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Abstract

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28

(2014) 335–341] there is a gap in the proof of the theorem of Balister et al.
[Combin. Probab. Comput. 13 (2004) 311–317], which states that the in-
tersection of all longest paths in a connected circular arc graph is nonempty.
In this paper we close this gap.
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1. Introduction

It is easy to prove that every two longest paths in a connected graph have a
nonempty intersection. Gallai [2] asked if the intersection of all longest paths is
nonempty. This is not true in general but holds for some graph classes. See [5]
for a survey. In [1] Balister et al. proved that it is true for interval graphs and
circular arc graphs. However, as pointed out by Rautenbach and Sereni [4], there
is a gap in the proof for the class of circular arc graphs. The gab stems from
being able to reorder a longest path such that certain symmetric properties hold
at the beginning and the end of the path. While the properties are symmetric,
Balister et al. did not prove that they can hold for the same path reordering.
Rautenbach and Sereni proved the weaker result that in a connected circular
arc graph, there is a set of at most three vertices such that every longest path
intersects this set. In Lemma 3 we close their gap by extending Lemma 3.2 from
[1].

We follow the notation in [1]. A graph G is a circular arc graph if there exists
a function φ of its vertex set V (G) into a collection of open arcs of a circle such
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that, for every two distinct vertices u and w of G, uw is an edge of G if and only
if φ(u) ∩ φ(w) 6= ∅, that is, the class of circular arc graphs are the intersection
graphs of arcs in a circle. Let interval graphs be the intersection graphs of open
intervals of the real line. Note that one can assume that all endpoints of the arcs
and intervals are distinct.

2. Result

We review the approach of Balister et al. Let G be a connected circular arc graph.
Let C be a circle and F be a finite collection of open arcs of C that correspond
to the vertices of G. If the union of arcs in F does not cover C, then G is an
interval graph and hence the statement follows by a result of [1]. Therefore, we
may assume that the union of arcs in F covers C. We choose a set K ⊆ F such
that K = {K0, . . . ,Kn−1},

• C = K0 ∪ · · · ∪Kn−1,

• n is minimal, and

• no Ki is contained in another arc, i.e. Ki ⊆ A ∈ F ⇒ Ki = A.

We cyclically order the elements ofK clockwise and consider all indices of elements
of K modulo n. A chain P of length t is a t-tuple (J1, . . . , Jt) of distinct arcs (in
F) such that Ji ∩ Ji+1 6= ∅ for every 1 ≤ i ≤ t − 1. This corresponds to a path
in G on t vertices. The chain P is a longest chain, if there is no chain of larger
length than P. For a chain P = (J1, . . . , Jt), let the support Supp P of P be the
subset of C defined by

J1 ∪ (J2 ∩ J3) ∪ · · · ∪ (Jt−2 ∩ Jt−1) ∪ Jt.

Note that if there is an arc A in F that is not contained in the chain P of length
t and intersects Supp P, then there is a chain of length t + 1 consisting of the
arc A and all arcs of P. This implies that for a longest chain P in F , an arc A
is contained in P if and only if it intersects Supp P.

For two points x, y on the circle C, let [x, y] be the arc from x to y in clockwise
direction. For an arc A ∈ F , let ℓ(A) and r(A) be the two endpoints of A such
that ℓ(A), A, r(A) are consecutive on C in clockwise direction.

Now, we mention two results, which we use later.

Lemma 1 (Balister et al. [1]). If P is a longest chain in F , then P ∩K = {Ki :
i ∈ I} is nonempty and I is a contiguous set of elements of Zn.

The next lemma is due to Keil [3] and explicitly formulated as Lemma 2.3 in
[1].
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Lemma 2 (Keil [3]). Let X = {x1, . . . , xt+1} be a set of real numbers, and let

J1, . . . , Jt be a sequence of open intervals with xk, xk+1 ∈ Jk for every 1 ≤ k ≤ t.
If xi1 < · · · < xit+1

are the elements of X in increasing order, then the intervals

have a permutation Jj1 , . . . , Jjt such that xik , xik+1
∈ Jjk , for every 1 ≤ k ≤ t.

Let P = (J1, . . . , Jt) be a chain such that K 6⊆ P and let {x1, . . . , xt+1} ⊂
Supp P be a set of distinct points such that xk, xk+1 ∈ Jk, for every 1 ≤ k ≤ t.
Without loss of generality, we may assume, by Lemma 2, that x1, x2, . . . , xt+1 are
consecutive points on C in clockwise direction. One might have to replace P by
another chain having exactly the same arcs. Let p, q ∈ {1, . . . , t} such that p < q.
If [xp, xp+1], [xq, xq+1] ⊆ Jp ∩ Jq, then the reordering

(J1, . . . , Jp−1, Jq, Jp+1, . . . , Jq−1, Jp, Jq+1, . . . , Jt)

of P is a chain of the same length as P. See Figure 1 for illustration. In this
situation it is possible to swap Jp and Jq in P.

