THE k-RAINBOW BONDAGE NUMBER OF A DIGRAPH

Jafar Amjadi, Negar Mohammadi
Seyed Mahmoud Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: \{j-amjadi;s.m.sheikholeslami\}@azaruniv.edu

AND

Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $D=(V, A)$ be a finite and simple digraph. A k-rainbow dominating function (k RDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N^{-(v)}} f(u)=\{1,2, \ldots, k\}$ is fulfilled, where $N^{-}(v)$ is the set of in-neighbors of v. The weight of a $k \operatorname{RDF} f$ is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{r k}(D)$, is the minimum weight of a k RDF of D. The k-rainbow bondage number $b_{r k}(D)$ of a digraph D with maximum in-degree at least two, is the minimum cardinality of all sets $A^{\prime} \subseteq A$ for which $\gamma_{r k}\left(D-A^{\prime}\right)>\gamma_{r k}(D)$. In this paper, we establish some bounds for the k-rainbow bondage number and determine the k-rainbow bondage number of several classes of digraphs.

Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow bondage number, digraph.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let D be a finite simple digraph with vertex set $V(D)=V$ and $\operatorname{arc} \operatorname{set} A(D)=A$. A digraph without directed cycles of length 2 is an oriented graph. The order $n=n(D)$ of a digraph D is the number of its vertices. We write $\operatorname{deg}_{D}^{+}(v)=$ $\operatorname{deg}^{+}(v)$ for the outdegree of a vertex v and $\operatorname{deg}_{D}^{-}(v)=\operatorname{deg}^{-}(v)$ for its indegree. The minimum and maximum indegree and minimum and maximum outdegree of D are denoted by $\delta^{-}=\delta^{-}(D), \Delta^{-}=\Delta^{-}(D), \delta^{+}=\delta^{+}(D)$ and $\Delta^{+}=\Delta^{+}(D)$, respectively. If (u, v) is an arc of D, then we also write $u \rightarrow v$, and we say that v is an out-neighbor of u and u is an in-neighbor of v. For a vertex v of a digraph D, we denote the set of in-neighbors and out-neighbors of v by $N^{-}(v)=N_{D}^{-}(v)$ and $N^{+}(v)=N_{D}^{+}(v)$, respectively. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. If $X \subseteq V(D)$ and $v \in V(D)$, then $E(X, v)$ is the set of arcs from X to v. The underlying graph $G[D]$ of a digraph D is the graph obtained by replacing each arc $u v$ by an edge $u v$. Note that $G[D]$ has two parallel edges $u v$ when D contains the $\operatorname{arcs}(u, v)$ and (v, u). A digraph D is called connected, if the underlying graph $G[D]$ is connected. For the notation and terminology not defined here, we refer the reader to [11].

Let k be a positive integer. A k-rainbow dominating function ($k \mathrm{RDF}$) of a digraph D is a function f from the vertex set $V(D)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex $v \in V(D)$ with $f(v)=\emptyset$ the condition $\bigcup_{u \in N^{-}(v)} f(u)=\{1,2, \ldots, k\}$ is fulfilled. The weight of a $k \operatorname{RDF} f$ is the value $\omega(f)=\sum_{v \in V}|f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{r k}(D)$, is the minimum weight of a $k R D F$ of D. A $\gamma_{r k}(D)$ function is a k-rainbow dominating function of D with weight $\gamma_{r k}(D)$. Note that $\gamma_{r 1}(D)$ is the classical domination number $\gamma(D)$. The k-rainbow domination numbers in digraphs were investigated by Amjadi et al. in [1]. A 2-rainbow dominating function (briefly, rainbow dominating function) $f: V \longrightarrow \mathcal{P}(\{1,2\})$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}, V_{1,2}^{f}\right)$ to refer f) of V, where $V_{0}=\{v \in V \mid f(v)=\emptyset\}, V_{1}=\{v \in V \mid f(v)=\{1\}\}$, $V_{2}=\{v \in V \mid f(v)=\{2\}\}$ and $V_{1,2}=\{v \in V \mid f(v)=\{1,2\}\}$. In this representation, its weight is $\omega(f)=\left|V_{1}\right|+\left|V_{2}\right|+2\left|V_{1,2}\right|$.

