Discussiones Mathematicae Graph Theory 35 (2015) 261–270 doi:10.7151/dmgt.1797

THE *k*-RAINBOW BONDAGE NUMBER OF A DIGRAPH

JAFAR AMJADI, NEGAR MOHAMMADI

Seyed Mahmoud Sheikholeslami

Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran

e-mail: {j-amjadi;s.m.sheikholeslami}@azaruniv.edu

AND

LUTZ VOLKMANN

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let D = (V, A) be a finite and simple digraph. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N^-(v)} f(u) = \{1, 2, \ldots, k\}$ is fulfilled, where $N^-(v)$ is the set of in-neighbors of v. The weight of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{rk}(D)$, is the minimum weight of a kRDF of D. The k-rainbow bondage number $b_{rk}(D)$ of a digraph D with maximum in-degree at least two, is the minimum cardinality of all sets $A' \subseteq A$ for which $\gamma_{rk}(D-A') > \gamma_{rk}(D)$. In this paper, we establish some bounds for the k-rainbow bondage number and determine the k-rainbow bondage number of several classes of digraphs.

Keywords: *k*-rainbow dominating function, *k*-rainbow domination number, *k*-rainbow bondage number, digraph.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Let D be a finite simple digraph with vertex set V(D) = V and arc set A(D) = A. A digraph without directed cycles of length 2 is an *oriented graph*. The order n = n(D) of a digraph D is the number of its vertices. We write $\deg_D^+(v) =$ $\deg^+(v)$ for the *outdegree* of a vertex v and $\deg^-_D(v) = \deg^-(v)$ for its *indegree*. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^- = \delta^-(D), \ \Delta^- = \Delta^-(D), \ \delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D), \ \delta^+ = \delta^+(D), \ \delta^+ = \delta^+(D), \ \delta^- = \delta^-(D), \ \delta^- = \delta^$ respectively. If (u, v) is an arc of D, then we also write $u \to v$, and we say that v is an *out-neighbor* of u and u is an *in-neighbor* of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v) = N_{D}^{-}(v)$ and $N^+(v) = N_D^+(v)$, respectively. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then E(X, v) is the set of arcs from X to v. The underlying graph G[D] of a digraph D is the graph obtained by replacing each arc uv by an edge uv. Note that G[D] has two parallel edges uvwhen D contains the arcs (u, v) and (v, u). A digraph D is called *connected*, if the underlying graph G[D] is connected. For the notation and terminology not defined here, we refer the reader to [11].

Let k be a positive integer. A k-rainbow dominating function (kRDF) of a digraph D is a function f from the vertex set V(D) to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V(D)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N^-(v)} f(u) = \{1, 2, \ldots, k\}$ is fulfilled. The weight of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{rk}(D)$, is the minimum weight of a kRDF of D. A $\gamma_{rk}(D)$ function is a k-rainbow dominating function of D with weight $\gamma_{rk}(D)$. Note that $\gamma_{r1}(D)$ is the classical domination number $\gamma(D)$. The k-rainbow domination numbers in digraphs were investigated by Amjadi et al. in [1]. A 2-rainbow dominating function (briefly, rainbow dominating function) $f: V \longrightarrow \mathcal{P}(\{1,2\})$ can be represented by the ordered partition $(V_0, V_1, V_2, V_{1,2})$ (or $(V_0^f, V_1^f, V_2^f, V_{1,2}^f)$ to refer f) of V, where $V_0 = \{v \in V \mid f(v) = \emptyset\}$, $V_1 = \{v \in V \mid f(v) = \{1\}\}$, $V_2 = \{v \in V \mid f(v) = \{2\}\}$ and $V_{1,2} = \{v \in V \mid f(v) = \{1,2\}\}$. In this representation, its weight is $\omega(f) = |V_1| + |V_2| + 2|V_{1,2}|$.

