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Abstract

Let G be a connected graph. For two vertices u and v in G, a u—v geodesic
is any shortest path joining u and v. The closed geodetic interval I|[u, v]
consists of all vertices of G lying on any u—v geodesic. For S C V(G), S is
a geodetic set in G if U, ,e5 lc[u,v] = V(G).

Vertices u and v of G are neighbors if v and v are adjacent. The closed
neighborhood Ng[v] of vertex v consists of v and all neighbors of v. For
S C V(G), S is a dominating set in G if | J,.g Nalu] = V(G). A geodetic
dominating set in G is any geodetic set in G which is at the same time a
dominating set in G. A geodetic dominating set in G is a minimal geodetic
dominating set if it does not have a proper subset which is itself a geodetic
dominating set in G. The maximum cardinality of a minimal geodetic dom-
inating set in G is the upper geodetic domination number of G. This paper
initiates the study of minimal geodetic dominating sets and upper geodetic
domination numbers of connected graphs.
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1. INTRODUCTION

Throughout this paper we consider only finite connected graphs with no loops
or multiple edges. All basic graph theoretic terminologies and notations adapted
here are taken from [11].

Let G and H be graphs with disjoint vertex sets. The join G + H of G
and H is the graph with vertex set V(G + H) = V(G) U V(H) and edge set
E(G+H)=EG)UEH)U{uv :u e V(G),v € V(H)}. The composition (or
lezicographic product) G[H] of G and H is the graph with vertex set V(G[H]) =
V(G) x V(H) and (u,v)(u',v") € E(G[H]) if and only if either uu’ € E(G) or
u=u"and v’ € E(H).

Let G be a connected graph. For any two vertices v and v in G, a u—v
geodesic refers to any shortest path in G joining u and v. The length of a u—v
geodesic is called the distance between u and v, and is denoted by dg(u,v). The
eccentricity e (v) of a vertex v is defined by eg(v) = max{dg(u,v) : v € V(G)}
and the diameter of G is the number diam(G) = max{dg(u,v) : u,v € V(G)}.
The closed geodetic interval Ig|u,v] is the set of all vertices lying on any u—v
geodesic. For a subset S of the vertex set V(G) of G, the geodetic closure of S
is the set I[S] = U, ,es Iclu, v]. Various concepts inspired by geodetic closures
are introduced in [7, 11]. A geodetic setin G is any set S of vertices in G satisfying
I¢[S] = V(G). The minimum cardinality g(G) of a geodetic set is the geodetic
number of G. Geodetic sets and geodetic numbers are studied in [1, 2, 3, 4, 5, 6].
A geodetic set S in G is a minimal geodetic set if S does not have a proper subset
that is itself a geodetic set in G. The maximum cardinality of a minimal geodetic
set in G is denoted by ¢*(G). Zhang et al. investigated a minimal geodetic set
in a connected graph in [4].

We also define I (u,v) = Ig[u,v] \ {u,v} and Ig(S) = U, yes Io(u,v). We
call S a 2—path closure absorbing set if for each x € V(G)\ S, there exist u,v € S
such that dg(u,v) = 2 and = € Ig(u,v). The minimum cardinality of a 2—
path closure absorbing set in G is denoted by p2(G). Since a 2-path closure
absorbing set is always a geodetic set, g(G) < p2(G) for all connected graphs
G. In [6], the geodetic numbers of some classes of graphs are described in terms
of 2-path closure absorbing sets. A 2-path closure absorbing set S is a minimal
2-path closure absorbing set if S does not contain a proper subset that is itself
2-path closure absorbing. The maximum cardinality of a minimal 2-path closure
absorbing set in G is denoted by p3 (G).

The open neighborhood of a vertex v in G is the set Ng(v) = {u € V(G) :
uwv € E(G)}. The degree, degg(v), of a vertex v refers to the value |Ng(v)l,
and we define A(G) = max{degg(v) : v € V(G)}. The closed neighborhood
of v is the set Ng[v] = Ng(v) U{v}. A vertex v is an extreme vertexr if the
induced subgraph (Ng[v]) is a complete graph. The symbol Ext(G) denotes the
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set of all extreme vertices in G. For S C V(G), we define Ng(S)=U,cg Na(v)
and Ng[S] = Ng(S)U S. If Ng[S] = V(G), then S is a dominating set in G.
The minimum cardinality among dominating sets in G is called the domination
number of G, and is denoted by v(G). A considerable number of studies have
been dedicated in obtaining variations of the concept (see [12, 13, 14, 15]). The
authors in [9] cited over 75 variations of domination and listed over 1,200 papers
related to domination in graphs. An application to electrical power networks is
being studied in [10]

A subset S of V(G) is a geodetic dominating setin G if S is a geodetic set and
at the same time a dominating set in G. The minimum cardinality of a geodetic
dominating set is called the geodetic domination number of G, and is denoted
by 74(G). The study of geodetic domination was initiated by Escuardo, Gera,
Hansberg, Jafari Rad and Volkmann [8] in 2011. Some other interesting results
can also be found in [16].