Proposition A [1]. Let D be a digraph of order n. Then $\gamma_{r 2}(D)<n$ if and only if $\Delta^{+}(D) \geq 2$ or $\Delta^{-}(D) \geq 2$.

Proposition B [1]. Let $k \geq 1$ be an integer. If D is a digraph of order n, then

$$
\min \{k, n\} \leq \gamma_{r k}(D) \leq n .
$$

Proposition C [1]. Let D be a digraph of order $n \geq 2$. Then $\gamma_{r 2}(D)=2$ if and only if $n=2$ or $n \geq 3$ and $\Delta^{+}(D)=n-1$ or there exist two different vertices u and v such that $V(D)-\{u, v\} \subseteq N^{+}(u)$ and $V(D)-\{u, v\} \subseteq N^{+}(v)$.

Proposition D [1]. Let $k \geq 1$ be an integer. If D is a digraph of order n, then

$$
\gamma_{r k}(D) \leq n-\Delta^{+}(D)+k-1 .
$$

The definition of the k-rainbow dominating function for undirected graphs was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see for example $[3,4,5,9,10,12,13]$).

Following the ideas in [7], we initiate the study of k-rainbow bondage number on digraphs D. The k-rainbow bondage number $b_{r k}(D)$ of a digraph D is the cardinality of a smallest set of arcs $A^{\prime} \subseteq A(D)$ for which $\gamma_{r k}\left(D-A^{\prime}\right)>\gamma_{r k}(D)$. An edge set B with $\gamma_{r k}(D-B)>\gamma_{r k}(D)$ is called the k-rainbow bondage set. A $b_{r k}(D)$-set is a k-rainbow bondage set of D of $\operatorname{size} b_{r k}(D)$. If B is a $b_{r k}(D)$-set, then clearly

$$
\begin{equation*}
\gamma_{r k}(D-B)=\gamma_{r k}(D)+1 \tag{1}
\end{equation*}
$$

By Proposition A, we note that if D is a digraph with $\Delta^{+}(D) \leq 1$ and $\Delta^{-}(D) \leq 1$, then $\gamma_{r 2}(D)=n$ and hence if $A^{\prime} \subseteq A(D)$, then $\gamma_{r 2}\left(D-A^{\prime}\right)=\gamma_{r 2}(D)$. Therefore the 2 -rainbow bondage number is only defined for a digraph with maximum indegree or maximum out-degree at least two.

The definition of the k-rainbow bondage number for undirected graphs was given by Dehgardi, Sheikholeslami and Volkmann [6].

The purpose of this paper is to establish some bounds for the k-rainbow bondage number of a digraph.
Observation 1. Let D be a digraph of order n with $\gamma_{r k}(D)<n$. Assume that H is a spanning subdigraph of D with $\gamma_{r k}(H)=\gamma_{r k}(D)$. If $K=A(D)-A(H)$, then $b_{r k}(H) \leq b_{r k}(D) \leq b_{r k}(H)+|K|$.
Proof. Let $F \subseteq A(D)$ be a $b_{r k}(D)$-set. It follows that $\gamma_{r k}(H-F) \geq \gamma_{r k}(D-F)>$ $\gamma_{r k}(D)=\gamma_{r k}(H)$ and hence $b_{r k}(H) \leq|F|=b_{r k}(D)$.

Now let $F^{\prime} \subseteq A(H)$ be a $b_{r k}(H)$-set. We deduce that $\gamma_{r k}\left(D-\left(K \cup F^{\prime}\right)\right)=$ $\gamma_{r k}\left(H-F^{\prime}\right)>\gamma_{r k}(H)=\gamma_{r k}(D)$ and thus $b_{r k}(D) \leq b_{r k}(H)+|K|$.

Observation 2. If a digraph D has a vertex v such that every $\gamma_{r k}(D)$-function assigns a set of size at least 2 to v, then $b_{r k}(D) \leq \operatorname{deg}^{+}(v) \leq \Delta^{+}$.

Proof. Assume that A_{v}^{+}is the set of arcs in D with tail v and let f be a $\gamma_{r k}(D-$ $\left.A_{v}^{+}\right)$-function. Since $N_{D-A_{v}^{+}}^{+}(v)=\emptyset$, we deduce that $|f(v)| \leq 1$ and hence f is not a $\gamma_{r k}(D)$-function. Thus $\gamma_{r k}\left(D-A_{v}^{+}\right)>\gamma_{r k}(D)$, and the proof is complete.