Proposition A [1]. Let D be a digraph of order n. Then $\gamma_{r2}(D) < n$ if and only if $\Delta^+(D) \ge 2$ or $\Delta^-(D) \ge 2$.

Proposition B [1]. Let $k \ge 1$ be an integer. If D is a digraph of order n, then

$$\min\{k, n\} \le \gamma_{rk}(D) \le n.$$

Proposition C [1]. Let D be a digraph of order $n \ge 2$. Then $\gamma_{r2}(D) = 2$ if and only if n = 2 or $n \ge 3$ and $\Delta^+(D) = n - 1$ or there exist two different vertices u and v such that $V(D) - \{u, v\} \subseteq N^+(u)$ and $V(D) - \{u, v\} \subseteq N^+(v)$. **Proposition D** [1]. Let $k \ge 1$ be an integer. If D is a digraph of order n, then

$$\gamma_{rk}(D) \le n - \Delta^+(D) + k - 1.$$

The definition of the k-rainbow dominating function for undirected graphs was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see for example [3, 4, 5, 9, 10, 12, 13]).

Following the ideas in [7], we initiate the study of k-rainbow bondage number on digraphs D. The k-rainbow bondage number $b_{rk}(D)$ of a digraph D is the cardinality of a smallest set of arcs $A' \subseteq A(D)$ for which $\gamma_{rk}(D - A') > \gamma_{rk}(D)$. An edge set B with $\gamma_{rk}(D - B) > \gamma_{rk}(D)$ is called the k-rainbow bondage set. A $b_{rk}(D)$ -set is a k-rainbow bondage set of D of size $b_{rk}(D)$. If B is a $b_{rk}(D)$ -set, then clearly

(1)
$$\gamma_{rk}(D-B) = \gamma_{rk}(D) + 1.$$

By Proposition A, we note that if D is a digraph with $\Delta^+(D) \leq 1$ and $\Delta^-(D) \leq 1$, then $\gamma_{r2}(D) = n$ and hence if $A' \subseteq A(D)$, then $\gamma_{r2}(D - A') = \gamma_{r2}(D)$. Therefore the 2-rainbow bondage number is only defined for a digraph with maximum indegree or maximum out-degree at least two.

The definition of the k-rainbow bondage number for undirected graphs was given by Dehgardi, Sheikholeslami and Volkmann [6].

The purpose of this paper is to establish some bounds for the k-rainbow bondage number of a digraph.

Observation 1. Let D be a digraph of order n with $\gamma_{rk}(D) < n$. Assume that H is a spanning subdigraph of D with $\gamma_{rk}(H) = \gamma_{rk}(D)$. If K = A(D) - A(H), then $b_{rk}(H) \leq b_{rk}(D) \leq b_{rk}(H) + |K|$.

Proof. Let $F \subseteq A(D)$ be a $b_{rk}(D)$ -set. It follows that $\gamma_{rk}(H-F) \ge \gamma_{rk}(D-F) > \gamma_{rk}(D) = \gamma_{rk}(H)$ and hence $b_{rk}(H) \le |F| = b_{rk}(D)$.

Now let $F' \subseteq A(H)$ be a $b_{rk}(H)$ -set. We deduce that $\gamma_{rk}(D - (K \cup F')) = \gamma_{rk}(H - F') > \gamma_{rk}(H) = \gamma_{rk}(D)$ and thus $b_{rk}(D) \leq b_{rk}(H) + |K|$.

Observation 2. If a digraph D has a vertex v such that every $\gamma_{rk}(D)$ -function assigns a set of size at least 2 to v, then $b_{rk}(D) \leq \deg^+(v) \leq \Delta^+$.

Proof. Assume that A_v^+ is the set of arcs in D with tail v and let f be a $\gamma_{rk}(D - A_v^+)$ -function. Since $N_{D-A_v^+}^+(v) = \emptyset$, we deduce that $|f(v)| \leq 1$ and hence f is not a $\gamma_{rk}(D)$ -function. Thus $\gamma_{rk}(D - A_v^+) > \gamma_{rk}(D)$, and the proof is complete.

