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Abstract

The domination multisubdivision number of a nonempty graph G was de-
fined in [3] as the minimum positive integer k such that there exists an edge
which must be subdivided k times to increase the domination number of G.
Similarly we define the total domination multisubdivision number msdγt

(G)
of a graph G and we show that for any connected graph G of order at least
two, msdγt

(G) ≤ 3. We show that for trees the total domination multisubdi-
vision number is equal to the known total domination subdivision number.
We also determine the total domination multisubdivision number for some
classes of graphs and characterize trees T with msdγt

(T ) = 1.
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(total) domination multisubdivision number, trees.
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1. Introduction

In this paper we consider connected graphs with n ≥ 2 vertices and we use
V = V (G) and E = E(G) for the vertex set and the edge set of a graph G. The
neighbourhood NG(v) of a vertex v ∈ V (G) is the set of all vertices adjacent to v,
the closed neighbourhood NG[v] of a vertex v ∈ V (G) is N(v) ∪ {v}. The degree

of a vertex v is dG(v) = |NG(v)|. A vertex v is called universal if dG(v) = n− 1.
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The distance between two vertices a and b, denoted by dG(a, b), is the length
of the shortest ab-path in G. For a subset of vertices X ⊆ V (G), the distance
d(a,X) = min{d(a, x) : x ∈ X}. The diameter diam(G) of a connected graph G
is the maximum distance between two vertices of G.

We say that a vertex v of a graph G is an end vertex or a leaf if v has exactly
one neighbour in G. We denote the set of all leaves in G by Ω(G). A vertex v
is called a support vertex if it is adjacent to a leaf. If v is adjacent to more than
one leaf, then we call v a strong support vertex. The edge incident with a leaf is
called a pendant edge, in the other case we call it an inner edge.

The private neighbourhood of a vertex u with respect to a set D ⊆ V (G),
where u ∈ D, is the set PNG[u,D] = NG[u] − NG[D − {u}]. If v ∈ PNG[u,D],
then we say that v is a private neighbour of u with respect to the set D.

A subset D of V (G) is dominating in G if every vertex of V (G) − D has
at least one neighbour in D. Let γ(G) be the minimum cardinality among all
dominating sets in G. A dominating set D in G with |D| = γ(G) is called a
γ(G)-set or a minimum dominating set of G .

For a graph G = (V,E), subdivision of the edge e = uv ∈ E with vertex x
leads to a graph with vertex set V ∪{x} and edge set (E−{uv})∪{ux, xv}. Let
Ge,t denote the graph G with subdivided edge e with t vertices (instead of edge
e = uv we put a path (u, x1, x2, . . . , xt, v)). For t = 1 we write Ge. The vertices
{x1, x2, . . . , xt} are called subdivision vertices.

The domination subdivision number, sdγ(G), of a graph G is the minimum
number of edges which must be subdivided (where each edge can be subdivided at
most once) in order to increase the domination number. We consider subdivision
number for connected graphs of order at least 3, since the domination number of
the graph K2 does not increase when its only edge is subdivided. The domination
subdivision number was defined in [10] and studied for example in [1, 2, 4].

Let G be a connected graph of order at least 2. By msdγ(uv) we denote the
minimum number of subdivisions of the edge uv such that γ(G) increases. In [3],
the domination multisubdivision number of G, denoted by msdγ(G), was defined,
as

msdγ(G) = min{msdγ(uv) : uv ∈ E(G)}.

A set S of vertices in a graph G is a total dominating set of G if every vertex
of G is adjacent to a vertex in S. The total domination number γt(G) is the
minimum cardinality of a total dominating set of G. A total dominating set S
in G with |S| = γt(G) is called a γt(G)-set or a minimum total dominating set

of G. The total domination subdivision number sdγt(G) of a graph G (defined in
[6]) is the minimum number of edges that must be subdivided (where each edge
in G can be subdivided at most once) in order to increase the total domination
number.

Similarly like above we define the total domination multisubdivision number
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of a graph G.

