(K_{m,n}))] = t[T(K_{m+n})] - mn(m+n-4).$$

Acknowledgement

The authors gratefully acknowledge the referee for his valuable suggestions.

References

 H.P. Patil and R. Pandiya Raj, On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361–71. doi:10.7151/dmgt.1670

> Received 3 May 2014 Revised 4 July 2014 Accepted 3 September 2014