Theorem 3. Let k be a positive integer and let D be a digraph of order $n \ge k+1$. If the underlying graph of D is connected, then

$$b_{rk}(D) \le (\gamma_{rk}(D) - k + 1)\Delta(G[D]).$$

Proof. By Proposition B, $\gamma_{rk}(D) \geq k$. We proceed by induction on $\gamma_{rk}(D)$. If $\gamma_{rk}(D) = k$, then let u be a vertex in D, and let A_u denote the set of arcs incident with u. Since $n \geq k + 1$, we deduce from Proposition B that $\gamma_{rk}(D - A_u) = 1 + \gamma_{rk}(D - u) \geq k + 1 > \gamma_{rk}(D)$. This implies that $b_{rk}(D) \leq |A_u| = \deg_{G[D]}(u)$ and hence $b_{rk}(D) \leq \Delta(G[D])$.

Now assume that the statement is true for any digraph of order $n \geq k+1$ with k-rainbow domination number $k \leq \gamma_{rk}(D) \leq s$. Assume that D is a digraph of order $n \geq k+1$ with $\gamma_{rk}(D) = s+1$. Suppose to the contrary that $b_{rk}(D) >$ $(\gamma_{rk}(D) - k + 1)\Delta(G[D]) > \Delta(G[D])$. Let u be an arbitrary vertex of D, and let A_u denote the set of arcs incident with u. Then $\gamma_{rk}(D) = \gamma_{rk}(D - A_u)$, because $\deg_{G[D]}(u) < b_{rk}(D)$. Let f be a $\gamma_{rk}(D - A_u)$ -function. Obviously, |f(u)| = 1 and the function f restricted to D - u is a $\gamma_{rk}(D - u)$ -function. This yields $\gamma_{rk}(D - u) = \gamma_{rk}(D) - 1$. It follows from Observation 1 that $b_{rk}(D) \leq$ $b_{rk}(D - u) + \deg_{G[D]}(u)$, and by the induction hypothesis we obtain

$$b_{rk}(D) \leq b_{rk}(D-u) + \deg_{G[D]}(u)$$

$$\leq (s-k+1)\Delta(G[D-u]) + \deg_{G[D]}(u)$$

$$\leq (s-k+1)\Delta(G[D]) + \Delta(G[D])$$

$$= ((s+1)-k+1)\Delta(G[D]) = (\gamma_{rk}(D)-k+1)\Delta(G[D]).$$

This contradiction completes the proof.

2. Upper Bounds on the 2-Rainbow Bondage Number

In this section we mainly present bounds on the 2-rainbow bondage number of a digraph.

Theorem 4. If D is a digraph, and xyz a path of length 2 in G[D] such that $(y, x), (y, z) \in A(D)$, then

(2)
$$b_{r2}(D) \le \deg_{G[D]}(x) + \deg_{G[D]}(y) + \deg_{G[D]}(z) - 3 - |N^{-}(x) \cap N^{-}(y)|.$$

Moreover, if x and z are adjacent in G[D], then

(3)
$$b_{r2}(D) \le \deg_{G[D]}(x) + \deg_{G[D]}(y) + \deg_{G[D]}(z) - 4 - |N^{-}(x) \cap N^{-}(y)|.$$

Proof. Let A_1 be the set of arcs incident with x, y or z with the exception of (y, z) and all arcs going from $N^-(x) \cap N^-(y)$ to y. Then

$$|A_1| \le \deg_{G[D]}(x) + \deg_{G[D]}(y) + \deg_{G[D]}(z) - 3 - |N^-(x) \cap N^-(y)|$$

and

$$|A_1| \le \deg_{G[D]}(x) + \deg_{G[D]}(y) + \deg_{G[D]}(z) - 4 - |N^-(x) \cap N^-(y)|$$

when x and z are adjacent. Now let $D_1 = D - A_1$. Obviously in D_1 , the vertex x is isolated, z is a vertex with indegree 1, y is an in-neighbor of z, and all inneighbors of y in D_1 , if any, are contained in $N^-(x)$. Let $f = (V_0, V_1, V_2, V_{1,2})$ be a $\gamma_{r2}(D_1)$ -function. Then |f(x)| = 1 and $|f(z)| \leq 1$.