Definition 1. Let msdγt(uv) be the minimum number of subdivisions of the edge
uv such that γt(G) increases. The total domination multisubdivision number of
a graph G of order at least 2, denoted by msdγt(G), is defined as

msdγt(G) = min{msdγt(uv) : uv ∈ E(G)}.

For any unexplained terms see [5].

2. Preliminary Results

In this section we determine the total domination multisubdivision number for
some classes of graphs and we prove that for any connected graph G of order
at least 2 we have msdγt(G) ≤ 3. Let G be a graph. It is clear that sdγt(G) =
1 if and only if msdγt(G) = 1.

We start with the next useful observation.

Observation 1. If G is not a star, then it is always possible to find a γt(G)-set
D such that D ∩ Ω(G) = ∅.

In [6], it was shown that for any graph G with adjacent support vertices
sdγt(G) = 1.

Similarly like for the domination subdivision number in [2], we have the next
result.

Lemma 2. If G is a graph with an end vertex not belonging to any γt(G)-set,
or if G has an inner edge xy such that neither x nor y is in any γt(G)-set, then
sdγt(G) = 1.

Proof. Let u be an end vertex not belonging to any γt(G)-set and v its neighbour.
Let G′ be a graph obtained from G by a subdivision of the edge uv with a vertex
w. By Observation 1, there exists a minimum total dominating set D′ with no
end vertex of G′. Then v, w ∈ D′. The set (D′−{w})∪{u} is a total dominating
set of G. Since this set contains u, it is not a minimum total dominating set of
G. Thus, γt(G) < |(D′ − {w}) ∪ {u}| = |D′| and sdγt(G) = 1.

Now suppose that there is an inner edge xy in G such that neither x nor y is
in any γt(G)-set. Let G′ be a graph obtained by subdividing xy with the vertex
w and consider any γt(G

′)-set D′. If w /∈ D′, then D′ is a total dominating set of
G containing x or y and by hypothesis |D′| > γt(G), so we are done.

Now assume w ∈ D′. ThenD′∩{x, y} 6= ∅. Without loss of generality suppose
x ∈ D′. Then D = (D′ − {w}) ∪ {y} is a total dominating set of G containing
x and y. From the assumption, it cannot be minimum and similarly like before
γt(G) < |D| ≤ |D′|.
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The next lemma gives us a sufficient condition for a graph to have the total
domination multisubdivision number equal to two.

Lemma 3. If there is a universal vertex in a graph G with n ≥ 3 vertices, then

msdγt(G) = 2.

Proof. If G has a universal vertex v, then γt(G) = 2. If we subdivide an edge e =
vx with a subdivision vertex w, then D = {v, w} is a minimum total dominating
set of Ge. If e = yz with v /∈ {y, z}, then D = {v, y} is a minimum total
dominating set of Ge. So, msdγt(G) > 1. For e = vx, γt(Ge,2) = 3. Therefore,
msdγt(G) = 2.

Corollary 4. For a complete graph Kn, a star K1,n−1 with n ≥ 3, and for a

wheel Wn with n ≥ 4, we have

msdγt(Kn) = msdγt(K1,n−1) = msdγt(Wn) = 2.

In [8] it was shown that for a cycle Cn and a path Pn, n ≥ 3, we have

sdγt(Cn) = sdγt(Pn) =







3 if n ≡ 2 (mod 4),
2 if n ≡ 3 (mod 4),
1 otherwise.

Since the cycle (path) with a subdivided edge k times is isomorphic to the
cycle (path) with subdivided k edges once, we immediately obtain the following.

Corollary 5. For a cycle Cn and a path Pn, n ≥ 3, we have

msdγt(Cn) = msdγt(Pn) =







3 if n ≡ 2 (mod 4),
2 if n ≡ 3 (mod 4),
1 otherwise.

The main result of this section is the next theorem.

Theorem 6. For a connected graph G, msdγt(G) ≤ 3.