Theorem 3. Let k be a positive integer and let D be a digraph of order $n \geq k+1$. If the underlying graph of D is connected, then

$$
b_{r k}(D) \leq\left(\gamma_{r k}(D)-k+1\right) \Delta(G[D]) .
$$

Proof. By Proposition B, $\gamma_{r k}(D) \geq k$. We proceed by induction on $\gamma_{r k}(D)$. If $\gamma_{r k}(D)=k$, then let u be a vertex in D, and let A_{u} denote the set of arcs incident with u. Since $n \geq k+1$, we deduce from Proposition B that $\gamma_{r k}\left(D-A_{u}\right)=$ $1+\gamma_{r k}(D-u) \geq k+1>\gamma_{r k}(D)$. This implies that $b_{r k}(D) \leq\left|A_{u}\right|=\operatorname{deg}_{G[D]}(u)$ and hence $b_{r k}(D) \leq \Delta(G[D])$.

Now assume that the statement is true for any digraph of order $n \geq k+1$ with k-rainbow domination number $k \leq \gamma_{r k}(D) \leq s$. Assume that D is a digraph of order $n \geq k+1$ with $\gamma_{r k}(D)=s+1$. Suppose to the contrary that $b_{r k}(D)>$ $\left(\gamma_{r k}(D)-k+1\right) \Delta(G[D])>\Delta(G[D])$. Let u be an arbitrary vertex of D, and let A_{u} denote the set of arcs incident with u. Then $\gamma_{r k}(D)=\gamma_{r k}\left(D-A_{u}\right)$, because $\operatorname{deg}_{G[D]}(u)<b_{r k}(D)$. Let f be a $\gamma_{r k}\left(D-A_{u}\right)$-function. Obviously, $|f(u)|=1$ and the function f restricted to $D-u$ is a $\gamma_{r k}(D-u)$-function. This yields $\gamma_{r k}(D-u)=\gamma_{r k}(D)-1$. It follows from Observation 1 that $b_{r k}(D) \leq$ $b_{r k}(D-u)+\operatorname{deg}_{G[D]}(u)$, and by the induction hypothesis we obtain

$$
\begin{aligned}
b_{r k}(D) & \leq b_{r k}(D-u)+\operatorname{deg}_{G[D]}(u) \\
& \leq(s-k+1) \Delta(G[D-u])+\operatorname{deg}_{G[D]}(u) \\
& \leq(s-k+1) \Delta(G[D])+\Delta(G[D]) \\
& =((s+1)-k+1) \Delta(G[D])=\left(\gamma_{r k}(D)-k+1\right) \Delta(G[D]) .
\end{aligned}
$$

This contradiction completes the proof.

2. Upper Bounds on the 2-Rainbow Bondage Number

In this section we mainly present bounds on the 2-rainbow bondage number of a digraph.

Theorem 4. If D is a digraph, and xyz a path of length 2 in $G[D]$ such that $(y, x),(y, z) \in A(D)$, then

$$
\begin{equation*}
b_{r 2}(D) \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}_{G[D]}(y)+\operatorname{deg}_{G[D]}(z)-3-\left|N^{-}(x) \cap N^{-}(y)\right| . \tag{2}
\end{equation*}
$$

Moreover, if x and z are adjacent in $G[D]$, then

$$
\begin{equation*}
b_{r 2}(D) \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}_{G[D]}(y)+\operatorname{deg}_{G[D]}(z)-4-\left|N^{-}(x) \cap N^{-}(y)\right| . \tag{3}
\end{equation*}
$$

Proof. Let A_{1} be the set of arcs incident with x, y or z with the exception of (y, z) and all arcs going from $N^{-}(x) \cap N^{-}(y)$ to y. Then

$$
\left|A_{1}\right| \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}_{G[D]}(y)+\operatorname{deg}_{G[D]}(z)-3-\left|N^{-}(x) \cap N^{-}(y)\right|
$$

and

$$
\left|A_{1}\right| \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}_{G[D]}(y)+\operatorname{deg}_{G[D]}(z)-4-\left|N^{-}(x) \cap N^{-}(y)\right|
$$

when x and z are adjacent. Now let $D_{1}=D-A_{1}$. Obviously in D_{1}, the vertex x is isolated, z is a vertex with indegree $1, y$ is an in-neighbor of z, and all inneighbors of y in D_{1}, if any, are contained in $N^{-}(x)$. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{r 2}\left(D_{1}\right)$-function. Then $|f(x)|=1$ and $|f(z)| \leq 1$.