If $f(z) = \emptyset$, then $f(y) = \{1, 2\}$ and therefore $(V_0 \cup \{x\}, V_1 - \{x\}, V_2 - \{x\}, V_{1,2})$ is a 2RDF on D of weight less than $\omega(f)$, and consequently (2) as well as (3) are proved.

Now assume that |f(z)| = 1. If |f(y)| = 1, then $(V_0 \cup \{z\}, V_1 - \{y, z\}, V_2 - \{y, z\}, V_{1,2} \cup \{y\})$ is also a $\gamma_{r2}(D_1)$ -function, and we are in the situation discussed in the previous case. However, if $f(y) = \emptyset$, then there exists a vertex $w \in N^-(x) \cap N^-(y)$ such that $f(w) = \{1, 2\}$ or there exist two vertices $w_1, w_2 \in N^-(x) \cap N^-(y)$ such that $f(w_1) = \{1\}$ and $f(w_2) = \{2\}$. Since w, w_1 and w_2 are in-neighbors of x in D, $(V_0 \cup \{x\}, V_1 - \{x\}, V_2 - \{x\}, V_{1,2})$ is a 2RDF on D of weight less than f, and the proof is complete.

Theorem 5. If D is a digraph, and xyz a path of length 2 in G[D] such that $(y, x), (y, z) \in A(D)$, then

(4)
$$b_{r2}(D) \le \deg_{G[D]}(x) + \deg^{-}(y) + \deg_{G[D]}(z) - |N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)|.$$

Moreover, if x and z are adjacent in G[D], then

(5) $b_{r2}(D) \le \deg_{G[D]}(x) + \deg^{-}(y) + \deg_{G[D]}(z) - 1 - |N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)|.$

Proof. Let F be the set of arcs incident with x or z and all arcs terminating in y except the arcs $w \to y$ for which the arcs $w \to x$ and $w \to z$ also occur in D. Then

$$|F| \le \deg_{G[D]}(x) + \deg^{-}(y) + \deg_{G[D]}(z) - |N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)|$$

and

$$|F| \le \deg_{G[D]}(x) + \deg^{-}(y) + \deg_{G[D]}(z) - 1 - |N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)|$$

when x and z are adjacent. Let now D' = D - F. In D', the vertices x, z are isolated, and all in-neighbors of y in D', if any, are contained in $N^{-}(x) \cap N^{-}(z)$. Let $f = (V_0, V_1, V_2, V_{1,2})$ be a $\gamma_{r2}(D')$ -function. Then |f(x)| = |f(z)| = 1 and we may assume, without loss of generality, that $f(x) = f(z) = \{1\}$.

If $f(y) = \{1, 2\}$, then $(V_0 \cup \{x, z\}, V_1 - \{x, z\}, V_2, V_{1,2})$ is a 2RDF on D of weight less than $\omega(f)$, and therefore (4) and (5) are proved.

If |f(y)| = 1, then $(V_0 \cup \{x, z\}, V_1 - \{x, y, z\}, V_2 - \{y\}, V_{1,2} \cup \{y\})$ is a 2RDF on D of weight less than $\omega(f)$, and the desired bounds are proved.