Jq

Jq+1

Jp

Jp−1 xp

xp+1 xq+1xq

Figure 1. Jp and Jq can be swapped.

For i ∈ {0, . . . , n − 1}, let ∆Ki be the set of all points x such that ℓ(Ki+1),
x, r(Ki) are consecutive points in clockwise direction on C. Note that for n ≥ 3,
we have ∆Ki = Ki ∩Ki+1. We use this notation because Balister et al. omitted
the case n = 2. For an arc A, note that A ⊂ Ki∪Ki+1 implies the connectedness
of A \∆Ki+1 if n is at least 3.

Lemma 3 is our main contribution. Balister et al. only proved Lemma 3 with
the properties (a)–(c). We extend this result.

Lemma 3. If P is a longest chain in F and P ∩ K = {Ka+1, . . . ,Kb−1} 6= K,

then the arcs in P have a reordering into a chain P∗ such that in this reordering

(a) Ka+1 precedes Kb−1 in P∗ provided they are distinct.

(b) If A precedes Kb−1 in P∗, then ∆Kb−1 6⊆ A.

(c) If A precedes Ka+1 in P∗, then A ⊆ Ka∪Ka+1 and A\∆Ka+1 is connected.

(d) If Kb−1 precedes A in P∗, then A ⊆ Kb−1 ∪Kb and A \∆Kb is connected.

(e) If Ka+1 precedes A in P∗, then ∆Ka 6⊆ A.
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Here is the gap of Balister et al. Indeed (b) and (c) is symmetric to (d) and (e)
(they proved that (b) and (c) holds), however, forcing both at the same time is
a stronger assertion.

Proof of Lemma 3. Let P = (J1, . . . , Jt) and let {x1, . . . , xt+1} ⊂ Supp P be
a set of distinct points such that xk, xk+1 ∈ Jk for every 1 ≤ k ≤ t. Without loss
of generality, we may assume, by Lemma 2, that x1, x2, . . . , xt+1 are consecutive
points on C in clockwise direction. It is important to keep in mind that every xi
belongs to (Ka+1 ∪ · · · ∪Kb−1) \ (Ka ∪Kb), because Ka and Kb do not belong to
P.

First, we prove (c) and (e). Let P ′ = (Jj1 , . . . , Jjs) be a subsequence of P
such that A ∈ P ′ if and only if

(i) Ka+1 precedes A in P and ∆Ka ⊆ A, or

(ii) A precedes Ka+1 in P and A 6⊆ Ka ∪ Ka+1 if n ≥ 3, and A \ ∆Ka+1 is
disconnected if n = 2.

If n ≥ 3, then we observe the following. If A ∈ P ′ satisfies requirement
(i), then, by the choice of K, we conclude that ℓ(Ka), ℓ(A), ℓ(Ka+1), r(Ka),
r(A), r(Ka+1) are consecutive points in clockwise direction on C. If A ∈ P ′

satisfies requirement (ii), then ℓ(Ka), ℓ(Ka+1), ℓ(A), r(Ka), r(Ka+1), r(A) or
ℓ(Ka), ℓ(Ka+1), r(Ka), ℓ(A), r(Ka+1), r(A) are consecutive points in clockwise
direction on C, because A ∩ (Ka+1 \Ka) 6= ∅ and because of the choice of K.

Suppose n = 2. If A ∈ P ′ satisfies requirement (i), then ℓ(A), ℓ(Ka+1),
r(Ka), r(A) are consecutive points in clockwise direction on C and if A ∈ P ′

satisfies requirement (ii), then ℓ(A), ℓ(Ka), r(Ka+1), r(A) are consecutive points
in clockwise direction on C.

Let L = {i ∈ [t] : Ji ∈ P and Ji satisfies requirement (i)} and R = {i ∈ [t] :
Ji ∈ P and Ji satisfies requirement (ii)}.

Let LP = {Ji ∈ P : i ∈ L} and RP = {Ji ∈ P : i ∈ R}; that is, LP and RP

partition P ′. Furthermore, all arcs in RP precede the arcs in LP . Note that all
arcs in P \ P ′ satisfy the requirements (c) and (e).

Claim 4. Let L and R be nonempty, and consider p ∈ R and q ∈ L. It is possible
to swap Jp and Jq in P, the reordering of P is still a chain and the sets L and

R lose exactly q and p, respectively.