If $f(z)=\emptyset$, then $f(y)=\{1,2\}$ and therefore $\left(V_{0} \cup\{x\}, V_{1}-\{x\}, V_{2}-\{x\}, V_{1,2}\right)$ is a 2 RDF on D of weight less than $\omega(f)$, and consequently (2) as well as (3) are proved.

Now assume that $|f(z)|=1$. If $|f(y)|=1$, then $\left(V_{0} \cup\{z\}, V_{1}-\{y, z\}, V_{2}-\right.$ $\left.\{y, z\}, V_{1,2} \cup\{y\}\right)$ is also a $\gamma_{r 2}\left(D_{1}\right)$-function, and we are in the situation discussed in the previous case. However, if $f(y)=\emptyset$, then there exists a vertex $w \in N^{-}(x) \cap$ $N^{-}(y)$ such that $f(w)=\{1,2\}$ or there exist two vertices $w_{1}, w_{2} \in N^{-}(x) \cap N^{-}(y)$ such that $f\left(w_{1}\right)=\{1\}$ and $f\left(w_{2}\right)=\{2\}$. Since w, w_{1} and w_{2} are in-neighbors of x in $\mathrm{D},\left(V_{0} \cup\{x\}, V_{1}-\{x\}, V_{2}-\{x\}, V_{1,2}\right)$ is a 2 RDF on D of weight less than f, and the proof is complete.

Theorem 5. If D is a digraph, and xyz a path of length 2 in $G[D]$ such that $(y, x),(y, z) \in A(D)$, then

$$
\begin{equation*}
b_{r 2}(D) \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}^{-}(y)+\operatorname{deg}_{G[D]}(z)-\left|N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)\right| \tag{4}
\end{equation*}
$$

Moreover, if x and z are adjacent in $G[D]$, then

$$
\begin{equation*}
b_{r 2}(D) \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}^{-}(y)+\operatorname{deg}_{G[D]}(z)-1-\left|N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)\right| \tag{5}
\end{equation*}
$$

Proof. Let F be the set of arcs incident with x or z and all arcs terminating in y except the arcs $w \rightarrow y$ for which the $\operatorname{arcs} w \rightarrow x$ and $w \rightarrow z$ also occur in D. Then

$$
|F| \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}^{-}(y)+\operatorname{deg}_{G[D]}(z)-\left|N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)\right|
$$

and

$$
|F| \leq \operatorname{deg}_{G[D]}(x)+\operatorname{deg}^{-}(y)+\operatorname{deg}_{G[D]}(z)-1-\left|N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)\right|
$$

when x and z are adjacent. Let now $D^{\prime}=D-F$. In D^{\prime}, the vertices x, z are isolated, and all in-neighbors of y in D^{\prime}, if any, are contained in $N^{-}(x) \cap N^{-}(z)$. Let $f=\left(V_{0}, V_{1}, V_{2}, V_{1,2}\right)$ be a $\gamma_{r 2}\left(D^{\prime}\right)$-function. Then $|f(x)|=|f(z)|=1$ and we may assume, without loss of generality, that $f(x)=f(z)=\{1\}$.

If $f(y)=\{1,2\}$, then $\left(V_{0} \cup\{x, z\}, V_{1}-\{x, z\}, V_{2}, V_{1,2}\right)$ is a 2 RDF on D of weight less than $\omega(f)$, and therefore (4) and (5) are proved.

If $|f(y)|=1$, then $\left(V_{0} \cup\{x, z\}, V_{1}-\{x, y, z\}, V_{2}-\{y\}, V_{1,2} \cup\{y\}\right)$ is a 2 RDF on D of weight less than $\omega(f)$, and the desired bounds are proved.