Customarily or as used in several literatures, the symbols like g-set, ps-set,
p;—set, v-set, and 74-set in a graph G would refer to a geodetic set of cardinality
9(G), a 2-path closure absorbing set with cardinality p2(G), a minimal 2-path
closure absorbing set with cardinality p2+ (G), a dominating set with cardinality
v(G), and a geodetic dominating set with cardinality v4(G), respectively.

Since a 2-path closure absorbing set is also a geodetic dominating set, g(G) <
v4(G) < p2(G) for all connected graphs G of order n > 2. In particular, if
diam(G) = 2, then v4(G) = p2(G).

The following is found in [8].

Theorem 1.1 [8]. Let G be a connected graph of order n > 2. Then

(i) v4(G) = 2 if and only if there exists a geodetic set S = {u,v} such that
da(u,v) < 3.

(ii) v4(G) =n if and only if G is the complete graph on n vertices.

(iii) v4(G) =n —1 if and only if there is a vertex v in G such that v is adjacent
to every other verter of G and G — v is the union of at least two complete
graphs.

2. MINIMAL GEODETIC DOMINATION

A geodetic dominating set S in a connected graph G of order n > 2 is a minimal
geodetic dominating set in G if S does not have a proper subset which is itself a
geodetic dominating set in G. The maximum cardinality of a minimal geodetic
dominating set in G is the upper geodetic domination number of G, and is denoted
by 74 (G). A minimal geodetic dominating set with cardinality 7 (G) is also
called a v, -set.
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Example 2.1. (i) Ifm,n > 2 and U and W are the partite sets of the complete
bipartite graph K, , then the minimal geodetic dominating sets in Ky,
are U and W and all sets of the form S = {u,v,z,y}, where u,v € U and
x,y € W. More precisely,

4, ifm=n=23,
max{m,n}, otherwise.

5 ) = {
(ii) For2<n <4, v/ (P,) =2, and forn >5,

P = 22| +1, ifn=1 (mod4),
g 2 {%] , otherwise.

Suppose that n = 1 (mod 4), and P, = [uj,ug,...,u,]. Since the set

{u1, ug, us, ug, . . ., Ugg—3, Ugk—2, Ugk+1} is @ minimal geodetic dominating set in
P,, 'y;(Pn) > 2 L%J + 1. Let S C V(P,) be a minimal geodetic dominating
set in P,. For every 7 = 1,2,...,n — 3, S contains at most two of the ver-

tices wj, ujy1, uj42 and wujrs. Thus, |S] < 2 L%J 4+ 1. Since S is arbitrary,
WJ(PH) <2 L%J +1. Now, suppose that n > 4 but n # 4a+ 1 for all positive inte-
gers a. Let k be the largest positive integer for which 4k 41 < n. Since the set of
vertices {u1, ug, us, Ug, - - . , Ugk+1, Un ; 1S a minimal geodetic dominating set in P,
V5 (Pn) > 2[%]. Using similar arguments, if S C V(P,) is a minimal geodetic
dominating set in Py, then |S| < 2[%]. This means that Vo (Pn) <2 [2].

Theorem 2.2. Let G be a connected graph of order n > 2. Then
(i) 'y;(G) = 2 if and only if G is one of the following graphs: Ps, Cy, Ko + H
where H is connected and either H = K, _o or p (H) = 2, G has a g-set
{u,v} with u,v € Ext(G) and dg(u,v) = 3.
(i) vy (G) = n if and only if G = Kp.
(iii) Forn >3, v5(G)=n—1if and only if G = K + U;Zl K., where t > 2.

Proof. (i) Suppose that v, (G) = 2, and let {u,v} be a v/ -set in G. Let S =
V(G) \ {u,v}. Then w € Ig[u,v] for all w € S and 1 < dg(u,v) < 3 by Theorem
1.1. If dg(u,v) = 1, then S = ) and G = P». Suppose that dg(u,v) = 2.
Then G = ({u,v}) + (S) = Ko + (S). If |S| = 1, then G = P3 = Ko + K;. If
|S| = 2, then either G = Cy or G = K5 + K. Suppose that |S| > 3. Then (S)
is connected. If (S) is the complete graph K,, o, then G = K5 + K,,_5. Suppose
that H = (S) is not complete, and let T' be a pj-set in H. Then T is a v, -set
in G. Thus |T| = 2. Hence, pj (H) = 2. Finally, suppose that dg(u,v) = 3.
For each x € S, either uz € E(G) or zv € E(G). Suppose that there exist
x,y € Nglu] with dg(z,y) = 2. Consider W = Ng(u) U{v}. Let z € V(G) \ W.
If z = u, then [z, z,y] is an z—y geodesic in G so that z € Ng[W] and z € Ig[W].
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Suppose that z # u. Since z € Ig[u,v], there exist a,b € V(G) such that z lies
on the u—v geodesic [u,a,b,v]. This means that a € Ng(u) and z = b. Thus
z € Ng[W] and z € Ig[W]. Accordingly, W is a geodetic dominating set in G.
Let T C W be a minimal geodetic dominating set in G. Since v ¢ Ng[Ng(u)],
v € T. Moreover, if |T'N Ng(u)| = 1, then u ¢ I¢[T], a contradiction. Thus,
|T' N Ng(u)| > 2 so that v, (G) > |T| > 3, a contradiction. Therefore, (Ng[u]) is
complete and u € Ezt(G). Similarly, v € Ext(G).