However, if $f(y) = \emptyset$, then there exists a vertex $w \in N^-(x) \cap N^-(y) \cap N^-(z)$ such that $f(w) = \{1, 2\}$ or there exist two vertices $w_1, w_2 \in N^-(x) \cap N^-(y) \cap$ 266 J. Amjadi, N. Mohammadi, S.M. Sheikholeslami and L. Volkmann

 $N^-(z)$ such that $f(w_1) = \{1\}$ and $f(w_2) = \{2\}$. Since w, w_1 and w_2 are inneighbors of x and z in D, $(V_0 \cup \{x, z\}, V_1 - \{x, z\}, V_2, V_{1,2})$ is a 2RDF on D of weight less than f, and the proof is complete.

Corollary 6. If D is a digraph with $\delta^+(D) \ge 2$, then $b_{r_2}(D) \le 2\Delta(G[D]) + \delta^-(D)$.

Proof. Let $y \in V(D)$ be a vertex with deg⁻ $(y) = \delta^{-}(D)$. Since $\delta^{+}(D) \geq 2$, there exist two different vertices $x, z \in N^{+}(y)$. Thus G[D] contains a path xyz such that $(y, x), (y, z) \in A(D)$. Now the result follows from Theorem 5.

Since $\sum_{v \in V(D)} \deg^+(v) = \sum_{v \in V(D)} \deg^-(v)$ and $\sum_{v \in V(D)} (\deg^+(v) + \deg^-(v)) \le n\Delta(G[D])$, we have $\delta^-(D) \le \frac{1}{2}\Delta(G[D])$. Now, Corollary 6 leads to the next result.

Corollary 7. If D is a digraph with $\delta^+(D) \ge 2$, then $b_{r2}(D) \le \frac{5}{2}\Delta(G[D])$.

For every graph G, the expression $\deg_a(G) = \sum_{v \in V(G)} \deg(v)/|V(G)|$ is called the *average degree* of G.

Lemma 8. For any digraph D with $\delta^{-}(D) \geq 1$, there exists a pair of vertices, say u and v, that are either adjacent or at distance two in G[D] with a common in-neighbor in D, with the property that

$$\deg_{G[D]}(u) + \deg_{G[D]}(v) \le 2\deg_a(G[D]).$$

Proof. Suppose that the lemma is false, and let D be a connected digraph where the result does not hold. Let the vertices of degree less than or equal to $\deg_a(G[D])$ in G[D] be $S = \{u_1, u_2, \ldots, u_m\}$ and the vertices of degree greater than $\deg_a(G[D])$ be $T = \{v_1, v_2, \ldots, v_n\}$.

Observe that no pair of vertices of S can be joined by an arc. Hence, each $u_i \in S$ has only vertices in T as in-neighbors or out-neighbors. Also note that each v_j has at most one out-neighbor in S, for otherwise if there were two, they would contradict our assumption.

Now we proceed to sum the degrees of all vertices in the underlying graph G[D] as follows. For each $u_i \in S$ we consider an in-neighbor $v_j \in T$ of u_i and take $\deg_{G[D]}(u_i) + \deg_{G[D]}(v_j)$. By assumption, we observe that $\deg_{G[D]}(u_i) + \deg_{G[D]}(v_j) > 2 \deg_a(G[D])$. Furthermore, by the above remarks, these inneighbors in T must be distinct. After adding m such pairs (to exhaust S), the degree of any remaining members of T are included. But the total sum of the degrees is greater than $|V(G[D])| \deg_a(G[D])$ which is impossible. This completes the proof.

Next we present an upper bound on the size of a digraph with given rainbow domination number and rainbow bondage number.

