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Abstract

A graph in a certain graph class is called minimizing if the least eigenvalue
of its adjacency matrix attains the minimum among all graphs in that class.
Bell et al. have identified a subclass within the connected graphs of order
n and size m in which minimizing graphs belong (the complements of such
graphs are either disconnected or contain a clique of size n

2
). In this paper

we discuss the minimizing graphs of a special class of graphs of order n
whose complements are connected and contains exactly one cycle (namely
the class U c

n
of graphs whose complements are unicyclic), and characterize

the unique minimizing graph in U c

n
when n ≥ 20.

Keywords: unicyclic graph, complement, adjacency matrix, least eigen-
value.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G). The adjacency matrix of G is a matrix A(G) = [aij ]
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of order n, where aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. Since
A(G) is real and symmetric, its eigenvalues are real and can be arranged as:
λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). The eigenvalues of A(G) are referred to as the
eigenvalues of G. The eigenvalue λn(G) is the spectral radius of A(G); and there
are many results in literatures concerning this eigenvalue of A(G) (see, e.g. [3]
for some older results).

The least eigenvalue λ1(G) is now denoted by λmin(G), and the corresponding
eigenvectors are called the first eigenvectors of G. In contrast to the largest
eigenvalue, the least eigenvalue has received much less attention in the literature.
In the past the main work on the least eigenvalue of a graph is focused on its
bounds; see e.g. [4, 7]. Recently, the problem of minimizing the least eigenvalues
of graphs subject to graph parameters has received much more attention, since
two papers of Bell et al. [1, 2] and one paper of our group [5] appeared in the
same issue of the journal Linear Algebra and Its Applications. Ye and Fan [14]
discuss the connectivity and the least eigenvalue of a graph. Liu et al. [8] discuss
the least eigenvalues of unicyclic graphs with given number of pendant vertices.
Petrović et al. [9, 10] discuss the least eigenvalues of bicyclic graphs and get
further results for the graphs of order n and size n + k, where 0 ≤ k ≤ 4 and
n ≥ k + 5. Wang et al. [12, 13] discuss the least eigenvalue and the number of
cut vertices of a graph. Tan and Fan [11] discuss the least eigenvalue and the
vertex/edge independence number, the vertex/edge cover number of a graph.

For convenience, a graph is called minimizing in a certain graph class if its
least eigenvalue attains the minimum among all graphs in the class. Let G (n,m)
denote the class of connected graphs of order n and size m. Bell et al. (see [1,
Theorem 1]) have characterized the structure of the minimizing graphs in G (n,m)
as follows.

Theorem 1. Let G be a minimizing graph in G (n,m). Then G is either

(i) a bipartite graph, or

(ii) a join of two nested split graphs (not both totally disconnected).

We observe here that the complements of the minimizing graphs in G (n,m) are
either disconnected or contain a clique of order at least n/2. This motivates us
to discuss the least eigenvalue of graphs whose complements are connected and
contain clique of small size. In a recent work [6] we characterized the unique
minimizing graph in the class of graphs of order n whose complements are trees.

In this paper, we continue this work on the complements of unicyclic graphs,
and determine the unique minimizing graph in U c

n for n ≥ 20, where U c
n denotes

the class of the complements of connected unicyclic graphs of order n. It is easily
seen that U c

n ( G
(

n,
(

n
2

)

− n
)

. However, for the minimizing graph in U c
n the

conditions of Theorem 1 do not hold.
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2. Preliminaries

We begin with some definitions. Given a graph G of order n, we say that a vector
X ∈ Rn is defined on G, if there is a 1-1 map ϕ from V (G) to the entries of X;
simply written Xu = ϕ(u) for each u ∈ V (G). If X is an eigenvector of A(G),
then it is naturally defined on V (G), i.e. Xu is the entry of X corresponding to
the vertex u. One can find that

(2.1) XTAX = 2
∑

uv∈E(G)XuXv,

and λ is an eigenvalue of G corresponding to the eigenvector X if and only if
X 6= 0 and

(2.2) λXv =
∑

u∈NG(v)Xu, for each vertex v ∈ V (G),

where NG(v) denotes the neighborhood of v in G. The equation (2.2) is called
(λ,X)-eigenequation of G. In addition, for an arbitrary unit vector X ∈ Rn,

(2.3) λmin(G) ≤ XTA(G)X,

with equality if and only if X is a first eigenvector of G.

