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Abstract

In a connected graph G, the status of a vertex is the sum of the distances
of that vertex to each of the other vertices in G. The subgraph induced
by the vertices of minimum (maximum) status in G is called the median
(anti-median) of G. The median problem of graphs is closely related to the
optimization problems involving the placement of network servers, the core
of the entire networks. Bipartite graphs play a significant role in designing
very large interconnection networks. In this paper, we answer a problem on
the structure of medians of bipartite graphs by showing that any bipartite
graph is the median (or anti-median) of another bipartite graph. Also, with
a different construction, we show that the similar results hold for k-partite
graphs, k ≥ 3. In addition, we provide constructions to embed another
graph as center in both bipartite and k-partite cases. Since any graph is a
k-partite graph, for some k, these constructions can be applied in general.
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1. Introduction

Let G = (V,E) be a graph on n vertices with vertex set V and edge set E. A
graph is bipartite if its vertex set can be partitioned into two nonempty subsets
X and Y such that each edge of G has one end in X and the other in Y , and
a graph is k-partite if its vertex set can be partitioned into k nonempty subsets
such that no edge in G has its both ends in the same subset. Degree of a vertex v,
d(v), is the number vertices adjacent to v and by N(v) we denote the neighbor set
of v. The smallest and largest degrees of vertices in G are respectively denoted
by δ(G) and ∆(G).

The distance between two vertices u and v is the number of edges on a
shortest path between u and v, and it is denoted by d(u, v). The eccentricity of
u is e(u) = maxv d(u, v). The center C(G) of a graph G is the subgraph of G
induced by the vertices of minimum eccentricity. The status of a vertex v ∈ V (G),
denoted by SG(v), is the sum of the distances from v to all other vertices in G.
The subgraph induced by the vertices of minimum (maximum) status in G is
known as the median (anti-median) of G, denoted by M(G) (AM(G)). The
status difference [5] in a graph G is SD(G) = maxu,v∈V (G) (SG(u) − SG(v)).

Given a graph G the problem of finding a graph H such that M(H) ∼= G is
referred to as the median problem. In [6], it is shown that any graph G = (V,E)
is the median of some connected graph. In [3] the notion of anti-median of a
graph was introduced and proved that every graph is the anti-median graph of
some graph. The problem of simultaneous embedding of median and anti-median
is discussed in [1]. Another construction, which generalises all the previously
mentioned constructions, can be found in [5].

The median vertices have the minimum average distance in a graph and thus
the median problem is significant among the optimization problems involving the
placement of network servers. However, the median constructions for general
graphs cannot be directly applied to many networks as their underlying graph
belong to different classes of graphs. It can be seen that the underlying graphs
of many networks are bipartite. For example, most of the analysis in network
communities are done using preference networks [4] and they are modelled using
bipartite graphs.

It is well known that the median of a tree is a vertex or an edge. This oper-
ator was also studied for some classes of graphs in [7] and [8]. In this paper we
show that any bipartite graph is the median of another bipartite graph. With
a different construction, we show that the similar result also hold for k-partite
graphs. The analogous results for anti-median problem on these graph classes
are also obtained. Since any graph is a k-partite graph, for some k, these con-
structions can be applied in general. For all other basic concepts and notations
not mentioned in this paper we refer to [2].
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2. Bipartite Graphs with Prescribed Median and Anti-median

Lemma 1. Given a bipartite graph G of n vertices, there exists a connected

bipartite graph H ′ such that G is an induced subgraph of H ′ and all the vertices

of G in H ′ have equal status in H ′.

Proof. Let X,Y be a bipartition of V (G) and X ′, Y ′ be the copy of X,Y such
that v′ denote the copy of a vertex v ∈ V (G). Consider two new vertices vx and
vy. Make vy adjacent to all vertices of X ∪X ′ and vx adjacent to all vertices of
Y ∪ Y ′. Also, for each v ∈ X (v ∈ Y ) make v′ adjacent to Y \N(v) (X\N(v)). It
follows that H ′ is bipartite and SH′(v) = 4n + 1, for all v ∈ V (G).

The graph H ′ is called the bipartite gadget graph of G. Let |X| = n1 and
|Y | = n2. Then we have, in H ′, SH′(vx) = 4n + 1 − (2n1 − 2), SH′(vy) =
4n + 1 − (2n2 − 2) and 4n + 1 ≤ SH′(v′) ≤ 4n + 1 + 2∆(G) + 2 + 2 max(n1, n2),
for each v ∈ V (G).