Proof. We subdivide an edge e = uv ∈ E(G) with subdivision vertices x1, x2, x3.
Let D∗ be a minimun total dominating set of Ge,3. Since D∗ is dominating, it
contains at least one subdivision vertex. We consider the next three cases.

Case 1. If |{x1, x2, x3} ∩D∗| = 1, then u, v ∈ D∗ and D = D∗ − {x1, x2, x3}
is a total dominating set of G with |D| < |D∗|.

Case 2. Suppose |{x1, x2, x3} ∩ D∗| = 2. If u ∈ D∗ or v ∈ D∗, then D =
(D∗ − {x1, x2, x3}) ∪ {u, v} is a total dominating set of G with |D| < |D∗|. If
u 6∈ D∗ and v /∈ D∗, then the two subdivision vertices in D∗ must be adjacent,
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without loss of generality suppose x1, x2 ∈ D∗. Then v is dominated by a vertex
z ∈ D∗, so D = D∗−{x1, x2}∪{v} is a total dominating set of G with |D| < |D∗|.

Case 3. If {x1, x2, x3} ⊂ D∗, then D = (D∗ − {x1, x2, x3}) ∪ {u, v} is a total
dominating set of G with |D| < |D∗|.

In any case, we prove that γt(G) ≤ |D| < |D∗| = γt(Guv,3), which implies
that msdγt(G) ≤ 3.

Figure 1. Graph G∗.

In [7] it was proved that for any positive integer k, there exists a graph G
such that sdγt(G) = k. Therefore by the above theorem, in general, the difference
between sdγt(G) and msdγt(G) cannot be bounded by any integer. For small
values of sdγt (2 ≤ sdγt(G) ≤ 3), msdγt and sdγt are incomparable. For example,
for a complete graph K4 we have msdγt(K4) = 2, sdγt(K4) = 3. But for the graph
G∗, shown in Figure 1, we have msdγt(G

∗) = 3 and sdγt(G
∗) = 2.

3. Total Domination Multisubdivision Number of Trees

Now we consider the total domination multisubdivision number of trees. The
main result of this section is the following theorem.

Theorem 7. For a tree T with n(T ) ≥ 3 we have sdγt(T ) = msdγt(T ).

It was shown by Haynes et al. in [6] that the total domination subdivi-
sion number of a tree is 1, 2 or 3. The class of trees T with sdγ(T ) = 3 was
characterized in [8].

Since sdγt(G) = 1 if and only if msdγt(G) = 1, in order to prove Theorem 7
it suffices to show that for any tree T of order at least three,

sdγt(T ) = 3 if and only if msdγt(T ) = 3.
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3.1. Trees with the total domination multisubdivision number equal

to 3

The following constructive characterization of the family F of labeled trees T
with sdγt(T ) = 3 was given in [8]. The label of a vertex v is also called the status
of v and is denoted by sta(v).

Let F be the family of labelled trees such that:

• F contains P6 where the two leaves have status C, the two support vertices
have status B, and the two central vertices have status A; and

• F is closed under the two operations O1 and O2, which extend the tree T
by attaching a path to a vertex y ∈ V (T ).

1. Operation O1. Assume sta(y) = A. Then add a path (x,w, v) and the
edge xy. Let sta(x) = A, sta(w) = B, and sta(v) = C.

2. Operation O2. Assume sta(y) ∈ {B,C}. Then add a path (x,w, v, u)
and the edge xy. Let sta(x) = sta(w) = A, sta(v) = B and sta(u) = C.

In [8] the following observation and theorem was proved.

Observation 8. If T ∈ F , then B ∪ C is a minimum total dominating set of T,
where B and C are sets of vertices with status B and C, respectively.

Theorem 9. For a tree T , sdγt(T ) = 3 if and only if T ∈ F .

Operations O1 and O2 will be called the basic operations. If S is a basic
operation of type O1 or O2, then denote by VS and ES the set of vertices and the
set of edges appearing as a result of using the operation S.