However, if $f(y)=\emptyset$, then there exists a vertex $w \in N^{-}(x) \cap N^{-}(y) \cap N^{-}(z)$ such that $f(w)=\{1,2\}$ or there exist two vertices $w_{1}, w_{2} \in N^{-}(x) \cap N^{-}(y) \cap$
$N^{-}(z)$ such that $f\left(w_{1}\right)=\{1\}$ and $f\left(w_{2}\right)=\{2\}$. Since w, w_{1} and w_{2} are inneighbors of x and z in $D,\left(V_{0} \cup\{x, z\}, V_{1}-\{x, z\}, V_{2}, V_{1,2}\right)$ is a 2 RDF on D of weight less than f, and the proof is complete.

Corollary 6. If D is a digraph with $\delta^{+}(D) \geq 2$, then $b_{r 2}(D) \leq 2 \Delta(G[D])+$ $\delta^{-}(D)$.

Proof. Let $y \in V(D)$ be a vertex with $\operatorname{deg}^{-}(y)=\delta^{-}(D)$. Since $\delta^{+}(D) \geq 2$, there exist two different vertices $x, z \in N^{+}(y)$. Thus $G[D]$ contains a path $x y z$ such that $(y, x),(y, z) \in A(D)$. Now the result follows from Theorem 5 .

Since $\sum_{v \in V(D)} \operatorname{deg}^{+}(v)=\sum_{v \in V(D)} \operatorname{deg}^{-}(v)$ and $\sum_{v \in V(D)}\left(\operatorname{deg}^{+}(v)+\operatorname{deg}^{-}(v)\right)$ $\leq n \Delta(G[D])$, we have $\delta^{-}(D) \leq \frac{1}{2} \Delta(G[D])$. Now, Corollary 6 leads to the next result.

Corollary 7. If D is a digraph with $\delta^{+}(D) \geq 2$, then $b_{r 2}(D) \leq \frac{5}{2} \Delta(G[D])$.
For every graph G, the expression $\operatorname{deg}_{a}(G)=\sum_{v \in V(G)} \operatorname{deg}(v) /|V(G)|$ is called the average degree of G.

Lemma 8. For any digraph D with $\delta^{-}(D) \geq 1$, there exists a pair of vertices, say u and v, that are either adjacent or at distance two in $G[D]$ with a common in-neighbor in D, with the property that

$$
\operatorname{deg}_{G[D]}(u)+\operatorname{deg}_{G[D]}(v) \leq 2 \operatorname{deg}_{a}(G[D]) .
$$

Proof. Suppose that the lemma is false, and let D be a connected digraph where the result does not hold. Let the vertices of degree less than or equal to $\operatorname{deg}_{a}(G[D])$ in $G[D]$ be $S=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and the vertices of degree greater than $\operatorname{deg}_{a}(G[D])$ be $T=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Observe that no pair of vertices of S can be joined by an arc. Hence, each $u_{i} \in S$ has only vertices in T as in-neighbors or out-neighbors. Also note that each v_{j} has at most one out-neighbor in S, for otherwise if there were two, they would contradict our assumption.

Now we proceed to sum the degrees of all vertices in the underlying graph $G[D]$ as follows. For each $u_{i} \in S$ we consider an in-neighbor $v_{j} \in T$ of u_{i} and take $\operatorname{deg}_{G[D]}\left(u_{i}\right)+\operatorname{deg}_{G[D]}\left(v_{j}\right)$. By assumption, we observe that $\operatorname{deg}_{G[D]}\left(u_{i}\right)+$ $\operatorname{deg}_{G[D]}\left(v_{j}\right)>2 \operatorname{deg}_{a}(G[D])$. Furthermore, by the above remarks, these inneighbors in T must be distinct. After adding m such pairs (to exhaust S), the degree of any remaining members of T are included. But the total sum of the degrees is greater than $|V(G[D])| \operatorname{deg}_{a}(G[D])$ which is impossible. This completes the proof.

Next we present an upper bound on the size of a digraph with given rainbow domination number and rainbow bondage number.

Theorem 9. Let D be a digraph of order n with $\delta^{-}(D) \geq 1, \delta^{+}(D) \geq 2$ and rainbow bondage number $b_{r 2}(D)$. If $\operatorname{deg}_{a}(G[D])$ is the average degree of the underlying graph of D, then $b_{r 2}(D) \leq 2 \operatorname{deg}_{a}(G[D])+\Delta(G[D])-3$ and $|A(D)| \geq(n / 4)\left(b_{r 2}(D)-\Delta(G[D])+3\right)$.

