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Abstract

Two spanning trees T1 and T2 of a graph G are completely independent
if, for any two vertices u and v, the paths from u to v in T1 and T2 are
internally disjoint. For a graph G, we denote the maximum number of
pairwise completely independent spanning trees by cist(G). In this paper,
we consider cist(G) when G is a partial k-tree.

First we show that ⌈k/2⌉ ≤ cist(G) ≤ k − 1 for any k-tree G. Then
we show that for any p ∈ {⌈k/2⌉, . . . , k − 1}, there exist infinitely many
k-trees G such that cist(G) = p. Finally we consider algorithmic aspects
for computing cist(G). Using Courcelle’s theorem, we show that there is a
linear-time algorithm that computes cist(G) for a partial k-tree, where k is
a fixed constant.

Keywords: completely independent spanning trees, partial k-trees.

2010 Mathematics Subject Classification: 05C05, 05C38.

http://dx.doi.org/10.7151/dmgt.1806


428 M. Matsushita, Y. Otachi and T. Araki

1. Introduction

Let G be a simple undirected graph. The vertex set and the edge set of G are
denoted by V (G) and E(G), respectively. The degree of a vertex v is denoted
by degG v. For a vertex x, G − x is the graph obtained from G by removing x
and all edges incident to x. A clique is a set of vertices that induces a complete
subgraph. We call a clique of size k a k-clique. Let P1 and P2 be paths from a
vertex x to a vertex y. If P1 and P2 are edge-disjoint and have no common vertex
except for x and y, then the two paths are internally disjoint. A spanning tree of
a connected graph G is a tree that is a subgraph of G and contains all vertices
of G. Two spanning trees T1 and T2 of G are completely independent if, for any
two distinct vertices u and v of G, the two u–v paths on T1 and T2 are internally
disjoint.

The concept of completely independent spanning trees was introduced by
Hasunuma [7] as a non-rooted variant of independent spanning trees. These con-
cepts are related to fault-tolerant communication in interconnection networks.
In [7], a characterization of completely independent spanning trees was shown,
and it was also shown that there exist k completely independent spanning trees
in the underlying graph of any k-connected line digraph. In [8], it was shown that
there are two completely independent spanning trees in any 4-connected maximal
planar graph, and a linear-time algorithm for finding such trees was proposed.
Recently, in [9], it was shown that there are two completely independent span-
ning trees in the Cartesian product of two 2-connected graphs. In [11], Péterfalvi
showed that, for any k, there is a k-connected graph that does not have two
completely independent spanning trees. In [1], Araki showed that some sufficient
conditions for Hamiltonian graphs are also sufficient conditions for graphs with
two completely independent spanning trees.

In this paper, we study completely independent spanning trees of partial k-
trees. The concept of partial k-trees was introduced as a generalization of trees.
For k ≥ 1, a k-tree is a graph constructed as follows.

1. A complete graph on k vertices is a k-tree.

2. If G is a k-tree and C is a k-clique of G and x 6∈ V (G), then the new
graph G′ with the vertex set V (G′) = V (G)∪{x} and the edge set E(G′) =
E(G) ∪ {xc | c ∈ C} is a k-tree.

A graph is a partial k-tree if it is a subgraph of a k-tree. For example, 1-trees are
trees, and some 4-trees with small number of vertices are given in Figure 1. The
partial k-trees are also known as the graphs of treewidth at most k (see e.g. [3]).
Many algorithmic problems have been proved to be solvable in polynomial time
for partial k-trees, if the parameter k is a fixed constant [5, 2]. Such algorithms
are designed by using dynamic programming approach or description methods
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Figure 1. Examples of 4-trees. Gray vertices form 4-cliques.

from mathematical logic, in particular, the monadic second-order (MSO) logic.
Courcelle [6] showed that every problem expressible in MSO can be solved in
linear time on partial k-trees.

We discuss the number of completely independent spanning trees in a k-tree
in Section 2. In Section 3, we show that the property of completely independent
spanning trees can be expressed in MSO. This means that there is a linear-time
algorithm for deciding whether there exist t completely independent spanning
trees in a given partial k-tree.

2. Completely Independent Spanning Trees in k-trees

In this section, we consider the number of completely independent spanning trees
in a k-tree. We will use the following characterization.

Theorem 2.1 (Hasunuma [7]). Spanning trees T1, T2, . . . , Tt in G are pairwise

completely independent if and only if they are edge-disjoint, and for any vertex

v, there is at most one Ti such that degTi
v > 1.