Observation 10. Let T ∈ F and S, S′ be two basic operations. Consider

S′(S(T )); if the path added by S′ is attached to a vertex v ∈ V (T ), then S′(S(T )) =
S(S′(T )).

Lemma 11. Let T ∈ F with |V (T )| > 6. Then there exist T ′, T ′′ ∈ F and basic

operations S′, S′′ such that T = S′(T ′) = S′′(T ′′) and VS′∩VS′′ = ∅. Additionally,
ES′ ∩ ES′′ = ∅.

Proof. We use induction on n, the number of vertices of T . Any T ∈ F with
n > 6 has at least 9 or 10 vertices. For n = 9, T = S′(T ′) where T ′ is the path
(v1, v2, v3, v4, v5, v6) and S′ is the operation of type O1 of adding a path (x,w, v)
attached to vertex v3; then T = S′′(T ′′) where T ′′ is the path (v1, v2, v3, x, w, v)
and S′′ is the operation of type O1 of adding a path (v4, v5, v6) attached to vertex
v3. Obviously VS′ ∩ VS′′ = ∅. For n = 10 we have two cases, T = S′(T ′)
where T ′ is the path (v1, v2, v3, v4, v5, v6) and S′—the operation of type O2 of
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adding a path (x,w, v, u) attached to vertex v5; then T = S′′(T ′′) where T ′′ is
the path (v6, v5, x, w, v, u) and S′′—the operation of type O2 of adding a path
(v4, v3, v2, v1) attached to vertex v5. The second case is T = S′(T ′) where T ′

is the path (v1, v2, v3, v4, v5, v6) and S′ is the operation of type O2 of adding a
path (x,w, v, u) attached to vertex v6; then T = S′′(T ′′) where T ′′ is the path
(v5, v6, x, w, v, u) and S′′—the operation of type O2 of adding a path (v4, v3, v2, v1)
attached to vertex v5. In both cases, VS′ ∩ VS′′ = ∅.

Let T ∈ F with n > 10, and suppose the result holds for every tree of F with
less than n vertices. By definition of the family F we know T = S(T̂ ), for some
T̂ ∈ F and a basic operation S. By induction hypothesis, there exist T ′, T ′′ ∈ F
and basic operations S′, S′′ such that T̂ = S′(T ′) = S′′(T ′′), VS′ ∩ VS′′ = ∅, and
then T = S(S′(T ′)) = S(S′′(T ′′)). The path added by S is attached to a vertex
v ∈ T̂ , and since VS′ ∩ VS′′ = ∅, v does not belong to both VS′ and VS′′ , without
loss of generality, v /∈ VS′′ , so by Observation 10, S(S′′(T ′′)) = S′′(S(T ′′)). Then
T = S(S′(T ′)) = S′′(S(T ′′)), with VS ∩ VS′′ = ∅.

With the above result we can prove the next lemma.

Lemma 12. If T is a tree with sdγt(T ) = 3, then msdγt(T ) = 3.

Proof. From Theorem 9, it is enough to prove that if T ∈ F , then msdγt(T ) = 3.
We prove that for any edge e of T ∈ F , γt(Te,2) = γt(T ). We use induction on n,
the number of vertices of T.

By Corollary 6, the result is true for a path P6. Assume that for every tree
T ′ with n′ < n vertices belonging to the family F , the equality γt(T

′

e,2) = γt(T
′)

holds for any edge e of T ′.
Let T ∈ F be a tree with n > 6 vertices and let e be any edge of T. Since

T ∈ F , T = Tj and is constructed from P6 by applying j − 1 basic operations.
By Lemma 11 we can assume that e ∈ E(Tj−1). Since |V (Tj−1)| < |V (Tj)|, from
the induction hypothesis, γt((Tj−1)e,2) = γt(Tj−1). Using Observation 8 we know
that γt(T ) = γt(Tj−1) + 2.