Conversely, if G is P, or C4 or Ko + K, _o, then WJ(G) = 2. Suppose that
G = Ks + H, where H is connected and noncomplete with p5 (H) = 2. Then
diam(G) = 2 and T = V(K>) is a minimal geodetic dominating set in G. Put
T = {u,v}, and let Z be a minimal geodetic dominating set in G distinct from
T. Then |ZNT| < 1. Suppose that ZNT = {u}. Since ux € E(G) for all
xeV(H),velg[Z\{u}] and V(H) C Ig[Z \ {u}] so that Z \ {u} is a geodetic
dominating set in G, a contradiction. Thus Z C V(H) and, consequently, Z is
a minimal 2-path closure absorbing set in H. Thus, 2 < |Z| < p3 (H) = 2 so
that |Z| = 2. Since Z is arbitrary, 7/ (G) = |Z] = 2. Now, let G have a g-set
{u,v} with dg(u,v) = 3 and where the induced subgraphs (Ng[u]) and (Ng[v])
are complete. Then Ext(G) = {u,v}, which is the unique v, -set in G. The
conclusion follows.

(ii) If G = Ky, then 74(G) = n, by Theorem 1.1. Hence v, (G) = n. Suppose
that v, (G) = n. Then each proper subset of V(G) is not a geodetic dominating
set in G. Let v € V(G), and set S = V(G) \ {v}. Then v ¢ Ng[S] or v ¢ I5[5].
If v ¢ Ng[S], then v is an isolated vertex, a contradiction. Thus v ¢ Ig[S] so
that v € Ezt(G). Since v is arbitrary, V(G) = Ezt(G) and G = K,,.

(i) f G = Kl—i—U;:l K, for somet > 2, then v,4(G) = n—1, by Theorem 1.1.
By statement (i), v, (G) < n. Thus v, (G) = n—1. Suppose that v, (G) =n—1.
Let S = V(G)\{v}, where v € V(G), be a vy, -set in G. We claim that uv € E(G)
for all uw € S. Since v is not an endvertex, there exist z,y € S such that [z, v,y]
is an x—y geodesic in GG. Suppose that, in the contrary, there exists u € S with
da(u,v) = 2. Let [u,w,v] be a u—v geodesic in G. If z = w or y = w, then
S\ {w} is a geodetic dominating set in G, which is impossible. Suppose that
x # wand y # w. If uy ¢ E(G), then S\ {w} is a geodetic dominating set in
G. If uy € E(G) and wy ¢ E(G), then S\ {u} is a geodetic dominating set in
G. If uy,wy € E(G) and uz € E(G), then S\ {u} is a geodetic dominating set
in G. If uy,wy € E(G) and ux ¢ E(G), then S\ {w} is a geodetic dominating
set in GG. Any of the above cases yields a contradiction. This proves the claim.
Therefore, G = K1 + H for some graph H. Next, we show that H = UE.:I K,
where t > 2. Suppose that H has a component K which is not a complete graph.
Then K, consequently G, has a geodesic [x,y, z] of length 2. Then S\ {y} is a
geodetic dominating set in G, a contradiction. Therefore, H = Ué’:l K. Since
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G is not a complete graph, t > 2. [

Now follows a Nordhaus-Gaddum-type result. Let the symbol = denote the
infinite collection of all connected graphs G such that G is also connected.

Theorem 2.3. For all G € Z of order n > 4,
4 <y (G)+75(G) < 2n—4.
In particular, v (G) +~f (G) = 4 if and only if n = 4.

Proof. Let G € = be of order n > 4. Note that if G is either K,, or K3 —|—U§-:1 K,
with ¢t > 2, then G is disconnected, a contradiction. In view of Theorem 2.2,

(G +77(G) < (n—2)+(n—2)=2n—4.

The inequality at the left side is obvious.

In particular, if n = 4, then v/ (G) + 7, (G) = 4. Conversely, suppose that
Y4 (G) + 7 (G) = 4. Necessarily, v, (G) = 2 and ~,(G) = 2. By Theorem 2.2,
G has a g-set {u,v} with u,v € Ezt(G) and dg(u,v) = 3. Similarly, G has
a g-set {z,y} with 2,y € FEzt(G) and dg(z,y) = 3. Assume that z € Ng[u].
Suppose that & = u. Note that Ng(x) = Ng[v], and (Ng[v]) is not complete
in G. This means that = ¢ Ext(G), a contradiction. Suppose that zu € E(G).
Since zy ¢ E(G), vy € E(G). Ifvy ¢ E(G), then xv,vy € E(G) so that [z,v,y] is

a geodesic in G, a contradiction. Thus [u, x,y,v] is a u—v geodesic in G. Suppose

that n > 5, and let z € V(G) be distinct from u, z,y and v. Assume 2z € E(G).