In this paper all unicyclic graphs are assumed to be connected. Denote by
Un the set of unicyclic graphs of order n, and let U c

n = {Gc : G ∈ Un}, where G
c

denotes the complement of G. Note that A(Gc) = J−I−A(G), where J, I denote
the all-ones matrix and the identity matrix both of suitable sizes, respectively.
So for any vector X ∈ Rn,

(2.4) XTA(Gc)X = XT (J− I)X −XTA(G)X.
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Figure 2.1. The graphs U(p, q) (left side) and U′(p) (right side).

A star of order n, denoted by K1,n−1, is a tree of order n with n− 1 pendant
edges attached to a fixed vertex. The vertex of degree n − 1 in K1,n−1 is called
the center of K1,n. A cycle and a complete graph both of order n are denoted by
Cn,Kn respectively. Denote by S3

n the graph obtained from K1,n−1 by adding a
new edge between two pendant vertices. Next, we introduce two special unicyclic
graphs denoted by U(p, q) and U′(p), respectively (see Figure 2.1). U(p, q) is
obtained from two disjoint graphs K1,p (p ≥ 1) and S3

q+1(q ≥ 3) by adding a new

edge between one pendant vertex of K1,p and one pendant vertex of S3
q+1. U

′(p)
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is obtained from two disjoint graphs K1,p (p ≥ 1) and C3 by adding a new edge
between one pendant vertex of K1,p and one vertex of C3.

For a graph G containing at least one edge, it holds λmin(G) ≤ −1, with
equality if and only if G is a complete graph or a union of disjoint copies of
complete graphs, at least one copy being nontrivial (i.e. contains more than
one vertices). So, for a unicyclic graph U other than C4, λmin(U

c) < −1. In
addition, if U c is disconnected, then U contains a complete multipartite graph as
a spanning subgraph, which implies U is C4 or S3

n. When n ≥ 4, (S3
n)

c consists
of an isolated vertex and a connected non-complete subgraph of order n− 1.

At the end of this section, we will discuss the least eigenvalues of U(p, q)c

and U′(p)c. Let X be a first eigenvector of the graph U(p, q)c with some vertices
labeled as in Figure 2.1. By eigenequations (2.2), as λmin(U(p, q)c) < −1, all
the pendant vertices attached at v2 have the same value as v1 given by X, say
X1. Similarly, all the pendant vertices attached at v5 have the same value as
v7, say X7; two vertices of degree 2 on the triangle have the same value as v6,
say X6. Write Xvi =: Xi for the vertices vi’s in U(p, q)c for i = 2, 3, 4, 5 and
λmin(U(p, q)c) =: λ1 for simplicity. Then by the eigenequations (2.2) on vi for
i = 1, 2, . . . , 7, we have

(2.5)































λ1X1 = (p− 2)X1 +X3 +X4 +X5 + 2X6 + (q − 3)X7,
λ1X2 = X4 +X5 + 2X6 + (q − 3)X7,
λ1X3 = (p− 1)X1 +X5 + 2X6 + (q − 3)X7,
λ1X4 = (p− 1)X1 +X2 + 2X6 + (q − 3)X7,
λ1X5 = (p− 1)X1 +X2 +X3,
λ1X6 = (p− 1)X1 +X2 +X3 +X4 + 2X6 + (q − 4)X7.

Transform (2.5) into a matrix equality (B−λ1I)X
′ = 0, where X ′ = (X1, X2, . . . ,

X7)
T and the matrix B of order 7 is easily seen. We have

(2.6)

f(λ; p, q) := det(B − λI) = (−8 + 2p+ 2q)
+(13− 11p− 7q + 4pq)λ+ (20− 6q − 4qp)λ2

+(−1 + 11p+ 7q − 7pq)λ3 + (−20 + 12p+ 12q − 2pq)λ4

+(−16 + 6p+ 6q)λ5 + (−6 + p+ q)λ6 − λ7.

So λ1 is the least root of the polynomial f(λ; p, q).