Proof. Let D be a digraph satisfying the assumptions of the theorem. By Lemma 8 , there is at least one pair of vertices, say u and v, that are either adjacent or at distance 2 from each other with a common in-neighbor, and with the property that $\operatorname{deg}_{G[D]}(u)+\operatorname{deg}_{G[D]}(v) \leq 2 \operatorname{deg}_{a}(G[D])$. Since $\delta^{+}(D) \geq 2$, there is a path uvw in $G[D]$ such that $(v, u),(v, w) \in A(D)$, a path vuw in $G[D]$ such that $(u, v),(u, w) \in A(D)$, or a path $u w v$ in $G[D]$ such that $(w, u),(w, v) \in A(D)$. Since these cases are symmetrical, we only consider the first. Applying Theorem 4 , we obtain

$$
\begin{aligned}
b_{r 2}(D) & \leq \operatorname{deg}_{G[D]}(u)+\operatorname{deg}_{G[D]}(v)+\operatorname{deg}_{G[D]}(w)-3 \\
& \leq 2 \operatorname{deg}_{a}(G[D])+\Delta(G[D])-3 .
\end{aligned}
$$

Since $2|E(G[D])|=n \operatorname{deg}_{a}(G[D])$, we have

$$
4|E(G[D])|=2 n \operatorname{deg}_{a}(G[D]) \geq n\left(b_{r 2}(D)-\Delta(G[D])+3\right) .
$$

Hence

$$
|A(D)|=|E(G[D])| \geq(n / 4)\left(b_{r 2}(D)-\Delta(G[D])+3\right) .
$$

3. Some Classes of Digraphs

In this section we investigate complete digraphs, complete bipartite digraphs and transitive tournaments.

Lemma 10. If $K_{p, q}^{*}$ is the complete bipartite digraph such that $q \geq p \geq 2 k$, then $\gamma_{r k}\left(K_{p, q}^{*}\right)=2 k$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$ be the partite sets of $K_{p, q}^{*}$. It is easy to see that the function f defined by $f\left(x_{i}\right)=f\left(y_{i}\right)=\{i\}$ for $1 \leq i \leq k$ and $f(x)=\emptyset$ otherwise, is a k-rainbow dominating function of $K_{p, q}^{*}$ of weight $2 k$ and hence $\gamma_{r k}\left(K_{p, q}^{*}\right) \leq 2 k$.

Let now f be a $\gamma_{r k}\left(K_{p, q}^{*}\right)$-function. If $f\left(x_{i}\right) \neq \emptyset$ for each i, then $\gamma_{r k}\left(K_{p, q}^{*}\right)=$ $\omega(f) \geq 2 k$. So assume $f\left(x_{i}\right)=\emptyset$ for some i, say $i=1$. Similarly, we may assume $f\left(y_{1}\right)=\emptyset$. This implies that $\bigcup_{i=1}^{p} f\left(x_{i}\right)=\bigcup_{i=1}^{q} f\left(y_{i}\right)=\{1,2, \ldots, k\}$. Hence $\gamma_{r k}\left(K_{p, q}^{*}\right)=\omega(f) \geq 2 k$ and the proof is complete.
Theorem 11. Let $k \geq 2$ be an integer and let $K_{p, q}^{*}$ be the complete bipartite digraph such that $2 k+1 \leq p \leq q$. Then $p+1 \leq b_{r k}\left(K_{p, q}^{*}\right) \leq 2 p$.

