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Abstract

For integers k and n with 2 ≤ k ≤ n− 1, a graph G of order n is k-path
pancyclic if every path P of order k in G lies on a cycle of every length
from k + 1 to n. Thus a 2-path pancyclic graph is edge-pancyclic. In this
paper, we present sufficient conditions for graphs to be k-path pancyclic.
For a graph G of order n ≥ 3, we establish sharp lower bounds in terms
of n and k for (a) the minimum degree of G, (b) the minimum degree-sum
of nonadjacent vertices of G and (c) the size of G such that G is k-path
pancyclic
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1. Introduction

A Hamiltonian cycle in a graph G is a cycle containing every vertex of G and a
graph having a Hamiltonian cycle is a Hamiltonian graph. The first theoretical
result on Hamiltonian graphs occurred in 1952 and is due to Dirac [7].

Theorem 1.1 (Dirac). If G is a graph of order n ≥ 3 such that the minimum

degree δ(G) ≥ n/2, then G is Hamiltonian.

For a nontrivial graph G that is not complete, define

σ2(G) = min{deg u+ deg v : uv /∈ E(G)}

where degw is the degree of a vertex w in G. For a connected graph G, let
diam(G) denote the diameter of G (the largest distance between two vertices of
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G). It is known that if G is a graph of order n ≥ 3 such that σ2(G) ≥ n − 1,
then G is connected and diam(G) ≤ 2. In 1960, Ore [11] obtained a result that
generalizes Theorem 1.1.

Theorem 1.2 (Ore). If G is a graph of order n ≥ 3 such that σ2(G) ≥ n, then
G is Hamiltonian.

The following known result gives another sufficient condition for a graph to
be Hamiltonian (see [6, p. 136]).

Theorem 1.3. If G is a graph of order n ≥ 3 and size m ≥
(

n−1
2

)

+2, then G is

Hamiltonian.

A Hamiltonian path in a graph G is a path containing every vertex of G. A
graph G is Hamiltonian-connected if G contains a Hamiltonian u − v path for
every pair u, v of distinct vertices of G. Ore [12] also proved the following result
in 1963.

Theorem 1.4 (Ore). If G is a graph of order n ≥ 4 such that σ2(G) ≥ n + 1,
then G is Hamiltonian-connected.

There is now an immediate corollary, similar in statement to the sufficient
condition given in Theorem 1.1 for a graph to be Hamiltonian.

Corollary 1.5. If G is a graph of order n ≥ 4 such that δ(G) ≥ (n+1)/2, then
G is Hamiltonian-connected.

The following result, also due to Ore [12], is similar to the sufficient condition
given in Theorem 1.3 for a graph to be Hamiltonian.

Theorem 1.6 (Ore). If G is a graph of order n ≥ 4 and size m ≥
(

n−1
2

)

+ 3,
then G is Hamiltonian-connected.

Some 40–50 years ago, there was a great deal of research activity involving
Hamiltonian properties of powers of graphs. For a connected graph G and a
positive integer k, the kth power Gk of G is that graph whose vertex set is V (G)
such that uv is an edge of Gk if 1 ≤ dG(u, v) ≤ k where dG(u, v) is the distance
between two vertices u and v in G (or the length of a shortest u− v path in G).
The graph G2 is called the square of G and G3 is the cube of G. In 1960, Sekanina
[14] proved that the cube of every connected graph G is Hamiltonian-connected
and, consequently, the cube of G is Hamiltonian if its order is at least 3. In the
1960s, it was conjectured independently by Nash-Williams [10] and Plummer (see
[6, p.139]) that the square of every 2-connected graph is Hamiltonian. In 1974,
Fleischner [9] verified this conjecture. Also, in 1974 and using Fleischner’s result,
Chartrand, Hobbs, Jung, Kapoor and Nash-Williams [4] proved that the square
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of every 2-connected graph is Hamiltonian-connected. Thus the square of every
Hamiltonian graph is Hamiltonian-connected.