Since z € Ezt(G) and zv € E(G), zv € E(G) and, consequently, zu € E(G).
Since u € Ext(G), zz € E(G), a contradiction. Therefore, n = 4. |

Corollary 2.4. If G € 2 is of order n > 4, then v} (G) +~,(G) = 4 if and only
ifG =P,

Theorem 2.3 implies that if G € = of order n > 5, then
5 <7, (G)+5 (G) <2n—4.
Since 7,7 (C5) = 7§ (Cs) = 3, this upper bound is sharp. Consider the graph G
obtained from the cycle Cy = [v1,v2,v3, v4, v1] by adding to Cy4 two vertices z and

y and the edges xvy, zvy, yva and yvz. For this G, v (G) +~f (G) = 5, showing
that the lower bound is sharp.
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3. REALIZATION PROBLEMS
For nontrivial connected graphs G,

2 < 7,(G) <F(G) < p3(G).

In particular, v, (Knn) = p3 (Knn) for n> 4.

Theorem 3.1. For every pair of positive integers a and b with 2 < a < b, there
exists a connected graph G such that v (G) = a and pa (G) =b.

Proof. 1f a = b, then we pick G = K,,. Suppose that b = a + 1. Obtain
the graph G from P3 = [v1,v2,v3] by adding (a — 1) pendant edges vzx;, j =
1,2,...,a — 1. Then v} (G) = a and p; (G) = b, which are determined by the
sets {v1, 21,22, ..,Zq—1} and {v1,v2, X1, X9, ...,2q_1}, respectively.

Suppose that b = a+k, where k > 2. Write V(K}) = {u1, u2,...,ur}. Obtain
G by joining P» = [v1,v2) and K}, + K,_1 using new k edges vau;j, j = 1,2,... k.
Note that Ezt(G) = {v1} UV (K, 1), and is a y-set in G. Thus, 7, (G) = a.
On the other hand, if k > 2, then p; (G) = a + k = b and is determined by the
set V(K) U Ext(Q). |

Corollary 3.2. For every pair of positive integers a and b with 2 < a < b,
the smallest possible order of a connected graph G for which 'y;r(G) = a and

py (G)=bisb+ 1.

Theorem 3.3. For all positive integers a,b,c with2 <a <b<candc>b+2,
there exists a connected graph G such that v4(G) = a, 'y; (G)=band |V(G)| =c.

Proof. Suppose that ¢ = b+ 2. Writea =2+ kand b = r+k, r > 2 and
kE=0,1,2,.... If £ = 0, then we take G = Ky,. In this case, 7,(G) = 2 and
’y;(G) = r. Suppose that k > 1. Consider the graph G as in Figure 1.

Ky, G

Figure 1
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If r = 2, G is obtained by adjoining to path [y, y1,z] (k + 1) pendant edges
zxj, j = 1,2,...,k+ 1. Then Ezt(G) = {y,x1,22,...,2k41} is the unique
minimal geodetic dominating set in G. Here we have v,(G) = 7 (G) = 2 + k.
Now, suppose that r > 3. G is obtained from Ky ,_1 (with partite sets U = {z, y}
and W = {y1,y2,...,yr—1}) by adding to Ko ,_1 (k+ 1) pendant edges zx;, j =
1,2,...,k+1. The minimal geodetic dominating sets in G are {y, 1,2, ..., Tp1+1}
and W U {z1,22,...,2pq1}. Thus 74(G) =2+ k and 7, (G) =7 + k.

Suppose that c = b+ 3. Writea =2+ kand b=r+k, £k =0,1,... and
r > 2. Suppose that k = 0. Consider the graph G = G as in Figure 2.

Gl G2

Figure 2

If r = 2, then {y, z} is the unique minimal geodetic dominating set in G so
that 74(G) =~/ (G) = 2. If 7 > 3, then 7,(G) =2 and 7,/ (G) = (r — 1) +1 =1,
the latter being determined by {z,y1,y2,...,yr—1}. Suppose that k£ > 1. Obtain
G as the graph G in Figure 2 by taking the union of Kj ;41 (with partite sets
{z} and {z, 21, 22, ..., z}) and Ky, (with partite sets {z,y} and {y1,92,...,yr}).
Note that {z1, 22, ..., 2} is always contained in a geodetic dominating set in G.
Thus 74(G) = 2+ k and v,/ (G) = r + k.