The characterization says that every vertex of G is a non-leaf of at most one tree
Ti. In other words, vertices of G can be colored with t colors in such a way that
if a vertex is a non-leaf of Ti, then its color is i. A vertex that is a leaf of every
tree can be colored arbitrarily.

For a graph G, we denote the maximum number of pairwise completely in-
dependent spanning trees by cist(G). We consider cist(G) when G is a k-tree.

We first show that cist(Kn) = ⌊n/2⌋ for n ≥ 4. Note that Hasunuma [8]
mentioned this fact for even n without proof.

Lemma 2.2. For n ≥ 4, cist(Kn) = ⌊n/2⌋.

Proof. Since Kn has n(n − 1)/2 edges and completely independent spanning
trees are edge-disjoint by Theorem 2.1, we obtain

cist(Kn) ≤

⌊

n(n− 1)/2

n− 1

⌋

= ⌊n/2⌋.
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Let V (Kn) = {v1, v2, . . . , vn}. First assume that n = 2t. For 1 ≤ i ≤ t, let
Vi = {v2i−1, v2i}. We define a spanning tree Ti, 1 ≤ i ≤ t, as follows.

1. Edge v2i−1v2i is an edge of Ti.

2. For 1 ≤ j < i, edges v2i−1v2j and v2iv2j−1 are edges of Ti.

3. For i < j ≤ t, edges v2i−1v2j−1 and v2iv2j are edges of Ti.

We can easily check for any j 6= i that two spanning trees Ti and Tj have no
common edge, and the vertices in Vi have degree 1 in Tj . Hence, by Theorem 2.1,
these t spanning trees are completely independent.

Next we assume that n = 2k+1. In this case, first we construct t completely
independent spanning trees T1, T2, . . . , Tt in K2t. Now let v2t+1 be the vertex of
K2t+1 but not in K2t. By adding a vertex v2t+1 and an edge v2t+1v2i−1 to Ti,
we construct the spanning tree T ′

i of K2t+1. Obviously, T ′
1, . . . , T

′
t are completely

independent.

As mentioned earlier, if G has t completely independent spanning trees
T1, . . . , Tt, then the vertices of G can be colored with t colors in such a way
that if a vertex is a non-leaf of Ti, then its color is i. By the proof of Lemma 2.2,
the vertices of Kn can be colored with ⌊n/2⌋ colors such that the two vertices in
Vi have color i. If n is odd, then the vertex vn can be colored with any color.
Examples of the construction of completely independent spanning trees in K6

and K7 are in Figures 2 and 3, respectively. The numbers in the vertices are the
assigned colors .

Figure 2. Three completely independent spanning trees in K6.

Theorem 2.3. For k ≥ 3 and a k-tree G on at least k + 1 vertices, cist(G) ≥
⌈k/2⌉.

Proof. Let t = ⌈k/2⌉. First we assume that k is odd. We show the theorem by
induction on the number of vertices.

When G has k + 1 vertices, it is a complete graph on k + 1 vertices. Hence
by Lemma 2.2 it has ⌊(k + 1)/2⌋ = t completely independent spanning trees
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Figure 3. Three completely independent spanning trees in K7.

T1, T2, . . . , Tt. Furthermore, the vertices can be colored with t colors such that
the two inner vertices of Ti has color i.

Now let n ≥ k+1 and assume that any k-tree G on n vertices has t completely
independent spanning trees T1, T2, . . . , Tt, and the vertices in G are colored with
t colors such that the inner vertices of Ti has color i, and for any (k+1)-clique C,
there are t colors in C and there are two vertices of each color. Observe that any
k-clique is included in a (k + 1)-clique in a connected k-tree with at least k + 1
vertices. Thus any k-clique has vertices of t colors and there are two vertices of
each color except for one color. For example, for a complete graph in Figure 2,
in a clique induced by five vertices vi, 1 ≤ i ≤ 5, there are two vertices of color 1
and 2, and one vertex of color 3 (k = 5 and t = 3 in this case).

Let H be a k-tree on n + 1 vertices. Since H is a k-tree, there is a vertex
v of degree k such that the neighborhood of v induces a clique C of size k, and
G := H − v is a k-tree on the n vertices. By induction hypothesis, G has t
completely independent spanning trees. Suppose that u1, u2, . . . , ut are vertices
of C such that ui has color i and no vertex other than ut has color t in C. A
spanning tree T ′

i , i = 1, 2, . . . , t, of H is constructed by adding a vertex v and
edges vui to Ti. The spanning trees T ′

i , i = 1, 2, . . . , t, are completely independent
by Theorem 2.1.