Theorem 2. Given a bipartite graph G there exists a bipartite graph H such that

M(H) ∼= G.

Proof. The proof is by construction. Let H ′ be the bipartite gadget graph of the
graph G. Choose a positive integer s > max(n1, n2)−1. Introduce s copies of K2

and make one end of each K2 adjacent to all the vertices of X and the other end
to all the vertices of Y . Denote this graph by H. Then for each vertex v ∈ V (G),
SH(v) = 4n + 1 + 3s. Also, for each v ∈ V (H ′\G) the status is increased by 5s.
Let x be an arbitrary vertex from the newly added s copies of K2. It easy to
verify that SH(x) = 4n + 1 + 5s. Hence SH(v) < SH(u), for all v ∈ V (G), for all
u ∈ V (H\G), thus M(H) ∼= G.

Figure 1. A graph with P4 as the median. Here, the subgraph in the dotted box is the
bipartite gadget graph of P4.

Theorem 3. Given a bipartite graph G there exists a bipartite graph H such that

AM(H) ∼= G
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Proof. The proof is by construction. Let H ′ be the bipartite gadget graph of the
graph G. Consider the complete bipartite graph Ks,s, where s > max(n1, n2) +
∆(G)+1. Make the s vertices in one partition of Ks,s adjacent to vy∪Y ′ and the
other s vertices to vx ∪X ′. Denote this graph by H. Then SH(v) = 4n + 1 + 5s
for all the vertices in the subgraph G of H and for each other vertex in the
subgraph H ′ of H, the status is increased by 3s. For any vertex x in Ks,s,
SH(x) = 4n+1+3s. Thus SH(v) > SH(u), for all v ∈ V (G), for all u ∈ V (H\G),
hence AM(H) ∼= G.

Figure 2. A graph with P4 as the anti-median. Here the dotted circles represent a set of
vertices and the dotted lines represent all possible edges between its two ends.

Remark 4. The number of vertices used in both constructions in Theorems 2
and 3 is 2(n + s + 1), where the value of s depends on the corresponding con-
struction rules.

3. k-partite Graphs with Prescribed Median and Anti-median

In the following section we assume that k ≥ 3.

Theorem 5. Given a k-partite graph G there exists a k-partite graph H such

that M(H)∼= G.

Proof. The proof is by construction. Consider two functions f and g defined on
an index set I = {1, 2, . . . , k} as

f(i) =

{

1, if i = k,
i + 1, if i 6= k,

and g(i) =

{

k, if i = 1,
i− 1, if i 6= 1.

Let {Xi}i∈I be a partition of V (G) with |Xi| = ni. For each vertex v ∈ Xi,
introduce three vertices v1 ∈ Xg(i), v2 ∈ Xf(i) and v3 ∈ Xi such that v1 and v2
are adjacent to both v and v3. We refer v1 and v2 as the ortho vertices of v, and
v3 as the para vertex of v. Denote this graph as the k-partite gadget graph of G.
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Make v1 adjacent to Xi ∪Xf(i) \NXf(i)
(v), v2 adjacent to Xi ∪

⋃g(i)
j=f(i)+1(Xj

\NXj
(v)) and v3 adjacent to

⋃

j 6=iXj . Denote this graph by H.

Consider a vertex v in X1. Then, SH(v) = 6
∑k

i=2 ni+4n1+2(n1−1) = 6n−2.
Hence SH(v) = 6n− 2, for all v ∈ V (G).

For each vertex v ∈ V (G) we get 7n + dX2(v) + 2
∑k

3 ni ≤ SH(v1) ≤ 7n +

3dX2(v)+ 3
∑k

3 ni, 7n−3+n2 +d(v)−dX2(v) ≤ SH(v2) ≤ 7n−3+ 3n2 + 3d(v)−
3dX2(v) and 7n−2−maxi(ni) ≤ SH(v3) ≤ 8n−4 + mini(ni). Hence M(H) ∼= G.

Figure 3. Construction in Theorem 5. Here the dotted circles represent a set of vertices
and the dotted lines represent all possible edges between its two ends.

Theorem 6. Given a k-partite graph G there exists a k-partite graph H ′ such

that AM(H ′) ∼= G

Proof. The proof is by construction. Let H be the graph obtained using the
construction in Theorem 5. Consider a complete k-partite graph Kr,r,...,r, where
r > 2n+1

k
and let {Yi}i∈I be its k-partition. For each vertex v ∈ Xi make v3

adjacent to
⋃

j 6=i Yj , v1 adjacent to
⋃

j 6=f(i) Yj and v2 adjacent to
⋃

j 6=g(i) Yj . In

the new graph H ′, SH′(v) = SH(v) + 2kr, for all v ∈ V (G) and SH′(vs) =
SH(vs) + (k + 1)r, for s = 1, 2, 3 and hence AM(H ′) ∼= G.