Finally, suppose that ¢ = b+ d, where d > 4. Writea=2+kand b=1+k,
where r > 2 and £k =0,1,2,..., and put I = c—b — 3. For kK = 0, we obtain G
as the graph G7 in Figure 3 by joining K41 + K2 and K,_; 2 using the common
vertices x and y;. Note that Fxt(G) = {z}, and S = {z,y} is a minimal geodetic
dominating in GG and every minimal geodetic dominating set that contains y
coincides S. Thus, aside from .5, the other minimal geodetic dominating set in G
is {z,91,%2,..-,yr—1}. Consequently, 74(G) =2 = a and v, (G) = r = b. Now,
suppose that £ > 1. Consider G as the graph G% in Figure 3 obtained from G7
in Figure 3 by adjoining pendant edges zz;. Ext(G) = {#1,22,...,2;} and if S
is a 7, -set that contains y, then |S| = k + 2. In this case, 74(G) = k+2 = a and
Y4 (G)=r+k=0 n
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Figure 3

The next corollary follows from Theorem 2.2 and the existence proof of The-
orem 3.3.

Corollary 3.4. For every pair of positive integers a and b with 2 < a < b, the
minimum order of a connected graph G for which v4(G) = a and ’y;(G) =bis
b+ 2.

4. p3-SETS

Let G be a connected graph of order n > 2 and S C V(G). S is said to be a
p3-set in G if for every w € V(G) \ S there exist u,v € S such that dg(u,v) <3
and w € Ig[u,v]. We denote by p3(G) the minimum cardinality of a p3-set in G.
Since every 2-path closure absorbing set is a ps-set, p3(G) < p2(G). In particular,
if diam(G) = 2, then pa(G) = p3(G). Since a ps-set is a geodetic dominating
set, 74(G) < p3(G). If diam(G) < 3, then v4(G) = p3(G). However, in general,
v4(G) and p3(G) are not necessarily equal.

Graph G is said to be K3-free (resp. Cy-free) if G does not contain K3 (resp.
C4) as a subgraph.

Theorem 4.1. Let G be a connected graph of order n > 2, and let S C V(G).
(1) If S is a p3-set in G, then for all v € S, min{dg(u,v) : u € S} < 3.
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(ii) If G is K3-free and Cy-free and S is a geodetic dominating set in G, then S
is a p3-set in G.

Proof. The conclusions in statements (i) and (ii) are trivially satisfied for cases
where n = 2, n = 3 and n = 4. Assume that n > 5, and let S C V(G). To
prove statement (i), suppose that S is a ps-set in G, and suppose that there is
v € S such that dg(v) = min{dg(u,v) : u € S} > 4. Let w € S be such that
dg(w,v) = dg(v). Then there exists u € V(G) \ S lying on a w—v geodesic with
da(u,v) = 2. Since S is dominating in G, there exists z € S such that uz € E(G).
Observe that dg(z,v) < 3, a contradiction. Therefore, dg(v) < 3 for all v € S.
Next, we prove statement (ii). Suppose that G is Ks-free and Cy-free, and
let v e V(G)\S. If Sis a dominating set in G, then there exists z € S such
that xv € E(G). If S is a geodetic set, then v is not an endvertex of G. Pick
u € Ng(v) with u # z. Since G is Ks-free, [z,v,u] is an xz—u geodesic in G. If
u € S, then z and u are the desired vertices in S for v. Suppose that u ¢ S.
Pick y € S such that uy € E(G). Sine G is K3-free and Cy-free, xy,vy ¢ E(G).
Consequently, [z,v,u,y] is an z—y geodesic in G with dg(x,y) = 3. [

If G is a connected graph of order n > 2 which is K3-free and Cy-free, then
p3(G) = v4(G). In particular, if T" is a tree of order n > 2, then p3(T) = ~4(T).

Theorem 4.2. Let G be a connected Ks-free graph of order n > 2. Then

p3(G) <~/ (G).

Proof. Suppose that Ext(G) # 0. Put Ext(G) = {z1,29,...,x1} for some pos-
itive integer k. For each j =1,2,...,k, define S; = {x1,22,...,2;}. If Ng[Sk] #
V(G), choose zy4+1 € V(G) \ Ng[Sk], and put Sg+1 = {z1,22, ..., xp, xp41}. If
NG[Sk+1] # V(G), then choose k42 € V(G)\ Ng[Sk+1], and put Spyo = {21, 22,
ey Tk+1, Th+2}. Continuing in this way, there is a smallest positive integer m
such that Ng[Sp,] = V(G). If Ext(G) = 0, then construct Sy, = {z1,x2,...,2Tm}
by choosing any xz; € V(G) and put S1 = {x1}, and for j > 2, z; € V(G) \
N¢[Sj-1], where S;_1 = {z1,z2,...,2j—1}. In any case, we claim that S = S, is
a minimal geodetic dominating set and at the same time a ps-set in G. Clearly,
S is a dominating set in G. Let u € V(G)\ S. Then there exists w € S such that
uw € E(G). Since u ¢ Ext(G) and G is Ks-free, there exists v € V(G) such that
[v,u, w] is a v—w geodesic in G. Suppose that v ¢ S. There exists z € S such
that zv € E(G). Since G is Ks-free, uz ¢ E(G). Also, by the construction of
S, zw ¢ E(G). Thus, [w,u,v,z] is a w—z geodesic in G. Here, dg(w, z) < 3 and
u € Ig[w, z] C I[S]. Since u is arbitrary, S is a ps-set and a geodetic dominating
set in G. Now let S* = S\ {z;}, j =1,2,...,m. We will show that S* is not a
dominating set in G. Suppose that Ext(G) # 0. If j < k, then z; € Ext(G) and
S* is not a geodetic set in G. Suppose that j > k. Since x; ¢ Ext(G), there exist
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u,v € V(Q) such that [u,z;,v] is a u—v geodesic in G. Since z; € S, u,v ¢ S. In
fact, x ¢ S for all x € Ng[z;]. Thus x; ¢ Ng[S*], and S* is not a dominating set
in G. The case where Ext(G) = () is handled similarly. Since j is arbitrary, S is
a minimal geodetic dominating set in G. Therefore, p3(G) < [S] < v, (G). |