Let Y be a first eigenvector of the graph U′(p)c with some vertices labeled
as in Figure 2.1. By a similar discussion, all the pendant vertices attached at v2
have the same values given by Y , say Y1. Two vertices of degree 2 on the triangle
have the same values, say Y5. Write Yvi =: Yi for the vertices vi’s in U′(p)c for
i = 2, 3, 4 and λmin(U

′(p)c) =: λ′

1 for simplicity. Then by the eigenequations
(2.2) on vi for i = 1, 2, . . . , 5,
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(2.7)























λ′

1Y1 = (p− 2)Y1 + Y3 + Y4 + 2Y5,
λ′

1Y2 = Y4 + 2Y5,
λ′

1Y3 = (p− 1)Y1 + Y4 + 2Y5,
λ′

1Y4 = (p− 1)Y1 + Y2,
λ′

1Y5 = (p− 1)Y1 + Y2 + Y3.
It is easily found that λ′

1 is the least root of the following polynomial:

(2.8)
g(λ; p) := (−4 + 2p) + (3− 5p)λ+ (6− p)λ2

+(1 + 4p)λ3 + (−2 + p)λ4 − λ5.

Lemma 2. If n ≥ 13, then λmin(U(n− 5, 3)c) < λmin(U
′(n− 4)c).

Proof. Write λmin(U(n − 5, 3)c) =: λ1, λmin(U
′(n − 4)c) =: λ′

1 for simplicity.
By the above discussion, λ1 (respectively, λ′

1) is the least root of f(λ;n − 5, 3)
(respectively, g(λ;n− 4)). Denote

ḡ(λ;n− 4) := (λ+ 1)2g(λ;n− 4).

Since λ′

1 < −1, λ′

1 is also the least root of ḡ(λ;n− 4). From (2.8), g(−3;n− 4) =
171 − 19(−4 + n), and consequently ḡ(n − 4,−3) ≤ 0 if n ≥ 13. Furthermore,
when λ → −∞, ḡ(λ;n − 4) → +∞, which implies λ′

1 ≤ −3. Obverse that when
λ ≤ −3,

ḡ(λ;n− 4)− f(λ;n− 5, 3) = (−6 + n)λ(1 + λ)(−2 + 5λ+ 2λ2) > 0.

In particular, f(λ′

1;n − 5, 3) < 0, which implies λmin(U(n − 5, 3)c) < λ′

1. The
result follows.

Lemma 3. Given a positive integer n ≥ 20, for any positive integers p, q such

that p ≥ 1, q ≥ 3 and p+ q = n− 2,

λmin(U(p, q)c) ≥ λmin(U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋)c),

with equality if and only if p = ⌈(n− 2)/2⌉ and q = ⌊(n− 2)/2⌋.

Proof. Write λmin(U(p, q)c) =: λ1 for simplicity. By (2.6), we have

f(λ; p, q)− f(λ; p+ 1, q − 1)= −λ(2 + λ)(−1 + 2λ)[(p− q + 1)(2 + λ) + 2],

f(λ; p, q)− f(λ; p− 1, q + 1)= λ(2 + λ)(−1 + 2λ)[(p− q − 1)(2 + λ) + 2].

In addition, f(−2; p, q) = −10 < 0, which implies λ1 < −2.
If q ≥ p + 1, then for λ < −2 we have f(λ; p, q) − f(λ; p + 1, q − 1) > 0. In

particular, f(λ1; p+ 1, q − 1) < 0, which implies

λmin(U(p+ 1, q − 1)c) < λ1 = λmin(U(p, q)c).
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If p ≥ q + 3(≥ 6), then, by (2.6), we have f(−3; p, q) = 241 − 19p + 23q −
21pq = 241 − 19(p − q) + (4 − 21p)q < 0, which implies λ1 < −3. Observe that
f(λ; p, q)−f(λ; p−1, q+1) > 0 when λ < −3. In particular, f(λ1; p−1, q+1) < 0,
which implies

λmin(U(p− 1, q + 1)c) < λ1 = λmin(U(p, q)c).

To complete the proof, we need to prove λmin(U(p−1, q+1)c) < λmin(U(p, q)c)
when p = q + 2. In this case, p = n

2 , q = n
2 − 2, and

f(λ; p, q)− f(λ; p− 1, q + 1) = λ(2 + λ)(−1 + 2λ)(4 + λ).

So it is enough to prove λ1 < −4 or

f
(

−4;
n

2
,
n

2
− 2

)

= 2376 + 582n− 36n2 < 0.

If n ≥ 20, then the above inequality holds, and hence the result follows.

3. Main Results

By rearranging the edges of graphs, we first give a maximization of the quadratic
form XTA(G)X among all trees or all unicyclic graphs G of order n, where X is
a non-negative or non-positive real vector defined on G.