A graph G of order n is panconnected if for every pair u, v of distinct vertices
ofG, there is a u−v path of length k for every integer k with d(u, v) ≤ k ≤ n−1. It
is shown in [1] that if G is a connected graph, then the cube of G is panconnected.
For a connected graph G of order n ≥ 4 and an integer k with 1 ≤ k ≤ n− 3, the
graph G is k-Hamiltonian if G − S is Hamiltonian for every set S of k vertices
of G and k-Hamiltonian-connected if G − S is Hamiltonian-connected for every
set S of k vertices of G. If the order of a connected graph G is at least 4, then
Chartrand and Kapoor [5] showed that the cube of G is 1-Hamiltonian.

The concepts of Hamiltonian cycles, Hamiltonian paths and Hamiltonian
graphs are, of course, named for the famous Irish physicist and mathematician
Sir William Rowan Hamilton. Hamilton observed that every path of order 5 on
the graph G of the dodecahedron can be extended to a Hamiltonian cycle of G.
That is, for every path P of order 5 in G, there exists a Hamiltonian cycle C of G
such that P is a path on C. What Hamilton observed for paths of order 5 on the
graph of the dodecahedron does not hold for all paths of order 6 as is illustrated
in Figure 1 since the path of order 6 (drawn with bold edges) cannot be extended
to a Hamiltonian cycle on the graph of the dodecahedron. This led to a concept
defined in [3] for all Hamiltonian graphs.

Figure 1. The graph G of the dodecahedron.

A Hamiltonian graph G of order n ≥ 3 is k-path Hamiltonian, k ≥ 1, if for
every path P of order k, there exists a Hamiltonian cycle C of G such that P is
a path on C. The Hamiltonian cycle extension number hce(G) of G is the largest
integer k such that G is k-path Hamiltonian. So 1 ≤ hce(G) ≤ n. Therefore, if
hce(G) = k, then G is a Hamiltonian graph such that

(1) for every path P of order k, there is a Hamiltonian cycle of G containing P
as a subgraph;

(2) for k ≤ n − 1, there is some path Q of order k + 1 for which there is no
Hamiltonian cycle of G containing Q as a subgraph.
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Among the results obtained in [3] are the following.

Theorem 1.7 (Chartrand, Fujie and Zhang). If G is a graph of order n ≥ 3 and

δ(G) ≥ n/2, then hce(G) ≥ 2δ(G)− n+ 1.

The lower bound in Theorem 1.7 is sharp.

Theorem 1.8 (Chartrand, Fujie and Zhang). If G is a graph of order n ≥ 4 such

that δ(G) ≥ rn for some rational number r with 1/2 ≤ r < 1, then hce(G) ≥
(2r − 1)n+ 1.

The lower bound presented in Theorem 1.8 for the Hamiltonian cycle extension
number of a graph is sharp for every rational number r. The following two
theorems are extensions of Ore’s results in Theorems 1.4 and 1.6. Again, the
lower bounds in both Theorems 1.9 and 1.10 are best possible for every positive
integer k.

Theorem 1.9 (Chartrand, Fujie and Zhang). Let k and n be positive integers

such that n ≥ k+ 2. If G is a graph of order n and size m ≥
(

n−1
2

)

+ k+ 1, then
G is k-path Hamiltonian.

Theorem 1.10 (Chartrand, Fujie and Zhang). Let k and n be positive integers

such that n ≥ k+2. If G is a graph of order n such that σ2(G) ≥ n+ k− 1, then
G is k-path Hamiltonian.

Inspired by the concept of k-path Hamiltonian graphs, we introduce a concept
of k-path pancyclic graphs and path pancyclic graphs. For integers k and n with
2 ≤ k ≤ n− 1, a graph G of order n is k-path pancyclic if every path P of order
k in G lies on a cycle of every length from k + 1 to n. In particular, a 2-path
pancyclic graph G of order n is called an edge-pancyclic graph, that is, every
edge of G lies on a cycle of length from 3 to n. A graph G of order n ≥ 3 is
path pancyclic if G is k-path pancyclic for each integer k with 2 ≤ k ≤ n − 1.
In this paper, we present sufficient conditions for a graph to be k-path pancyclic
in terms of its order, size, minimum degree as well as the sum of the degrees of
every two nonadjacent vertices of the graph. We refer to the book [6] for graph
theoretic notation and terminology not described in this paper.