We consider two cases:

Case 1. If T = Tj = O1(Tj−1) then we added a path (x,w, v) to a vertex of
Tj−1 with status A. If D′ is a minimum total dominating set of (Tj−1)e,2, then
D1 = D′∪{v, w} is a total dominating set of Te,2 with |D1| = γt(Tj−1)+2 = γt(T ),
so γt(Te,2) ≤ γt(T ). Then γt(Te,2) = γt(T ).

Case 2. If T = Tj = O2(Tj−1) then we added a path (x,w, v, u) to a vertex
of Tj−1 with status B or C. If D′ is a minimum total dominating set of (Tj−1)e,2,
then D1 = D′∪{w, v} is a total dominating set of Te,2 with |D1| = γt(Tj−1)+2 =
γt(T ), so γt(Te,2) ≤ γt(T ). Then γt(Te,2) = γt(T ).

The next observation and lemmas are necessaries in order to finish the proof
of Theorem 7.
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Observation 13. If T is a tree with msdγt(T ) = 3, then T does not have a strong

support vertex.

Proof. Suppose msdγt(T ) = 3 and T has a strong support vertex v adjacent
to a leaf u. Let us subdivide the edge e = uv with two vertices a, b and let D′

be a minimum total dominating set with no end vertex of Te,2. It is clear that
a, b ∈ D′. Since v is a support in Te,2, v ∈ D′. Hence, (D′−{a, b})∪{u} is a total
dominating set in T , what implies γt(T ) ≤ |D′| − 1 < γt(Te,2), a contradiction
with msdγt(T ) = 3.

Lemma 14. Let T be a tree with n > 6 vertices such that msdγt(T ) = 3. Let
P = (v0, . . . , vl) be a longest path of T (l ≥ 5) and let D be a minimum total

dominating set with no end vertex of T . Then

(1) dT (v1) = dT (v2) = 2,

(2) v3 is not a support vertex. Moreover, if dT (v3) > 2, then outside the path

P , only one P2 path or some P3 paths may be attached to v3 and for T ′ =
T − {v0, v1, v2}, γt(T ) = γt(T

′) + 2.

Proof. Let D be a minimum total dominating set with no end vertex of T .

(1) It is clear that v1, v2 ∈ D. By Observation 13, dT (v1) = 2. Suppose
dT (v2) > 2. For the edge e = v0v1 consider the tree Te,2, where we subdivide
e with two vertices a, b. If D′ is a minimum total dominating set with no end
vertex of Te,2, then a, b ∈ D′. If v2 is a support vertex, then v2 ∈ D′. If v2 is not
a support vertex, then it is a neighbour of a support vertex of degree two and in
this case also v2 ∈ D′. Then (D′ − {a, b})∪ {v1} is a total dominating set of T, a
contradiction with msdγt(T ) = 3. Thus, dT (v2) = 2.

(2) Suppose v3 is a support vertex adjacent to a leaf y. Consider Te,2, where
e = v3y and denote the two vertices on the subdivided edge by a, b. If D′ is a
minimum total dominating set with no end vertex of Te,2, then a, b, v1, v2 ∈ D′.
Then (D′ − {a, b}) ∪ {v3} is a total dominating set of T, a contradiction with
msdγt(T ) = 3.

Suppose dT (v3) > 2. If dT (v3,Ω(T )) = 2, then v3 is adjacent to a support
vertex x which is a neighbour of a leaf y. By Observation 13, x is not a strong
support vertex, if dT (x) > 2 then x belongs to a longest path of T and by
(1), dT (x) = 2, a contradiction. Since msdγt(T ) = 3 outside the path P , only
one P2 path may be attached to v3. Now, if dT (v3,Ω(T )) = 3, then there are
vertices x, y, z such that (z, y, x, v3, . . . , vl) is a longest path of T and by (1),
dT (x) = dT (y) = 2. Hence, outside the path P , only P3’s may be attached to v3.