Theorem 9. Let D be a digraph of order n with $\delta^{-}(D) \geq 1$, $\delta^{+}(D) \geq 2$ and rainbow bondage number $b_{r2}(D)$. If $\deg_a(G[D])$ is the average degree of the underlying graph of D, then $b_{r2}(D) \leq 2 \deg_a(G[D]) + \Delta(G[D]) - 3$ and $|A(D)| \geq (n/4)(b_{r2}(D) - \Delta(G[D]) + 3).$

Proof. Let D be a digraph satisfying the assumptions of the theorem. By Lemma 8, there is at least one pair of vertices, say u and v, that are either adjacent or at distance 2 from each other with a common in-neighbor, and with the property that $\deg_{G[D]}(u) + \deg_{G[D]}(v) \le 2 \deg_a(G[D])$. Since $\delta^+(D) \ge 2$, there is a path uvw in G[D] such that $(v, u), (v, w) \in A(D)$, a path vuw in G[D] such that $(u, v), (u, w) \in A(D)$, or a path uwv in G[D] such that $(w, u), (w, v) \in A(D)$. Since these cases are symmetrical, we only consider the first. Applying Theorem 4, we obtain

$$b_{r2}(D) \leq \deg_{G[D]}(u) + \deg_{G[D]}(v) + \deg_{G[D]}(w) - 3$$
$$\leq 2 \deg_a(G[D]) + \Delta(G[D]) - 3.$$

Since $2|E(G[D])| = n \deg_a(G[D])$, we have

$$4|E(G[D])| = 2n \deg_a(G[D]) \ge n(b_{r_2}(D) - \Delta(G[D]) + 3).$$

Hence

$$|A(D)| = |E(G[D])| \ge (n/4)(b_{r2}(D) - \Delta(G[D]) + 3).$$

3. Some Classes of Digraphs

In this section we investigate complete digraphs, complete bipartite digraphs and transitive tournaments.

Lemma 10. If $K_{p,q}^*$ is the complete bipartite digraph such that $q \ge p \ge 2k$, then $\gamma_{rk}(K_{p,q}^*) = 2k$.

Proof. Let $X = \{x_1, x_2, \ldots, x_p\}$ and $Y = \{y_1, y_2, \ldots, y_q\}$ be the partite sets of $K_{p,q}^*$. It is easy to see that the function f defined by $f(x_i) = f(y_i) = \{i\}$ for $1 \le i \le k$ and $f(x) = \emptyset$ otherwise, is a k-rainbow dominating function of $K_{p,q}^*$ of weight 2k and hence $\gamma_{rk}(K_{p,q}^*) \le 2k$.

Let now f be a $\gamma_{rk}(K_{p,q}^*)$ -function. If $f(x_i) \neq \emptyset$ for each i, then $\gamma_{rk}(K_{p,q}^*) = \omega(f) \ge 2k$. So assume $f(x_i) = \emptyset$ for some i, say i = 1. Similarly, we may assume $f(y_1) = \emptyset$. This implies that $\bigcup_{i=1}^p f(x_i) = \bigcup_{i=1}^q f(y_i) = \{1, 2, \dots, k\}$. Hence $\gamma_{rk}(K_{p,q}^*) = \omega(f) \ge 2k$ and the proof is complete.

Theorem 11. Let $k \geq 2$ be an integer and let $K_{p,q}^*$ be the complete bipartite digraph such that $2k + 1 \leq p \leq q$. Then $p + 1 \leq b_{rk}(K_{p,q}^*) \leq 2p$.