2. A Minimum Degree Condition for k-Path Pancyclic Graphs

In this section, we establish a sufficient condition on the minimum degree of a
graph G in terms of its order and a fixed integer k such that G is k-path pancyclic.
We saw in Corollary 1.5 that if G is a graph of order n ≥ 4 such that δ(G) ≥ n+1

2 ,
then G is Hamiltonian-connected and therefore G is 2-path Hamiltonian. In fact,
more can be said. First, we present a result due to Faudree and Schelp [8].
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Theorem 2.1 (Faudree and Schelp). If G is a graph of order n ≥ 5 such that

σ2(G) ≥ n+ 1, then for every pair u, v of distinct vertices of G, there is a u− v
path of length ℓ for every integer ℓ with 4 ≤ ℓ ≤ n− 1.

Theorem 2.2. Let k and n be integers with n ≥ 4 and 2 ≤ k ≤ n − 1. If G is

a graph of order n such that δ(G) ≥ n+k−1
2 , then every path of order k lies on a

cycle of length ℓ for each integer ℓ with k + 1 ≤ ℓ ≤ n except possibly k + 2.

Proof. Let P be a path of order k ≥ 2 in G, say P = (u = v1, v2, . . . , vk = v) is
a u− v path. We consider two cases, according to whether k = 2 or k ≥ 3.

Case 1. k = 2. Then uv ∈ E(G). If n = 4, then G = K4 and the result is
true trivially. Thus, we may assume that n ≥ 5. Since δ(G) ≥ n+1

2 , it follows
that N(u)∩N(v) 6= ∅ and so there is w ∈ V (G) such that (u, v, w, u) is a triangle
in G. Hence uv lies on a cycle of length ℓ = 3. Also, since δ(G) ≥ n+1

2 , it follows
by Theorem 2.1 that there is a u− v path Qℓ of length ℓ for every integer ℓ with
4 ≤ ℓ ≤ n−1. Thus, uv lies on a cycle of length ℓ for each integer ℓ ∈ {5, 6, . . . , n}.

Case 2. k ≥ 3. If k = 3 and n = 4, then G = K4 and the result is true
trivially. Thus, we may assume that n ≥ 5. For each integer ℓ with k+1 ≤ ℓ ≤ n
and ℓ 6= k+2, we can write ℓ = (k−2)+ℓ′ for some ℓ′ with 3 ≤ ℓ′ ≤ n−k+2 and
ℓ′ 6= 4. Then the graph H = G − {v2, v3, . . . , vk−1} has order nH = n − (k − 2)
and the minimum degree

δ(H) ≥
n+ k − 1

2
− (k − 2) =

[n− (k − 2)] + 1

2
=

nH + 1

2
.

First, suppose that uv is an edge of H. It then follows by Case 1 that uv lies on
a cycle Cℓ′ of order ℓ′ for each integer ℓ′ with 3 ≤ ℓ′ ≤ n − (k − 2) and ℓ′ 6= 4.
Then the u−v path Cℓ′ −uv of Cℓ′ and P form a cycle of order ℓ = ℓ′+(k−2) in
G that contains P . Next, suppose that uv is not an edge of H. Then the graph
H ′ = H +uv has order n− (k− 2) and δ(H ′) ≥ δ(H). Again by Case 1, the edge
uv lies on a cycle Cℓ′ of order ℓ

′ in H ′ for each integer ℓ′ with 3 ≤ ℓ′ ≤ n− (k−2)
and ℓ′ 6= 4. Similarly, the u− v path Cℓ′ − uv of Cℓ′ and P form a cycle of order
ℓ = ℓ′ + (k − 2) in G that contains P .