Observe that for any minimum total dominating set with no end vertex D of
T , D− {v1, v2} is a total dominating set of T ′. Similarly, for any minimum total
dominating set with no end vertex D′ of T ′, D′ ∪ {v1, v2} is a total dominating
set of T and γt(T ) ≤ γt(T

′) + 2. Therefore, γt(T ) = γt(T
′) + 2.
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As a consequence of the last case, if dT (v3) > 2, then we can observe that
every minimum total dominating set with no end vertex D of T has the form
D = D′ ∪ {v1, v2}, where D′ is a minimum total dominating set with no end
vertex of T ′. Equivalently, every D′ has the form D′ = D − {v1, v2}.

Lemma 15. If T is a tree with msdγt(T ) = 3, then sdγt(T ) = 3.

Proof. From Theorem 9, it is enough to prove that if T is a tree with msdγt(T ) =
3, then T belongs to the family F . We use induction on n, the number of vertices
of a tree T. The smallest tree T such that msdγt(T ) = 3 is a path P6 and P6 ∈ F .
Assume that every tree T ′ with less than n vertices such that msdγt(T

′) = 3
belongs to the family F .

Let T be a tree with msdγt(T ) = 3 and n > 6 vertices. Consider P =
(v0, . . . , vl) a longest path of T , l ≥ 5, and let D be a minimum total dominating
set with no end vertex of T .

By Lemma 14, dT (v1) = dT (v2) = 2. So we consider the next two cases.

Case 1. dT (v3) > 2. By Lemma 14, v3 is not a support vertex. We have the
following subcases.

Subcase 1.1. dT (v3,Ω(T )) = 2. By Lemma 14, outside the path P only one
P2 path may be attached to v3. Let us denote x, y the vertices of that path, where
y is a leaf of T . Again by Lemma 14, for T ′ = T −{v0, v1, v2}, γt(T

′) = γt(T )−2.
For any e ∈ E(T ′) − {xy, xv3}, γt(T

′

e,2) = γt(Te,2) − 2 = γt(T ) − 2 = γt(T
′).

In order to see that also for e ∈ {xy, xv3}, γt(T
′

e,2) = γt(T
′), we claim that there

exists a γt(T
′)-setD∗ with no end vertex such that v4 ∈ D∗ and |NT ′(v4)∩D

∗| ≥ 2.
Proof of the claim: Consider Te,2, where e = v3v4, and denote the two su-

division vertices by a, b. If D′ is a minimum total dominating set with no end
vertex of Te,2, then {v1, v2, x, v3} ⊂ D′. If {a, b} ∩D′ 6= ∅, then D = D′ − {a, b}
is a total dominating set of T with |D| < γt(Te,2), which is a contradiction
with γt(T ) = γt(Te,2). Therefore, there exists z ∈ NTe,2

(v4), z 6= b, such that
{v4, z} ⊂ D′, and then D∗ = D′−{v1, v2} is a γt(T

′)-set with no end vertex such
that v4 ∈ D∗ and |NT ′(v4) ∩D∗| ≥ 2.

Now, without loss of generality, consider e = xy and subdivision of the edge
xy with vertices c, d. We know that (D∗ − {x, v3}) ∪ {c, d} is a total dominating
set in T ′

xy,2, so γt(T
′

e,2) = γt(T
′).

Finally, for any edge e ∈ E(T ′) we have γt(T
′) = γt(T

′

e,2). Thus, msdγt(T
′) =

3 and from the induction hypothesis T ′ ∈ F . Since sta(v3) = A, it is possible to
obtain T from T ′ by Operation O1. It implies that T ∈ F .

Subcase 1.2. dT (v3,Ω(T )) = 3. Thus, by Lemma 14, outside the path P , only
P3’s may be attached to v3. Let us denote x, y, z the vertices of one of such paths,
where z is a leaf of T . Define T ′ = T − {v0, v1, v2}.