Lemma 4. Let T be a tree of order n, and let X be a non-negative or non-positive

real vector defined on T whose entries are ordered so that |X1| ≥ |X2| ≥ · · · ≥
|Xn|, i.e. with respect to their moduli. Then

∑

uv∈E(T )
XuXv ≤

∑n

i=2
X1Xi =

∑

uv∈E(K1,n−1)
XuXv,

where X is defined on K1,n−1 such that the center has value X1. If, in addition,

X is positive or negative, and |X1| > |X2|, then the above equality holds only if

T = K1,n−1.

Proof. We may assume X is non-negative; otherwise we consider −X. Let w be
a vertex with value X1 given by X. If there exists a vertex v not adjacent of w,
letting v′ be the neighbor of v on a path of T connecting v and w, and deleting
the edge vv′ and adding a new edge wv, we will arrive at a new graph (tree) T ′,
which holds

(3.1)
∑

uv∈E(T )XuXv ≤
∑

uv∈E(T ′)XuXv.

Repeating the process on the tree T ′ for the non-neighbors of w, and so on, we
at last arrive at a star K1,n−1 with w as its center, and
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(3.2)
∑

uv∈E(T )XuXv ≤
∑

uv∈E(K1,n−1)
XuXv =

∑n
i=2X1Xi.

IfX is positive, X1 > X2, and w is not adjacent to all other vertices in T , then the
inequality (3.1), and hence (3.2), cannot hold as an equality. The result follows.

Lemma 5. Let U be a unicyclic graph of order n, and let X be a non-negative

or non-positive real vector defined on U whose entries are ordered so that |X1| ≥
|X2| ≥ · · · ≥ |Xn|, i.e. with respect to their moduli. Then

∑

uv∈E(U)
XuXv ≤

∑n

i=2
X1Xi +X2X3 =

∑

uv∈E(S3
n)
XuXv,

where X is defined on S3
n such that the vertex with degree n − 1 has value X1,

and the other two vertices on the triangle have values X2, X3 respectively. If, in

addition, X is positive or negative, and |X1| > |X2|, then the above equality holds

only if T = S3
n.

Proof. We may assume X is non-negative; otherwise we consider −X. Let w be
a vertex with value X1 given by X. By a similar discuss to the proof of Lemma
4, we have a graph U ′ of order n, in which the vertex w is adjacent to all other
vertices, and

(3.3)
∑

uv∈E(U)XuXv ≤
∑

uv∈E(U ′)XuXv =
∑n

i=2X1Xi +Xu′Xv′ ,

where u′v′ is an edge of U ′ not incident to w. Surely,

(3.4) Xu′Xv′ ≤ X2X3.
So,

(3.5)
∑

uv∈E(U)XuXv ≤
∑n

i=2X1Xi +X2X3 =
∑

uv∈E(S3
n)
XuXv.

If X is positive, and X1 > X2, then the equality (3.5) holds only if (3.3) holds,
which implies w is adjacent to all other vertices and consequently U = S3

n. The
result follows.

Lemma 6. Let U be a unicyclic graph of order n ≥ 5 such that U c is a minimizing

graph in U c
n , and let X be a first eigenvector of U c. Then X contains no zero

entries and has at least two positive entries and two negative entries.

Proof. As U c is a minimizing graph in U c
n , U 6= S3

n. We first prove that each
entry of X is nonzero. One the contrary, let Xv = 0 for some v. As U 6= S3

n, there
exists two vertices w ∈ NU (v) and w′ /∈ NU (v) such that w,w′ belong to the same
component of U−v, say U1. Let Û

c = U−vw+vw′, which is also unicyclic. Since
Xv = 0, we have λmin(Û

c) = λmin(U
c) by the choice of U c and the minimality

principle based on Rayley quotient. Therefore, X is as well the first eigenvector
of Û c. But then, by the eigenequation at v, it follows that Xw = Xw′ . So, for
any vertex u /∈ NU (v) in the component U1, Xu = Xw. This holds for any other
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neighbors of v in U1 if taking each of them in the role of w. Hence all vertices in
U1 have the same values.

If there is a nontrivial component of U − v, say U2, such that v is adjacent to
all vertices in U2, then U2 consists of exactly one edge, say pq, as U is unicyclic.
By the eigenequations on p, q, we also get Xp = Xq. So, the vertices of each
component of U − v have the same values.

(i) If v is not a cut vertex of U (e.g. a pendant vertex), then U − v is
connected, and hence X ≥ 0 or X ≤ 0, a contradiction.