268 J. Amjadi, N. Mohammadi, S.M. Sheikholeslami and L. Volkmann

Proof. Let $X = \{x_1, x_2, \ldots, x_p\}$ and $Y = \{y_1, y_2, \ldots, y_q\}$ be the partite sets of $K_{p,q}^*$. If B is an arc set of $K_{p,q}^*$, then define $D = K_{p,q}^* - B$. If D contains a vertex $x \in X$ and a vertex $y \in Y$ such that $\deg_D^+(x) = q$ and $\deg_D^+(y) = p$, then it follows from Lemma 10 that $2k = \gamma_{rk}(K_{p,q}^*) \leq \gamma_{rk}(D) \leq 2k$ and therefore $\gamma_{rk}(D) = 2k$. Hence $b_{rk}(K_{p,q}^*) \geq p$. Now let |B| = p and $D = K_{p,q}^* - B$ such that, without loss of generality, $\deg_D^+(x) \neq q$ for all $x \in X$. Then $B = \{x_1y_{i_1}, x_2y_{i_2}, \ldots, x_py_{i_p}\}$ with $y_{i_j} \in Y$ for $1 \leq j \leq p$. Assume that $y_{i_1} = y_1$. Define the function f by $f(x_1) = f(y_1) = \{1, 2, \ldots, k\}$ and $f(u) = \emptyset$ for $u \in V(K_{p,q}^*) - \{x_1, y_1\}$. It is easy to see that f is a k-rainbow dominating function of D of weight 2k. Lemma 10 implies that $2k = \gamma_{rk}(K_{p,q}^*) \leq \gamma_{rk}(D) \leq 2k$ and thus $\gamma_{rk}(D) = 2k$. Consequently, $b_{rk}(K_{p,q}^*) \geq p + 1$.

Let now B_1 be the set of all arcs incident with the vertex y_1 , and let $H = K_{p,q}^* - B_1$. Then y_1 is an isolated vertex in H and thus $\gamma_{rk}(H) = \gamma_{rk}(K_{p,q-1}^*) + 1$. Since $q \ge p \ge 2k + 1$, Lemma 10 shows that $\gamma_{rk}(K_{p,q-1}^*) = 2k$ and thus $\gamma_{rk}(H) = 2k + 1$. Since $|B_1| = 2p$, it follows that $b_{rk}(K_{p,q}^*) \le 2p$, and the proof is complete.

Conjecture 12. For integers $k \ge 2$ and $q \ge p \ge 2k + 1$, $b_{rk}(K_{p,q}^*) = 2p$.

Theorem 13. Let $k \ge 2$ be an integer. If K_n^* is the complete digraph of order $n \ge k+1$, then $n \le b_{rk}(K_n^*) \le n+k-1$.

Proof. According to Propositions B and D, we deduce that $\gamma_{rk}(K_n^*) = k$. If B is an arc set of K_n^* , then define $D = K_n^* - B$. If D contains a vertex x such that $\deg_D^+(x) = n - 1$, then it follows from Propositions B and D that $\gamma_{rk}(D) = k$. This implies that $b_{rk}(K_n^*) \geq n$.

Now let $\{x_1, x_2, \ldots, x_n\}$ be the vertex set of the complete digraph K_n^* . Define the arc sets $B_1 = \{x_1x_n, x_2x_n, \ldots, x_{n-1}x_n\}$ and $B_2 = \{x_nx_1, x_nx_2, \ldots, x_nx_k\}$, and let $D = K_n^* - (B_1 \cup B_2)$. Then it is easy to see that $b_{rk}(D) = b_{rk}(K_{n-1}^*) + 1 = k + 1$. Since $\gamma_{rk}(K_n^*) = k$, we obtain $b_{rk}(K_n^*) \leq |B_1| + |B_2| = n - 1 + k$, and this is the desired upper bound.

Theorem 14. If K_n^* is the complete digraph of order $n \ge 3$, then $b_{rk}(D) = b_{rk}(K_{n-1}^*) + 1 = k + 1$.

Proof. By Theorem 13, we have $b_{r2}(K_n^*) \ge n$.

Now let $\{x_1, x_2, \ldots, x_n\}$ be the vertex set of K_n^* . We define the arc set B of K_n^* by $B = \{x_1x_2, x_2x_3, \ldots, x_{n-1}x_n, x_nx_1\}$. If $D = K_n^* - B$, then we observe that $\Delta^+(D) = n - 2$. In addition, we see that there do not exist two different vertices u and v in D such that $V(D) - \{u, v\} \subseteq N_D^+(u)$ and $V(D) - \{u, v\} \subseteq N_D^+(v)$. This can be seen as follows:

Suppose on the contrary that there exist two different vertices u and v in D such that $V(D) - \{u, v\} \subseteq N_D^+(u)$ and $V(D) - \{u, v\} \subseteq N_D^+(v)$. If, without

loss of generality, $u = x_1$, then $x_2 \notin N_D^+(x_1)$. Therefore $v = x_2$. However, now $x_3 \notin N_D^+(x_2)$, a contradiction.