It is easy to verify that p3(Ps) = 3 = v, (Ps). Hence the bound given in
Theorem 4.2 is sharp.

5. JoOIN AND COMPOSITION OF GRAPHS

For connected graphs G and H, if S C V(G) is a 2-path closure absorbing set in
G, then S is a geodetic dominating set in G + H.

Theorem 5.1. For noncomplete connected graphs G, v (G + K,) = Py (G).

Proof. First, we claim that if S C V(G + K,,) is a geodetic dominating set
in G+ K,, then A = SNV(G) is a 2-path closure absorbing set in G. Let
S CV(G+ K,,) be a geodetic dominating set in G + K,,. Let x € V(G) \ A, and
let u,v € S such that « € Ig[u,v]. Necessarily, u,v € V(G). Since diam(G+ K,,)
is 2, [u,z,v] is a u—v geodesic in G. Thus dg(u,v) =2 and A is a 2-path closure
absorbing set in G.

Now let S C V(G + K,,) be a minimal geodetic dominating set in G + K.
The above result implies that A = SNV (G) is a 2-path closure absorbing set
in G, and consequently, A is a geodetic dominating set in G + K,,. Since S is a
minimal geodetic dominating set, S = A so that S is a minimal 2-path closure
absorbing set in G. Since § is arbitrary, v, (G + K,) < Py (G).

Conversely, let S C V(G) be a p;y -set in G. Then S is a geodetic dominating
set in G + K,,. That S is, in fact, a minimal geodetic dominating set in G + K,
follows from the claim above. This yields p3 (G) < v} (G + K,). ]

Theorem 5.2. For all noncomplete connected graphs G and H,
g (G + H) = max{4, p; (G), p3 (H)}.

Proof. Let S C V(G + H) be a minimal geodetic dominating set in G + H. If
S C V(G), then S is a minimal 2-path closure absorbing set in G since diam(G +
H) = 2. This means that |S| < p3 (G). Similarly, if S C V(H), then |S| < p3 (H).
Suppose that A = SNV(G) # 0 and B= SNV (H) # (. Then |A| > 2 and |B| >
2,and V(H) C Ig+glA] and V(G) C Ig4+m[B]. The minimality of S implies that
|A] = |B| = 2 and |S| = 4. Hence v} (G + H) < max{4, p3 (G), p3 (H)}.

To prove the other inequality, note that if S C V(G), then S is a minimal
geodetic dominating set in G + H if and only if S is a minimal 2-path closure
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absorbing set in G. This means that max{p3 (G), p3 (H)} < ~,/(G+ H). Since
G and H are noncomplete, we can pick u,v € V(G) and z,y € V(H) such that
da(u,v) = 2 and dg(u,v) = 2. Then {u, v, x,y} is a minimal geodetic dominating
set in G+ H. This means that 4 <~ (G + H). This completely establishes the
desired inequality. n

Next, we investigate the minimal geodetic domination in the composition of
graphs G + K.

For A C V(G), we define A9 = AN Ig(A), and for S C V(G[H]), S¢ ={u €
V(G) : (u,v) € S for some v € V(H)}.

It is known (see [16]) that if S C V(G[H]) is a geodetic dominating set in
G[H], then Sg is a geodetic dominating set in G.

Theorem 5.3. [16] Let G be a noncomplete connected graph and n > 2. Then
S C V(G[KL,)]) is a geodetic dominating set in G[Ky,] if and only if S = [(A\
A9) x V(K,)|UT, where A= Sq and T = AY.

Corollary 5.4. For all noncomplete connected graphs G and n > 2,

75 (GIKy]) > max{n|A| — (n—1)|A9| : A is a minimal

geodetic dominating set in G}.
Proof. Let
a =max{n|A| — (n —1)|4A9] : A is a minimal geodetic dominating set in G}.