Since the vertex v is a leaf of every spanning tree, we can assign any color to
v. Hence we color the vertex v with color t. Then, in the clique induced by k+1
vertices C ∪ {v}, there are two vertices of each color. Hence, colors in any clique
of size k + 1 of H satisfy the induction hypothesis.

For even k = 2t, we can prove similarly by changing the induction hypothesis
as “there are t completely independent spanning trees T1, . . . , Tt in G, and the
vertices are colored with t colors such that the inner vertices of Ti has color i,
and for any clique C of size k + 1, there are t colors in C and there are at least
two vertices of each color.”

Examples of the construction of two completely independent spanning trees
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Figure 4. Two completely independent spanning trees in 4-trees. The vertices of colors
1 and 2 are drawn by gray and white vertices, respectively. The edges of two spanning
trees T1 and T2 are solid lines and dotted lines, respectively.

in 4-trees are illustrated in Figure 4. In Figure 4, the vertices of colors 1 and
2 are drawn by gray and white vertices, respectively. By assigning appropriate
colors to the newly added vertex, we can keep the condition that each 5-clique
has two colors and at least two vertices of each color.

The following upper bound can be easily derived by considering the number
of edges in a k-tree.

Lemma 2.4. For k ≥ 2 and a k-tree G, cist(G) ≤ k − 1.

Proof. From the definition of k-trees, we can see that a k-tree on n vertices has
kn− k(k+1)/2 edges: the first k vertices form a k-clique, and each other vertex
adds k edges. Since a spanning tree has n− 1 edges, it follows that

cist(G) ≤

⌊

kn− k(k + 1)/2

n− 1

⌋

.

Since the right-hand side is at most k − 1 for k ≥ 2, the lemma holds.

Now Theorem 2.3 and Lemma 2.4 together imply the following fact.

Corollary 2.5. If k ≥ 3, then ⌊(k + 1)/2⌋ ≤ cist(G) ≤ k − 1 for any k-tree G.

In order to show the next theorem, we define a class of k-trees G(k, p) for
p < k. Let k ≥ 3, p ≥ 2 and n ≥ (p2+p+2)/2. A graph G ∈ G(k, p) on n vertices
has V ∪U ∪W as its vertex set, where V = {v1, . . . , v2p} and U = U1∪· · ·∪Up−2,
Uj = {uj,j , uj,j+1, . . . , uj,p−2}, and W = {w1, . . . , wn−(p2+p+2)/2}. The edges of G
are as follows.

• The vertices vi+1, vi+2, . . . , vi+k form a k-clique for 0 ≤ i ≤ 2p− k.
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• For 1 ≤ j ≤ p− 2, each vertex in Uj is adjacent to all vertices in a k-clique
C such that {vj , vj+1, . . . , vj+p} ⊆ C ⊆ V .

• Each vertex in W is adjacent to the k vertices v1, v2, . . . , vk.

We can see that G is a k-tree. The class G(k, p) consists of all such k-trees.

Theorem 2.6. For k ≥ 3 and any ⌊(k + 1)/2⌋ ≤ p ≤ k − 1, and for n ≥
(p2 + p+ 2)/2, there is a k-tree G on n vertices such that cist(G) = p.

Proof. We show that cist(G) = p for any G ∈ G(k, p). For 1 ≤ i ≤ p, a spanning
tree Ti is defined as follows.

• Vertex vi is adjacent to the vertices in {vi+1, vi+2, . . . , vi+p}, and vi+p is
adjacent to the vertices in {vi−1} ∪ {vi+p+1, vi+p+2, . . . , v2p}.

• Vertex vi is adjacent to the vertices in U1 ∪ U2 ∪ · · · ∪ Ui−1, and vi+p is
adjacent to the vertices in Ui ∪ Ui+1 ∪ · · · ∪ Up−2.

• When i ≥ 3, vj is adjacent to uj,i−2 for 1 ≤ j ≤ i− 2.

• Vertex vi is adjacent to the vertices in W .

The resulting graph is Ti.
We show that T1, T2, . . . , Tp are completely independent. We can see that

these spanning trees have no common edge. For Ti, the vertices of degree at least
2 are vi, vi+p and u1,i−2, u2,i−2, . . . , ui−2,i−2. Hence, there is no vertex x such that
degTi

x ≥ 2 and degTj
x ≥ 2 if i 6= j. Thus, by Theorem 2.1, these p spanning trees

are completely independent. Hence G has p completely independent spanning
trees.