For any e ∈ E(T ′) − {xy, yz, xv3}, γt(T
′

e,2) = γt(Te,2) − 2 = γt(T ) − 2 =
γt(T

′). Since msdγt(T ) = 3 and by Lemma 14, γt(T
′) = γt(T ) − 2, there exists
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a γt(T
′)-set D∗ with no end vertex such that {x, y, v3, v4} ⊂ D∗ (if not, then

γt(Tv3v4,2) > γt(T ), a contradiction). It is enough to consider subdivision of the
edge yz with vertices a, b. Hence (D∗ − {x, y}) ∪ {a, b} is a total dominating
set in T ′

yz,2. Finally, for any edge e ∈ E(T ′) we have γt(T
′) = γt(T

′

e,2). Thus,
msdγt(T

′) = 3 and from the induction hypothesis T ′ ∈ F . Since sta(v3) = A, it
is possible to obtain T from T ′ by Operation O1. Hence, T ∈ F .

Case 2. dT (v3) = 2. We have two subcases.

Subcase 2.1. dT (v4) = 2 or (dT (v4) > 2 and dT (v4,Ω(T )) ∈ {1, 4}). It is
clear that v1, v2 ∈ D for any minimum total dominting set without end vertex
of T . Without lost of generality we can suppose that v3 /∈ D. If we consider
T ′ = T −{v0, v1, v2, v3}, then γt(T

′) = γt(T )−2 and for any e ∈ E(T ′), γt(T
′

e,2) =
γt(Te,2) − 2 = γt(T ) − 2 = γt(T

′). Thus, msdγt(T
′) = 3, from the induction

hypothesis T ′ ∈ F and by the definition of the family F , the status of the vertex
v4 is B or C. So T can be obtained from T ′ by Operation O2, what implies
T ∈ F .

Subcase 2.2. dT (v4,Ω(T )) ∈ {2, 3}. Suppose dT (v4,Ω(T )) = 2. Then v4 is
adjacent to a support vertex y. Consider Te,2, where e = v3v4, and denote the
two subdivision vertices by a, b. If D′ is a minimum total dominating set with
no end vertex of Te,2, then v1, v2, y, v4 ∈ D′. Since D′ is total dominating, there
exist z ∈ D ∩ {b, v3} 6= ∅ such that D′ − {z} is a total dominating set of T, a
contradiction with msdγt(T ) = 3. The case of dT (v4,Ω(T )) = 3 is similar.

3.2. Trees with the total domination multisubdivision number equal

to 1

In [9] we can find a characterization of trees with total domination subdivision
number equal to one. In this section we give a different characterization of trees
T of order at least three with sdγt(T ) = msdγt(T ) = 1. In order to prove the
main Theorem 18 we need the next technical lemmas.

Lemma 16. Let T be a tree of order n ≥ 3 such that

(1) for any end-vertex u there exists a γt(T )-set D such that u ∈ D and

(2) for any inner edge uv there is a γt(T )-set D such that

(a) |{u, v} ∩D| = 1, say u ∈ D, and v 6∈ PNT [u,D] or

(b) |{u, v} ∩D| = 2 and at least one of the following conditions holds:

(b1) |NT (u) ∩D| ≥ 2 and |NT (v) ∩D| ≥ 2;

(b2) NT (u) ∩ D = {v} and (PNT [u,D] = ∅ or (PNT [v,D] = ∅ and

|NT (x) ∩D| ≥ 2 for any vertex x ∈ (NT (v) ∩D)− {u}));

(b3) NT (v) ∩ D = {u} and (PNT [v,D] = ∅ or (PNT [u,D] = ∅ and

|NT (x) ∩D| ≥ 2 for any vertex x ∈ (NT (u) ∩D)− {v})).
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Then sdγt(T ) > 1.

Proof. Let e = uv be an edge of the tree T . Let us subdivide the edge e with
a vertex w. If u ∈ Ω(T ), then there is a γt(T )-set D containing u and v. Thus,
(D − {u}) ∪ {w} is a γt(Tuv)-set and γt(T ) = γt(Tuv).