4. Embedding Center with Median Constructions

The constructions of a graph with prescribed median naturally faces the following
problem. The addition of a vertex in any part of the graph changes the status of
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Figure 4. Construction in Theorem 6. Here the shaded graph in the background is the
graph in Figure 3.

each vertex in that graph, thus changing the median preferences in that graph.
In this section we embed another k-partite graph as the center of the newly
constructed graph keeping the median same in the graphs, which are obtained
using previous theorems.

Theorem 7. Given two bipartite graphs G and J there exists a bipartite graph

H with M(H) ∼= G and C(H) ∼= J .

Proof. The proof is by construction. Let H ′ be the bipartite gadget graph of G.
For k ≥ 3 introduce two paths x1, x2, . . . , xk−1 and y1, y2, . . . , yk−1 of length k−2.
Let u1, u2, . . . , uk+1 and v1, v2, . . . , vk+1 be two paths of length k. Let R and S be
the bipartition of J such that |R| ≤ |S|. Make x1 adjacent to X ∪ {vx, y1}, y1 to
Y ∪{vy}, xk−1 to R∪{yk−1}, yk−1 to S, u1 to R∪{v1}, v1 to S and uk+1 to vk+1.
Attach |S|− |R|+1 vertices to x1 and a vertex w to y1. Denote this graph by H0.
Introduce s copies of K2, where s > SD(H0)/2, and make them adjacent to X
and Y of G, as in Theorem 2. Denote this new graph by H. Clearly C(H) ∼= J
with e(v) = k + 2, for all v ∈ V (J).

SH(x) = SH(y) = 4(n + k2) + k(|R| + |S| + 6) + 3|S| − 2|R| + 3s + 8, for all
x ∈ X, y ∈ Y . For a vertex v ∈ V (H), let S∗(u) = d(u, v′) + d(u, v′′), where v′

and v′′ are the end vertices of a K2 among the s copies of K2 in H. S∗(u) = 3,
when u ∈ V (G) and S∗(u) ≥ 5, when u ∈ V (H\G)\{v′, v′′}. Hence M(H) = G,
when s > SD(H0)/2.

Theorem 8. Given two k-partite graphs G and J there exists a k-partite graph

W such that M(W ) ∼= G and C(W ) ∼= J .
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S

Figure 5. Construction in Theorem 7. Here the white-black coloring illustrates the bi-
partition of the graph. The dotted circles represent a set of vertices and a line between
them represent all possible edges between its two ends.

Proof. The proof is by construction. Let H be the graph obtained from graph
G as in Theorem 5. Introduce k paths Pxi,yi of length r − 2 with end vertices
xi and yi, where i ∈ I. A vertex in Pxi,yi , at distance t from xi, is denoted by
Pxi,yi [t]. For each t = 0, . . . , r−3, make the vertices Pxi,yi [t], for all i, adjacent so
that they induce a complete graph. Similarly introduce k paths Rx′

i,y
′

i
of length

r with end vertices x′i and y′i and make adjacencies Rx′

i,y
′

i
[t] for each t and every

i.
Let {Yi}i∈I be the k-partition of the graph J and let J ′ be the k-partite

gadget graph of J . Let P (Yi) and O(Yi) be respectively the sets of para vertices
and ortho vertices of Yi. For each i, j ∈ I make xi adjacent to Xi, yi adjacent to
Yi∪P (Yi)

⋃

j 6=iO(Yj) and x′i adjacent to Yi. Denote this graph by W0. Introduce
s copies of Kk, where s >SD(W0)/2, and let {Y ′

i }i∈I denote their k-partition.
For each i ∈ I, make all the vertices of Y ′

i adjacent to Xi. Denote this graph
by W . It can be verified that C(W ) ∼= J , with e(v) = r + 1, for all v ∈ V (J)
and SH(v) = 6n + |J |(4r − 2) + k(2r2 − r − 1) + s(2k − 1), for all v ∈ V (G).
Let S∗(u) =

∑

v∈K d(u, v), where K is one of the s copies of Kk. We can see
that S∗(u) = 2k − 1 when u ∈ V (G) and S∗(u) ≥ 2k + 1 when u ∈ V (W\G\K).
Hence M(W )∼= G.
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