Next we show that G cannot have p + 1 completely independent spanning
trees. Suppose that G has p+ 1 pairwise completely independent spanning trees
T1, T2, . . . , Tp+1. Then we assign p+1 colors to the vertices of G so that a non-leaf
of Ti has color i. Consider the colors of the vertices V = {v1, v2, . . . , v2p}. Each
tree Ti has at least two inner vertices and the inner vertices induce a connected
graph. Since U ∪W is an independent set, every color appears at least once in
V . Since V has 2p vertices and p + 1 colors, there are two colors such that V
contains exactly one vertex for each of the colors. Without loss of generality,
assume that 1 and 2 are such colors, vi ∈ V has color 1, and vj ∈ V has color
2. Now the vertices in V \ {vi} have degree 1 in the spanning tree T1, and the
vertices in V \ {vj} have degree 1 in the spanning tree T2. Since U ∪ W is an
independent set, every edge between vi and U ∪ W is an edge of T1. Similarly,
every edge between vj and U ∪W is an edge of T2. Since vj is a leaf of T1, edge
vivj is included in T1. Similarly, edge vivj must be in T2. This contradicts that
T1 and T2 are edge-disjoint.
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For example, five completely independent spanning trees of a k-tree G ∈
G(6, 5) on 16 vertices are presented in Figure 5.

3. Complexity for Partial k-trees

In this section, we consider algorithmic aspects for constructing completely inde-
pendent spanning trees. Here we use a very strong and general tool for considering
time complexity of problems on partial k-trees.

The syntax of the monadic second-order (MSO) logic of graphs includes the
logical connectives ∧, ∨, ¬, =⇒, and ⇐⇒, variables for vertices, edges, sets of
vertices, and sets of edges, the quantifiers ∀ and ∃ that can be applied to these
variables, and the following binary relations.

• inc(e, v), where e is an edge variable, v is a vertex variable, and the inter-
pretation is that the edge e is incident to the vertex v.

• x ∈ X, where x is a vertex (an edge) variable and X is a vertex set (an
edge set, respectively) variable.

• Equality, =, of variables representing vertices, edges, set of vertices and set
of edges.

It is known that several problems on graphs can be expressed in MSO. See [10]
for more details. Courcelle [6] provided the following theorem that gives a general
framework for efficient algorithms on partial k-trees.

Theorem 3.1 (Courcelle [6]). Every problem expressible in MSO can be solved

in linear time on partial k-trees for any fixed k.

We now prove that the problem of finding t completely independent spanning
trees is expressible in MSO.

Lemma 3.2. The property that a graph has t completely independent spanning

trees can be expressed in MSO.

Proof. For F ⊆ E(G), we denote by G[F ] the subgraph induced by F . It is easy
to see that the following properties can be expressed in MSO (see [4]).

• SpnTree(E1): G[E1] is a spanning tree of G.

• Deg1(v1, E1): v1 has at most one neighbor in G[E1].

Now the following expression means E1, E2, . . . , Et induce edge disjoint spanning
trees.

EDST(E1, . . . , Et) :=
∧

1≤i≤t
SpnTree(Ei)∧

∧

1≤i<j≤t
((∀e1)(e1 /∈ Ei∨e1 /∈ Ej)).
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Figure 5. Five completely independent spanning trees of a k-tree G ∈ G(6, 5) on 16
vertices. The gray vertices in Ti have color i.
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Next we define the expression meaning that for each vertex v1 there is at most
one edge set Ei such that v1 is not a vertex of degree at most 1 in G[Ei].

Uniq(E1, . . . , Et) := (∀v1)(∃Ei)(∀Ej)
(

Ej 6= Ei =⇒ Deg1(v1, Ej)
)

.

By Theorem 2.1, the graph G has t completely independent spanning trees if and
only if

G |= (∃E1, . . . , Et)(EDST(E1, . . . , Et) ∧Uniq(E1, . . . , Et)).

The lemma follows.

By Theorem 3.1 and Lemma 3.2, it follows that given a partial k-tree G, the
problem of deciding whether G has at least t completely independent spanning
trees can be solved in linear time for any fixed t and k. Observe that cist(G) ≤
k − 1 from the same argument we used for k-trees in the proof of Lemma 2.4.
Hence, to determine cist(G), it suffices to test for each t ∈ {1, . . . , k− 1} whether
cist(G) ≤ t. If k is a fixed constant, then the number of tests is a constant k− 1,
and each test can be done in linear time since t < k is also a constant. Thus the
following theorem holds.

Theorem 3.3. Given a partial k-tree G, where k is a fixed constant, cist(G) can
be determined in linear time.
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