Proof. By our observations above and since Jp precedes Jq, we conclude that
ℓ(Jq), ℓ(Jp), r(Jq) and r(Jp) are consecutive points in clockwise direction on
C. Since Jp precedes Jq, we obtain [xp, xp+1], [xq, xq+1] ⊆ Jp ∩ Jq. Thus it is
possible to swap Jp and Jq in P. After this swap both arcs do not satisfy the
requirements (i) and (ii) any more and in addition the relative positions of all
other arcs concerning Ka+1 do not change. This completes the proof of the claim.
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Claim 5. Each element Jp ∈ RP can be swapped with Ka+1 in P and the re-

ordering of P is still a chain.

Proof. Let q be such that Jq = Ka+1, that is p < q by the definition of R.
By our observations above, we know that ℓ(Ka+1), ℓ(Jp), r(Ka+1) and r(Jp) are
consecutive points in clockwise direction on C. Since Jp precedes Ka+1, we obtain
[xp, xp+1], [xq, xq+1] ⊆ Jp ∩Ka+1. Thus it is possible to swap Jp and Ka+1 in P
and the reordering of P is still a chain.

Claim 6. Each element Jq ∈ LP can be swapped with Ka+1 in P and the re-

ordering of P is still a chain.

Proof. Let p be such that Jp = Ka+1, that is p < q by the definition of L.
By our observations above, we know that ℓ(Jq), ℓ(Ka+1), r(Jq) and r(Ka+1) are
consecutive points in clockwise direction on C. Since Ka+1 precedes Jq, we obtain
[xp, xp+1], [xq, xq+1] ⊆ Ka+1 ∩ Jq. Thus it is possible to swap Ka+1 and Jq and
the reordering of P is still a chain.

Let γ ∈ N be such that Ka+1 = Jγ and f(P ′) be defined by

max{{γ} ∪ L ∪R} −min{{γ} ∪ L ∪R}.

Let α = min{{γ} ∪ L ∪ R} and β = max{{γ} ∪ L ∪ R}. Note that α does not
decrease and β does not increase if we reorder P as described in Claims 4–6. In
particular, f(P ′) does not increase. After swapping two elements in P ′, by Claim
4 the subsequence loses two elements. Using Claim 4 iteratively, we can assume
that L = ∅ or R = ∅. If P ′ = ∅, then this completes the proof of (c) and (e).
Therefore, we assume that P ′ 6= ∅ and P ′ = LP or P ′ = RP . We distinguish the
two possible cases.
(I) If P ′ = LP , then we have Ka+1 = Jα and β = max{L}, and

(II) if P ′ = RP , then we have α = min{R} and Ka+1 = Jβ .
Note that f(P ′) = 0 if and only if P ′ = ∅. By Claims 5 and 6, it is possible

to swap Ka+1 with each element of P ′. In the first case swap Ka+1 with Jβ
and in the second case with Jα. Denote this reordering of P by P again and
define P ′, L and R as before. Consider first case (I). Note that L = ∅ and
R ⊆ {α+ 1, . . . , β − 1}. In case (II), we have L ⊆ {α+ 1, . . . , β − 1} and R = ∅.
In both cases f(P ′) decreases by at least 1. After iterating this procedure at
most β−α times, we have f(P ′) = 0. Hence there is a reordering of P such that
the requirements (c) and (e) are fulfilled. From now on, we assume that P fulfills
requirements (c) and (e).

If a+ 1 = b− 1, then P fulfills the requirements (a), (b) and (d). Note that
this is also true if |K| = 2. Thus we assume that Ka+1 and Kb−1 are distinct.
This implies n ≥ 3. Note that Ka+1 precedes Kb−1 by requirement (c). Let
P̃ = (Jk1 , . . . , Jks′ ) be the subsequence of P such that A ∈ P̃ if and only if
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(i’) Kb−1 precedes A and A 6⊆ ∆Kb−1, or

(ii’) A precedes Kb−1 and Kb−1 ∩Kb ⊆ A.

Note that Ka+1 /∈P̃. Let L̃={i ∈ [t] : Ji∈P and Ji satisfies requirement (i’)}
and R̃ = {i ∈ [t] : Ji ∈ P and Ji satisfies requirement (ii’)}. Let γ̃ ∈ N be such
that Kb−1 = Jγ̃ and α̃ = min{{γ̃} ∪ L̃ ∪ R̃}. Note that γ < α̃. This implies that
Ka+1 precedes all arcs in P̃ and hence arguing as above for Kb−1, the relative
order in the ordering of P of all arcs of P concerning Ka+1 does not change. This
shows that there is a reordering P∗ of P such that P∗ fulfills the requirements of
Lemma 3.