(ii) Now suppose v is a cut vertex of U . Let U1, U2, . . . , Uk (k ≥ 2) be the
components of U − v, which consist of vertices with same values given by X,
respectively. Note that one component of U − v, say U1, contains the vertices of
the (unique) cycle C of U , and all other components contain pendant vertices of
U . Each vertex of U2 ∪ · · · ∪ Uk has nonzero value; otherwise a pendant vertex
will have zero value which yields a contradiction as in (i). If all vertices of U1 are
zero valued, then we take a vertex from U1 lying on C in the role of v, and also
obtain a contradiction as in (i). By the above discussion, all vertices but v have
nonzero values.

Next if XrXs > 0, where r ∈ Ui, s ∈ Uj for some distinct i, j, then let
Ū = U − vw + rs, where w ∈ NU (v) lies in Ui. But then λmin(Ū

c) < λmin(U
c),

a contradiction. So U − v has exactly two components U1 and U2, one having
positive valued vertices and the other having negative valued vertices.

Finally, recalling that all vertices in Ui have the same values for i = 1, 2, so,
by the eigenequations, all vertices in Ui have the same number of neighbors (or
non-neighbors) in Ui for i = 1, 2. This implies U = U′(1) if v lies on the cycle
and U = U′(2) otherwise. It is easily check the first eigenvector of U′(1) or U′(2)
has no zero entries. So we proved the first assertion.

Now we show the second assertion. On the contrary, assume that only one
vertex, say v with positive value given by X. Then any other vertex u is adjacent
to v in U c, since otherwise an eigenequation does not hold at u. So v is adjacent
to all other vertices in U c, which implies U is disconnected, a contradiction.

We now arrive at the main result of this paper.

Theorem 7. Let U be a unicyclic graph of order n ≥ 20. Then

λmin(U
c) ≥ λmin(U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋)c),

with equality if and only if U = U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋).

Proof. Suppose that U c is a minimizing graph in U c
n for n ≥ 20. The result will

follow if we can show that U is the unique graph U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋).
Let X be the first eigenvector of U c with unit length. By Lemma 6, X

contains no zero entries. Denote V+ = {v ∈ V (U c) : Xv > 0, }, V− = {v ∈
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V (U c) : Xv < 0}, both containing at least 2 elements by Lemma 6. Denote by
U+ (respectively, U−) the subgraph of U induced by V+ (respectively, V−), by
E′ the set of edges between V+ and V− in U . Since U is connected, E′ 6= ∅.
Obviously,

(3.6)

∑

vv′∈E(U)XvXv′ =
∑

vv′∈E(U+)XvXv′

+
∑

vv′∈E(U−)XvXv′ +
∑

vv′∈E′ XvXv′ .

First assume |V−| ≥ 3. The cycle of U may contain the edges of E′, or is
contained in one of U+, U−. Without loss of generality, we assume that the cycle
of U is not contained in U+; otherwise we consider the vector −X instead. Let
U∗ be a graph obtained from U by possibly adding some edges within V + and
V −, such that the subgraph of U∗ induced by V +, denoted by U∗

+, is a tree, and
the subgraph of U∗ induced by V −, denoted by U∗

−
, is a unicyclic graph.

In the tree U∗

+, choose a vertex, say u, with maximum modulus among all
vertices of U∗

+. By Lemma 4, we will have a star, say K1,p centered at u, where
p+ 1 = |V +| ≥ 2, which holds

(3.7)
∑

vv′∈E(U+)XvXv′ ≤
∑

vv′∈E(U∗

+
)XvXv′ ≤

∑

vv′∈E(K1,p)
XvXv′ .

In the unicyclic graph U∗

−
, choosing a vertex, say w, with maximum modulus.

By Lemma 5, we have a unicyclic graph S3
q+1, where q + 1 = |V−| ≥ 3 and the

vertex w joins all other vertices of S3
q+1, which holds

(3.8)
∑

vv′∈E(U−)XvXv′ ≤
∑

vv′∈E(U∗

−
)XvXv′ ≤

∑

vv′∈E(S3
q+1

)XvXv′ .