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$ be the partite sets of $K_{p, q}^{*}$. If B is an arc set of $K_{p, q}^{*}$, then define $D=K_{p, q}^{*}-B$. If D contains a vertex $x \in X$ and a vertex $y \in Y$ such that $\operatorname{deg}_{D}^{+}(x)=q$ and $\operatorname{deg}_{D}^{+}(y)=p$, then it follows from Lemma 10 that $2 k=\gamma_{r k}\left(K_{p, q}^{*}\right) \leq \gamma_{r k}(D) \leq 2 k$ and therefore $\gamma_{r k}(D)=2 k$. Hence $b_{r k}\left(K_{p, q}^{*}\right) \geq p$. Now let $|B|=p$ and $D=K_{p, q}^{*}-B$ such that, without loss of generality, $\operatorname{deg}_{D}^{+}(x) \neq q$ for all $x \in X$. Then $B=\left\{x_{1} y_{i_{1}}, x_{2} y_{i_{2}}, \ldots, x_{p} y_{i_{p}}\right\}$ with $y_{i_{j}} \in Y$ for $1 \leq j \leq p$. Assume that $y_{i_{1}}=y_{1}$. Define the function f by $f\left(x_{1}\right)=f\left(y_{1}\right)=\{1,2, \ldots, k\}$ and $f(u)=\emptyset$ for $u \in V\left(K_{p, q}^{*}\right)-\left\{x_{1}, y_{1}\right\}$. It is easy to see that f is a k-rainbow dominating function of D of weight $2 k$. Lemma 10 implies that $2 k=\gamma_{r k}\left(K_{p, q}^{*}\right) \leq \gamma_{r k}(D) \leq 2 k$ and thus $\gamma_{r k}(D)=2 k$. Consequently, $b_{r k}\left(K_{p, q}^{*}\right) \geq p+1$.

Let now B_{1} be the set of all arcs incident with the vertex y_{1}, and let $H=$ $K_{p, q}^{*}-B_{1}$. Then y_{1} is an isolated vertex in H and thus $\gamma_{r k}(H)=\gamma_{r k}\left(K_{p, q-1}^{*}\right)+1$. Since $q \geq p \geq 2 k+1$, Lemma 10 shows that $\gamma_{r k}\left(K_{p, q-1}^{*}\right)=2 k$ and thus $\gamma_{r k}(H)=$ $2 k+1$. Since $\left|B_{1}\right|=2 p$, it follows that $b_{r k}\left(K_{p, q}^{*}\right) \leq 2 p$, and the proof is complete.

Conjecture 12. For integers $k \geq 2$ and $q \geq p \geq 2 k+1, b_{r k}\left(K_{p, q}^{*}\right)=2 p$.
Theorem 13. Let $k \geq 2$ be an integer. If K_{n}^{*} is the complete digraph of order $n \geq k+1$, then $n \leq b_{r k}\left(K_{n}^{*}\right) \leq n+k-1$.

Proof. According to Propositions B and D, we deduce that $\gamma_{r k}\left(K_{n}^{*}\right)=k$. If B is an arc set of K_{n}^{*}, then define $D=K_{n}^{*}-B$. If D contains a vertex x such that $\operatorname{deg}_{D}^{+}(x)=n-1$, then it follows from Propositions B and D that $\gamma_{r k}(D)=k$. This implies that $b_{r k}\left(K_{n}^{*}\right) \geq n$.

Now let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the vertex set of the complete digraph K_{n}^{*}. Define the arc sets $B_{1}=\left\{x_{1} x_{n}, x_{2} x_{n}, \ldots, x_{n-1} x_{n}\right\}$ and $B_{2}=\left\{x_{n} x_{1}, x_{n} x_{2}, \ldots, x_{n} x_{k}\right\}$, and let $D=K_{n}^{*}-\left(B_{1} \cup B_{2}\right)$. Then it is easy to see that $b_{r k}(D)=b_{r k}\left(K_{n-1}^{*}\right)+1=$ $k+1$. Since $\gamma_{r k}\left(K_{n}^{*}\right)=k$, we obtain $b_{r k}\left(K_{n}^{*}\right) \leq\left|B_{1}\right|+\left|B_{2}\right|=n-1+k$, and this is the desired upper bound.

Theorem 14. If K_{n}^{*} is the complete digraph of order $n \geq 3$, then $b_{r k}(D)=$ $b_{r k}\left(K_{n-1}^{*}\right)+1=k+1$.

Proof. By Theorem 13, we have $b_{r 2}\left(K_{n}^{*}\right) \geq n$.
Now let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the vertex set of K_{n}^{*}. We define the arc set B of K_{n}^{*} by $B=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}$. If $D=K_{n}^{*}-B$, then we observe that $\Delta^{+}(D)=n-2$. In addition, we see that there do not exist two different vertices u and v in D such that $V(D)-\{u, v\} \subseteq N_{D}^{+}(u)$ and $V(D)-\{u, v\} \subseteq N_{D}^{+}(v)$. This can be seen as follows:

Suppose on the contrary that there exist two different vertices u and v in D such that $V(D)-\{u, v\} \subseteq N_{D}^{+}(u)$ and $V(D)-\{u, v\} \subseteq N_{D}^{+}(v)$. If, without
loss of generality, $u=x_{1}$, then $x_{2} \notin N_{D}^{+}\left(x_{1}\right)$. Therefore $v=x_{2}$. However, now $x_{3} \notin N_{D}^{+}\left(x_{2}\right)$, a contradiction.