Suppose that {u, v} ∩ Ω(T ) = ∅.
If (a) holds, then D is also a γt(Tuv)-set and again we obtain γt(T ) = γt(Tuv).
Assume now (b) holds.
If condition (b1) holds, then D is also a γt(Tuv)-set.
If condition (b2) holds, we have two cases. If NT (u)∩D = {v} and PNT [u,D]

= ∅, then (D−{u})∪{w} is a γt(Tuv)-set. If NT (u)∩D = {v} and PNT [v,D] = ∅,
and for any vertex x ∈ (NT (v) ∩ D) − {u} we have |NT (x) ∩ D| ≥ 2, then
(D − {v}) ∪ {w} is a γt(Tuv)-set.

Similarly, if condition (b3) holds.
In all the cases we have found a γt(Tuv)-set of cardinality γt(T ). This implies

that sdγt(T ) > 1.

Lemma 17. Let T be a tree of order n ≥ 3 having an inner edge uv ∈ E(T ) such
that for any γt(T )-set D we have:

(1) if |{u, v} ∩D| = 1, let us say u ∈ D, then v ∈ PNT [u,D] and

(2) if |{u, v} ∩ D| = 2, then NT (u) ∩ D = {v} or NT (v) ∩ D = {u}, and if

NT (u)∩D = {v}, then PNT [u,D] 6= ∅ and
(

PNT [v,D] 6= ∅ or NT (x)∩D =
{v} for a vertex x ∈ (NT (v) ∩D)− {u}

)

. Similarly if NT (v) ∩D = {u}.

Then sdγt(T ) = 1.

Proof. We subdivide the edge uv with a vertex w. Let D′ be a γt-set of Tuv.

Case 1. If w ∈ D′, then at least one of u, v belongs to D′.
Suppose {u,w, v} ⊆ D′, then D′ − {w} is a total dominating set of T and

γt(T ) < γt(Tuv).
Assume that |{u, v}∩D′| = 1 and without loss of generality suppose {u,w} ⊆

D′. Thus, if |NTuv
(u) ∩ D′| ≥ 2, then D′ − {w} is a total dominating set of T

and γt(T ) < γt(Tuv). In the other case, if NTuv
(u) ∩ D′ = {w}, then D =

(D′ − {w}) ∪ {v} is a total dominating set of T such that PNT [v,D] = ∅ and for
any vertex x ∈ (NT (v)∩D)−{u} we have |NT (x)∩D| ≥ 2, so by hypothesis (2),
γt(Tuv) = |D| > γt(T ).

Case 2. If w 6∈ D′, then we have two possibilities.
Assume that |{u, v} ∩D′| = 1 and, without loss of generality, u ∈ D′. Then

D′ is a total dominating set in T such that v 6∈ PNT [u,D
′] and by hypothesis

(1), γt(Tuv) = |D′| > γt(T ).
If {u, v} ⊆ D′, then D′ is total dominating set of T such that |NT (u)∩D

′| ≥ 2
and |NT (v) ∩D′| ≥ 2; again we have that |D′| > γt(T ). In all cases we obtained
γt(Tuv) > γt(T ), what implies sdγt(T ) = 1.
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It is straightforward that from Lemmas 2, 16 and 17 we have the next theo-
rem.

Theorem 18. Let T be a tree of order n ≥ 3. Then sdγt(T ) = 1 if and only if T
has

(1) a leaf which does not belong to any γt(T )-set or

(2) an inner edge uv ∈ E(T ) such that for any γt(T )-set D
(i) if |{u, v} ∩D| = 1, let us say u ∈ D, then v ∈ PNT [u,D] and

(ii) if |{u, v} ∩ D| = 2, then NT (u) ∩ D = {v} or NT (v) ∩ D = {u}, and if

NT (u) ∩D = {v}, then PNT [u,D] 6= ∅ and
(

PNT [v,D] 6= ∅ or NT (x) ∩
D = {v} for a vertex x ∈ (NT (v)∩D)−{u}

)

. For the case NT (v)∩D =
{u}, conclusions are similar.

In this paper we concentrated in the study of trees. The characterization
of other infinity families of graphs with multisubdivision number equal 1, 2 or 3
remains an open problem.
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