Let A C V(G) be a minimal geodetic dominating set in G, and let S =
[(A\A9) x V(K,)|U[A9 x {v}], where v € V(K,). By Theorem 5.3, S is a geodetic
dominating set in G[K,]. Suppose that there exists S* C S such that S* is a
geodetic dominating set in G[K,]. By Theorem 5.3, S* = [(B\ BY) x V(K,,)|UT,
where B is a geodetic dominating set in G and T = BY. Since S* C S, B C A.
Since A is a minimal geodetic dominating set in G, A = B. Therefore, S = S*
and S is a minimal geodetic dominating set in G[K,]. Thus, v, (G[K,] > |S] =
n|A| — (n —1)|A9]. Since A is arbitrary, v, (G[K,]) > a. n

Lemma 5.5. Let G be a noncomplete connected graph and n > 2.

(i) If S C V(G) is a geodetic dominating set (respectively, minimal geodetic
dominating set) in G, then {u} x S is a geodetic dominating set (resp. min-
imal geodetic dominating set) in K,[G] for all u € V(K,).

(ii) If S C V(G) is a geodetic set (resp. minimal geodetic set but not dominating)
in G, then {(w,z)} U ({u} x S) is a geodetic dominating set (respectively,
minimal geodetic dominating set) in G for all z € V(G) and for all distinct
w,u € V(Ky).
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Proof. Let S be a geodetic dominating set in G and v € V(K,,). Let (z,y) €
V(K,[G]) \ ({u} x S). Suppose that  # w. Then (z,y)(u,v) € E(K,[G]) for all
v € S. Thus, (z,y) € Nk, ¢[{u}*xS]. Choose v1,vs € S such that dg(v1,v2) > 2.
Then (z,y) € Ik, [q(w,v1), (u,v2)] € Ik, [{u} x S]. Suppose that x = u. Then
y ¢ S. Since S is a geodetic dominating set in G, y € Ng[S] N Ig[S]. Thus,
(z,y) € N, jg[{u} x S] and (z,y) € Ik, [q)[{u} x S]. This proves that {u} x S is
a geodetic dominating set in K,[G]. Finally, let {u} x T' C {u} x S be a geodetic
dominating set in K,[G]. Then T' C S and T is a geodetic dominating set in
G. If S is a minimal geodetic dominating set in G, then T = S, and this proves
statement (i).

To prove statement (ii), let C' = {(w, 2)} U {u} x S), where S C V(G) is
a geodetic set in G, z € V(G) and u,w € V(K,) with u # w. Let (a,b) €
V(Kp|G]) \ C. Suppose that a = u. Then b ¢ S and aw € E(K,) so that
(a,b)(w, z) € E(K,[G]). Since S is a geodetic set in G, there exist z,y € S such
that b € Ig[z,y]. Then (u,x),(u,y) € C and (a,b) € I, q[((u,z), (u,y)]. Sup-
pose that a # u. Then au € E(K,) and (a,b) € Nk g [{u} xS]. Choose z,y € S
such that dg(z,y) > 2. Then (u, ), (u,y) € C and (a,b) € I, ([(u, x), (u,y)].
In any case, (a,b) € Ng,(q[C] and (a,b) € Ik, [5)[C]. Since (a,bd) is arbitrary, C
is a geodetic dominating set in K,[G]. Suppose that S is a minimal geodetic set
in G but not dominating. Let (a,b) € C, and put C* = C'\ {(a,b)}. If a = u,
then b € S and S\ {b} is not a geodetic set in G. This case means that C* is not
a geodetic set in Kp[G]. On the other hand, if a # u, then (a,b) = (w, z) and C*
is not a dominating set in K,[G]. Therefore, C' is a minimal geodetic dominating
set in Kp[G]. |

Theorem 5.6. Let G be a noncomplete connected graph and n > 2, and let
C C V(K,[G]). Then C is a minimal geodetic dominating set in K,[G| if and
only if one of the following is true:

(i) C ={u} xS for some minimal geodetic dominating set in G andu € V(K,,);

(ii) C = {(w,2)} U ({u} x S) for some nondominating but minimal geodetic set
S in G, for some z € V(G) and distinct w,u € V(Ky);

(iii) C = {(u1,v1), (u1,v2), (uz, w1), (uz, w2)} for some distinct uy,uz € V(Ky)
and some v1,wy,ve,ws € V(G) with dg(v1,v2) > 2 and dg(wy, wa) > 2.

Proof. By Lemma 5.5, if property (i) or property (ii) holds, then C' is a minimal
geodetic dominating set in K,,[G]. It can also be readily verified that if property
(ii) holds, then C'is a minimal geodetic dominating set.