Let u′,w′ be the vertices of U+, U− with minimummodulus among all vertices
of U+, U−, respectively. Then

(3.9)
∑

vv′∈E′ XvXv′ ≤ Xu′Xw′ ,

Now by (3.6–3.9), we have

(3.10)

∑

vv′∈E(U)XvXv′ ≤
∑

vv′∈E(K1,p)
XvXv′

+
∑

vv′∈E(S3
q+1

)XvXv′ +Xu′Xw′

Since p ≥ 1, the vertex u′ can be chosen within the pendent vertices of K1,p

by Lemma 4. If q ≥ 3, w′ can be chosen within the pendent vertices of S3
q+1 by

Lemma 5, then from (3.10) we have

(3.11)
1
2X

TA(U)X =
∑

vv′∈E(U)XvXv′ ≤
∑

vv′∈E(U(p,q))XvXv′

= 1
2X

TA(U(p, q))X,
and consequently

(3.12)

λmin(U
c) = XTA(U c)X = XT (J− I)X −XTA(U)X

≥ XT (J− I)X −XTA(U(p, q))X
= XTA(U(p, q)c)X
≥ λmin(U(p, q)c).
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If q = 2, that is, S3
q+1 = C3, by a similar discussion, we have λmin(U

c) ≥
λmin(U

′(n− 4)c). By Lemma 2, λmin(U
′(n− 4)c) > λmin(U(n− 5, 3)c).

Next we consider the case when |V−| = 2. In this case the cycle of U cannot
lies in U−. We form a graph U# from U possibly by adding some edges within V +

and V −, such that the subgraph of U# induced by V + is a unicyclic graph, and
the subgraph of U# induced by V − is exactly K2. Also similar to the discussion
for (3.7–3.12), we have λmin(U

c) ≥ λmin(U(1, n−3)). By Lemma 3 and the above
discussion,

(3.13)
λmin(U

c) ≥ λmin(U(p, q)c)
≥ λmin(U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋)c).

By the choice of U , all equalities in (3.13) hold. So p = ⌈(n − 2)/2⌉, q =
⌊(n − 2)/2⌋ by Lemma 3, and consequently only the case of |V−| ≥ 3 occurs.
Also, all equalities in (3.11) and (3.12) hold, which implies that X is a first
eigenvector of U(p, q)c. Let U(p, q) have some vertices labeled as in Figure 2.1,
where v2 = u, v3 = u′, v5 = w, v4 = w′.

Assertion 1: The vertices v2 = u and v3 = u′ are respectively the unique

ones in U+ with maximum and minimum modulus, v5 = w and v4 = w′ are

respectively the unique ones in U− with maximum and minimum modulus. By
Lemma 6, as X is a first eigenvector of the minimizer U(p, q)c, Xvi =: Xi > 0
for i = 1, 2, 3 and Xvi =: Xi < 0 for i = 4, 5, 6, 7. By (2.5), λ1(X4 − X7) =
−X3 − X4 < 0, λ1(X6 − X7) = −2X6, λ1(X5 − X6) = −X4 − (q − 3)X7,
which implies that X5 < X6 < X7 < X4 < 0. Also by (2.5), λ1(X1 − X2) >
0, λ1(X3 −X1) = X1 −X3 −X4 > X1 −X3, which implies X3 < X1 < X2.

Assertion 2: U+ = U∗

+ = K1,p, U− = U∗

−
= S3

q+1, E1 = {u′w′}, i.e.

U = U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋). By the Assertion 1 and the equality in (3.11),
retracing the discussion for (3.8–3.9) and applying Lemmas 4 and 5, we get U+ =
U∗

+ = K1,p, U− = U∗

−
= S3

q+1. From the discussion for (3.9–3.11), also by
Assertion 1, E1 consists of exactly one edge, i.e. u′w′.

It was proved in [5] that S3
n is the unique minimizing graph in Un when n ≥ 6.

However, when n ≥ 20, by Theorem 7, the graph U(⌈(n− 2)/2⌉, ⌊(n− 2)/2⌋)c is
the unique minimizing graph in U c

n . So there exists some difference on the least
eigenvalue of unicyclic graphs and its complements.

Acknowledgements

This work is supported by National Natural Science Foundation of China (110710
02, 11371028), Program for New Century Excellent Talents in University (NCET-
10-0001), Key Project of Chinese Ministry of Education (210091), Specialized
Research Fund for the Doctoral Program of Higher Education (20103401110002),
Science and Technological Fund of Anhui Province for Outstanding Youth (100406
06Y33), Scientific Research Fund for Fostering Distinguished Young Scholars of



The Least Eigenvalue of Graphs whose Complements Are ... 259

Anhui University (KJJQ1001), Academic Innovation Team of Anhui University
Project (KJTD001B).

The authors would like to thank the anonymous referees for providing a brief
proof of the main result of this paper.

References
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