The lower bound for the minimum degree of a graph in Theorem 2.2 cannot
be improved. To see this, let n and k be integers of the same parity such that
n ≥ k + 2 and let F0, F1, F2 be three vertex-disjoint graphs where F0 = Kk is
the complete graph of order k and F1 = F2 = K(n−k)/2 are the complete graph
of order (n − k)/2. The graph G is then constructed from F0, F1, F2 by joining
every vertex of F0 to every vertex in F1 and F2. Then the order of G is n and
δ(G) = n+k−2

2 . Observe that each path of order k in F0 does not lie on any cycle
of order n in G.
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Recall that a graph G of order n is panconnected if for every pair u, v of
distinct vertices of G, there is a u − v path of length k for every integer k with
d(u, v) ≤ k ≤ n − 1. The following result was established by Williamson [15] in
1977.

Theorem 2.3 (Williamson). If G is a graph of order n ≥ 4 such that δ(G) ≥
(n+ 2)/2, then G is panconnected.

With the same minimum degree condition, Randerath, Schiermeyer, Tewes
and Nolkmann [13] showed that those graphs are edge-pancyclic in 2002.

Theorem 2.4 (Randerath, Schiermeyer, Tewes and Nolkmann). If G is a graph

of order n ≥ 4 such that δ(G) ≥ (n+ 2)/2, then G is edge-pancyclic.

For two vertices u and v in a connected graph G, a u− v geodesic is a u− v
path of length d(u, v) in G or a shortest u − v path in G. A graph G of order
n is defined in [2] to be geodesic-pancyclic if for each pair u, v of G, every u − v
geodesic lies on a cycle of length k for every k with max{2dG(u, v), 3} ≤ k ≤ n.
In particular, a geodesic-pancyclic graph is edge-pancyclic. The following result
is due to Chan, Chang, Wang and Horng (see [2]).

Theorem 2.5 (Chan, Chang, Wang and Horng). If G is a graph of order n ≥ 4
such that δ(G) ≥ (n+ 2)/2, then G is geodesic-pancyclic.

Observe that if G is a graph of order n ≥ 4 such that δ(G) ≥ (n+2)/2, then
diam(G) ≤ 2 and so a u − v geodesic in G is either the edge uv or a u − v path
of length 2. Therefore, the following result is an extension of the three theorems
above.

Theorem 2.6. Let k and n be integers with n ≥ 4 and 2 ≤ k ≤ n− 1. If G is a

graph of order n such that δ(G) ≥ n+k
2 , then G is k-path pancyclic.

Proof. Let P be any path of order k ≥ 2 in G, say P = (u = v1, v2, . . . , vk = v)
is a u− v path. We consider two cases, according to whether k = 2 or k ≥ 3.

Case 1. k = 2. Then uv ∈ E(G). For each integer ℓ with 3 ≤ ℓ ≤ n, we can
write ℓ = ℓ′+1 for some ℓ′ ≥ 2. Since δ(G) ≥ (n+2)/2, it follows by Theorem 2.3
that G is panconnected and so G contains a u− v path Qℓ′ of length ℓ′ for each
integer ℓ′ with 1 = dG(u, v) < ℓ′ ≤ n− 1. Then Qℓ′ + uv is a cycle of order ℓ.

Case 2. k ≥ 3. For each integer ℓ with k + 1 ≤ ℓ ≤ n, we can write
ℓ = ℓ′ + (k − 1) for some integer ℓ′ with 2 ≤ ℓ′ ≤ n − k + 1. Then the graph
H = G− {v2, v3, . . . , vk−1} has order nH = n− (k − 2) and

δ(H) ≥
n+ k

2
− (k − 2) =

[n− (k − 2)] + 2

2
=

nH + 2

2
.
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Thus H is panconnected and furthermore dH(u, v) ≤ 2. Therefore, H contains a
u − v path Qℓ′ of length ℓ′ for each integer ℓ′ with 2 ≤ ℓ′ ≤ nH − 1. Then Qℓ′

and P form a cycle of order ℓ = ℓ′ + 1+ (k− 2) = ℓ′ + (k− 1) in G that contains
P .