Let C C V(K,[G]) be a minimal geodetic dominating set in K,[G]. Then
C' contains distinct vertices (u,v) and (u,y). For if it were false and (u,v) € C,
then for all y € V(G) \ {v}, (u,y) € Ik, [c[C], a contradiction. Moreover, since
G is noncomplete, we may choose v and y such that dg(v,y) > 2. Suppose that
C = {u} x S for some S C V(G). Let z € V(G) \ S. Since (u,2) € Nk, [C],
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z € Ng[S]. Similarly, z € Ig[S]. Accordingly, S is a geodetic dominating set in
G. Let T C S be a geodetic dominating set in G. Then {u} x T'C C and is a
geodetic dominating set in K,[G] by Lemma 5.5. By the definition of C, T'= S
and S is a minimal geodetic dominating set in GG. This establishes property (i).

Now suppose that C' # {u} x S for any S C V(G). Let S = {t € V(G) :
(u,t) € C}. Note that (a,b) € Nk, ql(u,v), (u,y)] N Ik, c(u,v), (u,y)] for all
a # u and all b € V(G). Since C is a minimal geodetic dominating set in
K,|G], {u} x S is not a geodetic dominating set in Kp[G]. Thus, Ng[S] # V(G)
or Ig[S] # V(G). Suppose that Ig[S] = V(G). Then S is not a dominat-
ing set in G. Let b € V(G) \ Ng[S]. There exists (w,z) € C such that
(u,b)(w,z) € E(Kp|G]). Necessarily, w # u. Since {(w,z)} U ({u} x 5) is
a geodetic dominating set in K,[G], C = {(w,2)} U {u} x S). In view of
Lemma 5.5, S is a minimal geodetic set in G, and property (ii) is established.
Finally suppose that I¢[S] # V(G), and let b € V(G) \ I¢[S]. Then there exists
w € V(K,) distinct from u and some z,7 € V(G) with dg(z,7) > 2 such that
(u,b) € Ik, cl(w, 2), (w,7)]. Since {(u,v), (u,y), (w, z), (w,r} C C is a geodetic
dominating set, C' = {(u,v), (u,y), (w, 2), (w,7)}. |

Corollary 5.7. Let G be a noncomplete connected graph with g*(G) < v (G)
and n > 2. Then
vy (KnlG]) = max{4,~, (G)}.

6. 7, -SUBGRAPH

A graph H is a 'y;—subgmph if there exists a connected graph G containing H as
an induced subgraph such that V(H) is a v, -set in G.
The idea of the following result is taken from [4].

Theorem 6.1. Let H be a connected graph. Then H is a ’y;—subgmph if and
only if either H is complete or H has no vertex v with ey (v) = 1.

Proof. Let there be a connected graph G containing H as an induced subgraph
and such that V(H) is a 'y;r-set in G. Suppose that H is noncomplete and
suppose that v € V(H) with eg(v) = 1. We claim that S = V(H) \ {v} is a
geodetic dominating set in G. Let w € V(G) \ S. Suppose that w = v. Since
H is noncomplete, there exist a,b € V(H) such that dg(a,b) = dg(a,b) = 2.
Necessarily, a # v and b # v so that a,b € S. Since av,bv € E(H) C E(G),
w € Igla,b] C Ig[S] and w € Ngla] € Ng[S]. Suppose that w # v. Since
V(H) is a geodetic set in G, there exist a,b € V(H) such that w € Ig[a,b]. If
a = v or b= v, then dg(a,b) = dg(a,b) = 1, a contradiction. Thus a,b € S.
Since av,bv € E(G), dg(a,b) = 2 and aw,bw € E(G). Hence w € Ig[S] and
w € Ng[S]. Thus, S is a geodetic dominating set in G. This is a contradiction
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since V(H) is a minimal geodetic dominating set in G and S is a proper subset
of V(H).

By Theorem 2.2, if H is complete, then V(H) is the vg-set in G = H.
Suppose that H is noncomplete having no vertex u with ey (u) = 1. For each
u € V(H), choose v € V(H) such that dy(u,v) = 2. Corresponding to each pair
u and v, add to H the vertex x,, and the edges ux,, and vz, ,. Let G be the
resulting graph of minimum order obtained in this way. Then |V(G) \ V(H)| <
|V(H)|. We claim that V(H) is a v, -set in G. Let x € V(G) \ V(H). Then
T = Ty, for some u,v € V(H) with dg(u,v) = dg(u,v) = 2. More precisely,
zu,zv € E(G). Thus, z € Ig[u,v] and € Nglu]. In other words, V(H) is a
geodetic dominating set in G.

Let uw € V(H), and let v € V(H) such that dy(u,v) = 2. Corresponding to
wand v is a x,, € V(G) \ V(H). By its construction, x,, ¢ Ig[V(H) \ {u}].
Since w is arbitrary, V(H) is a minimal geodetic dominating set in G. Finally, let
S C V(G) be a minimal geodetic dominating set in G. For the triple u, v, @, v,
if u,v € S, then z,,, ¢ S, or, equivalently, if 2, , € S, then v ¢ S or v ¢ S. Thus

[SI=IS\V(H)[+[V(H)n S| < |[V(H)\ S|+ [V(H)NS| = [V(H)].

Since S is arbitrary, V(H) is a 7} -set in G. n
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