Theorem 7. If G is a connected circular arc graph, then the intersection of all

longest paths is nonempty.

Proof. We can assume that G is not an interval graph, otherwise the statement
follows by a result of [1]. As above, let F be the finite collection of arcs of a
circle C that correspond to the vertices of G. We choose K as above. If n = 1,
then every longest chain contains K0 and we are done. Let P a longest chain
such that |P ∩ K| is as small as possible. If |P ∩ K| = n, then every longest
chain contains all arcs of K and we are done, too. Therefore, we assume that
n ≥ 2 and |P ∩ K| < n. That is, by Lemma 1, P ∩ K = {Ka+1, . . . ,Kb−1}.
We prove Theorem 7 by showing that every longest chain contains Kb−1. We
assume, for contradiction, that there is a longest chain Q such that Kb−1 /∈ Q.
Let Q ∩ K = {Kℓ+1, . . . ,Km−1}. Our assumption and choice of P imply that
Kb−1 ∈ P \ Q, Kℓ+1 ∈ Q \ P and Kb, . . . ,Kℓ /∈ P ∪ Q. Let R be the chain
(Kb, . . . ,Kℓ). Note that R = ∅ if b = ℓ+ 1.

For a k-tuple A = (A1, . . . , Ak), let the reversed k-tuple Ar be defined by
(Ak, . . . , A1). If B = (B1, . . . , Bk′), then let AB = (A1, . . . , Ak, B1, . . . , Bk′) and
AB1 = (A1, . . . , Ak, B1). We reorder P and Q such that the reorderings P∗

and Q∗ satisfy the requirements of Lemma 3. Let P∗ = P1Kb−1P2 and Q∗ =
Q1Kℓ+1Q2. Note that

(i) if A ∈ P1, then ∆Kb−1 6⊆ A,

(ii) if A ∈ P2, then A ⊆ Kb−1 ∪Kb and A \∆Kb is connected,

(iii) if A ∈ Q1, then A ⊆ Kℓ ∪Kℓ+1 and A \∆Kℓ+1 is connected, and

(iv) if A ∈ Q2, then ∆Kℓ 6⊆ A.

Let C1 = P1Kb−1RKℓ+1Q
r
1 and C2 = Pr

2Kb−1RKℓ+1Q2.

Claim 8. C1 is a chain.

Proof. It suffices to show that P1 ∩Q1 = ∅. We assume, for contradiction, that
there is an arc A ∈ P1 ∩ Q1. Suppose n = 2. Thus K = {Kb−1,Kℓ+1}. By (iii),
A \∆Kℓ+1 is connected and by (i) ∆Kb−1 6⊆ A. This implies that A ⊆ Kℓ+1 or
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A ⊆ Kb−1. Since A ∈ P ∩Q, this implies Kℓ+1 ∈ P ∩Q or Kb−1 ∈ P ∩Q, which
is a contradiction.

Now we assume n ≥ 3. By (iii), A ⊆ Kℓ ∪Kℓ+1. Since A ∈ P ∩Q and hence
A meets Kℓ+1 \ Kℓ, we observe that r(Kℓ), r(A) and r(Kℓ+1) are consecutive
points on C. If A ⊆ Kℓ+1, then Supp P ∩ Kℓ+1 6= ∅ and hence Kℓ+1 ∈ P,
which is a contradiction. Thus ℓ(Kℓ), ℓ(A), ℓ(Kℓ+1), r(Kℓ), r(A) and r(Kℓ+1)
are consecutive points on C.

By (i), Kb−1∩Kb 6⊆ A. This implies that b 6= ℓ+1 and hence R is not empty.
Thus Kℓ /∈ P. Since A ∈ P, it is A ∩ Supp P 6= ∅ and hence Supp P ∩ (Kℓ ∪
Kℓ+1) 6= ∅. Thus P contains Kℓ or Kℓ+1. This is a contradiction and completes
the proof of the claim.

Claim 9. C2 is a chain.

Proof. Using (ii) and (iv) instead of (i) and (iii) this is the completely symmetric
case to Claim 8.

Note that |C1| + |C2| ≥ |P| + |Q| + 2. This implies that |C1| > |P| or |C2| > |P|,
which is a contradiction to the choice of P.

Remark. As pointed out by a referee, for the proof of Theorem 7 it is enough to
require in Lemma 3 only (a), (b) and (d), or equivalently, (a), (c) and (e). This
is due to the fact that one can apply (b) and (d) to Qr instead of (c) and (e) to
Q. Since proving (a)-(e) results only in a slightly longer proof, we prove (a)–(e).
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