Applying Proposition C, we conclude that $\gamma_{r 2}(D) \geq 3$. Since $\gamma_{r 2}\left(K_{n}^{*}\right)=2$, we deduce that $b_{r 2}\left(K_{n}^{*}\right) \leq n$, and the proof is complete.

A tournament $T=(V, E)$ is an orientation of a complete graph. A tournament is called transitive if $p \rightarrow q$ and $q \rightarrow r$ imply that $p \rightarrow r$.

Theorem 15. Let $k \geq 2$ be an integer. If T_{n} is the transitive tournament of order $n \geq k+1$, then $b_{r k}\left(T_{n}\right)=1$.

Proof. Let $x_{1} x_{2} \cdots x_{n}$ be the unique directed Hamiltonian path of T_{n}. Then $\operatorname{deg}_{T_{n}}^{+}\left(x_{1}\right)=n-1$, and therefore Propositions B and D imply that $\gamma_{r k}\left(T_{n}\right)=k$. Now let $D=T_{n}-\left\{x_{1} x_{n}\right\}$, and let f be a $\gamma_{r k}(D)$-function.

Assume first that $f\left(x_{n}\right)=\emptyset$. This implies that $\bigcup_{u \in N_{D}^{-}\left(x_{n}\right)} f(u)=\{1,2, \ldots, k\}$. Since $\left|f\left(x_{1}\right)\right| \geq 1$ and $x_{1} \notin N_{D}^{-}\left(x_{n}\right)$, we obtain $\omega(f) \geq k+1$.

Next, assume that $\left|f\left(x_{n}\right)\right| \geq 1$. If $\left|f\left(x_{i}\right)\right| \geq 1$ for each $1 \leq i \leq n-1$, then $\omega(f) \geq n \geq k+1$. So assume that $f\left(x_{i}=\emptyset\right.$ for an index $i \in\{1,2, \ldots, n-1\}$. Then $\bigcup_{u \in N_{D}^{-}\left(x_{i}\right)} f(u)=\{1,2, \ldots, k\}$. Since $x_{n} \notin N_{D}^{-}\left(x_{i}\right)$, we obtain $\omega(f) \geq k+1$ again.

Therefore $\gamma_{r k}(D) \geq k+1$. Since $\gamma_{r k}\left(T_{n}\right)=k$, we deduce that $b_{r k}\left(T_{n}\right)=1$, and the proof is complete.

References

[1] J. Amjadi, A. Bahremandpour, S.M. Sheikholeslami and L. Volkmann, The rainbow domination number of a digraph, Kragujevac J. Math. 37 (2013) 257-268.
[2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.
[3] B. Brešar and T.K. Sumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400. doi:10.1016/j.dam.2007.07.018
[4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12. doi:10.1016/j.dam.2009.08.010
[5] Ch. Tong, X. Lin, Y. Yang and M.Luo, 2-rainbow domination of generalized Petersen graphs $P(n, 2)$, Discrete Appl. Math. 157 (2009) 1932-1937. doi:10.1016/j.dam.2009.01.020
[6] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133-139.
doi:10.1016/j.dam.2014.05.006

270 J. Amjadi, N. Mohammadi, S.M. Sheikholeslami and L. Volkmann
[7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57. doi:10.1016/0012-365X(90)90348-L
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[9] D. Meierling, S.M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758-1761. doi:10.1016/j.aml.2011.04.046
[10] S.M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129-140. doi:10.7151/dmgt. 1591
[11] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc., 2000).
[12] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013) 1125-1133. doi:10.1007/s00373-012-1158-y
[13] G. Xu, 2-rainbow domination in generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009) 2570-2573. doi:10.1016/j.dam.2009.03.016

Revised 12 June 2014 Accepted 12 June 2014