Applying Proposition C, we conclude that $\gamma_{r2}(D) \geq 3$. Since $\gamma_{r2}(K_n^*) = 2$, we deduce that $b_{r2}(K_n^*) \leq n$, and the proof is complete.

A tournament T = (V, E) is an orientation of a complete graph. A tournament is called *transitive* if $p \to q$ and $q \to r$ imply that $p \to r$.

Theorem 15. Let $k \geq 2$ be an integer. If T_n is the transitive tournament of order $n \geq k+1$, then $b_{rk}(T_n) = 1$.

Proof. Let $x_1x_2\cdots x_n$ be the unique directed Hamiltonian path of T_n . Then $\deg_{T_n}^+(x_1) = n - 1$, and therefore Propositions B and D imply that $\gamma_{rk}(T_n) = k$. Now let $D = T_n - \{x_1 x_n\}$, and let f be a $\gamma_{rk}(D)$ -function. Assume first that $f(x_n) = \emptyset$. This implies that $\bigcup_{u \in N_D^-(x_n)} f(u) = \{1, 2, \dots, k\}$.

Since $|f(x_1)| \ge 1$ and $x_1 \notin N_D^-(x_n)$, we obtain $\omega(f) \ge k+1$.

Next, assume that $|f(x_n)| \ge 1$. If $|f(x_i)| \ge 1$ for each $1 \le i \le n-1$, then $\omega(f) \ge n \ge k+1$. So assume that $f(x_i = \emptyset \text{ for an index } i \in \{1, 2, \dots, n-1\}$. Then $\bigcup_{u \in N_D^-(x_i)} f(u) = \{1, 2, \dots, k\}$. Since $x_n \notin N_D^-(x_i)$, we obtain $\omega(f) \ge k+1$ again.

Therefore $\gamma_{rk}(D) \ge k+1$. Since $\gamma_{rk}(T_n) = k$, we deduce that $b_{rk}(T_n) = 1$, and the proof is complete.

References

- [1] J. Amjadi, A. Bahremandpour, S.M. Sheikholeslami and L. Volkmann, The rainbow domination number of a digraph, Kragujevac J. Math. 37 (2013) 257–268.
- [2] B. Brešar, M.A. Henning and D.F. Rall, *Rainbow domination in graphs*, Taiwanese J. Math. 12 (2008) 213-225.
- [3] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394–2400. doi:10.1016/j.dam.2007.07.018
- [4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. **158** (2010) 8–12. doi:10.1016/j.dam.2009.08.010
- [5] Ch. Tong, X. Lin, Y. Yang and M.Luo, 2-rainbow domination of generalized Petersen graphs P(n, 2), Discrete Appl. Math. **157** (2009) 1932–1937. doi:10.1016/j.dam.2009.01.020
- [6] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139. doi:10.1016/j.dam.2014.05.006

- J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, *The bondage number of a graph*, Discrete Math. 86 (1990) 47–57. doi:10.1016/0012-365X(90)90348-L
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
- D. Meierling, S.M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758–1761. doi:10.1016/j.aml.2011.04.046
- [10] S.M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129–140. doi:10.7151/dmgt.1591
- [11] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc., 2000).
- Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013) 1125–1133. doi:10.1007/s00373-012-1158-y
- [13] G. Xu, 2-rainbow domination in generalized Petersen graphs P(n, 3), Discrete Appl. Math. 157 (2009) 2570–2573. doi:10.1016/j.dam.2009.03.016

Received 10 February 2014 Revised 12 June 2014 Accepted 12 June 2014