The lower bound for the minimum degree of a graph in Theorem 2.6 cannot
be improved. To see this, let k ≥ 2 be an integer and let G = kKk ∨Kk2−k+1 be
the join of kKk and Kk2−k+1, where kKk is the union of k vertex-disjoint copies
of Kk. Then G is a k2-regular graph of order n = 2k2 − k + 1. Observe that
δ(G) = n+k−1

2 = k2. However, each path of order k in any subgraph Kk in G
does not lie on a cycle of order k + 2 in G.

3. On the Degree-Sum and Size Conditions for k-Path Pancyclic

Graphs

In this section, we establish sufficient conditions on the degree-sum of nonadjacent
vertices and the size of a graph G (in terms of its order and a fixed integer k)
such that G is k-path pancyclic. We begin with the degree-sum condition. We
saw in Theorem 1.4 that if G is a graph of order n ≥ 4 such that σ2(G) ≥ n+ 1,
then G is Hamiltonian-connected. It is known, however, that there are non-
panconnected graphs G of order n such that σ2(G) ≥ n + 2 (see [6, p. 133]).
We illustrate this fact with the following example. Let n = 2p+ 2, where p ≥ 3,
and let H = K2p be the complete graph of order 2p. Partition V (H) into V1

and V2 with |V1| = |V2| = p. Define G to be the graph obtained by adding two
adjacent vertices x and y to H and joining (1) x to every vertex in V1 and (2)
y to every vertex in V2. Then deg x = deg y = p + 1 and deg u = 2p for all
u ∈ V (G) − {x, y}. Thus if u and v are two nonadjacent vertices in G, then
deg u+deg v = 2p+p+1 = (2p+2)+(p−1) ≥ n+2 since p ≥ 3. However, there
is no x− y path of length 2 in the graph G. Therefore, G is not 2-path pancyclic
since xy does not lie on a cycle of order 3 in G. In addition, if P is an x − y
path of order k for some integer k with 4 ≤ k ≤ n − 1, then P does not lie on
a cycle of order k + 1 in G. Thus, G is not k-path pancyclic. This example also
illustrates the fact that there is no constant c such that if G is a graph of order
n with σ2(G) ≥ n+ c, then G is panconnected. Similarly, this example provides
the following.

Proposition 3.1. For any two integers k and n with n ≥ 4 and 2 ≤ k ≤ n− 1,
there is no constant c such that if G is a graph of order n with σ2(G) ≥ n + c,
then G is k-path pancyclic.

The two following results provide sufficient conditions on σ2(G) in terms
of the order of a graph G such that G is panconnected and geodesic-pancyclic,
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respectively (see [2, 15]).

Theorem 3.2 (Williamson). If G is a graph of order n ≥ 4 such that σ2(G) ≥
3n−2

2 , then G is panconnected.

Theorem 3.3 (Chan, Chang, Wang and Horng). If G is a graph of order n ≥ 4
such that σ2(G) ≥ 3n−2

2 , then G is geodesic-pancyclic.

It can be shown that if G is a graph of order n ≥ 4 such that σ2(G) ≥ 3n−2
2 ,

then diam(G) ≤ 2. Therefore, the following result is an extension of these two
theorems.

Theorem 3.4. Let k and n be integers with n ≥ 4 and 2 ≤ k ≤ n− 1. If G is a

graph of order n such that σ2(G) ≥ 3n+k−4
2 , then G is k-path pancyclic.

Proof. By Theorem 3.2, the statement is true for k = 2. Thus, we may assume
that k ≥ 3. Let P be a path of order k in G, say P = (x = v1, v2, . . . , vk = y) is an
x−y path. Let H = G−{v2, v3, . . . , vk−1}. The order of H is nH = n− (k−2) =
n− k + 2. If u and v are any two nonadjacent vertices of H, then

degH u+ degH v ≥
3n+ k − 4

2
− 2(k − 2) =

3(n− k + 2)− 2

2
=

3nH − 2

2
.

Thus H is panconnected by Theorem 3.2 and furthermore dH(x, y) ≤ 2. There-
fore, H contains an x − y path Qℓ′ of length ℓ′ for each integer ℓ′ with 2 ≤ ℓ′ ≤
nH − 1 = n− k+ 1. Then Qℓ′ and P form a cycle of order ℓ = ℓ′ + 1+ (k− 2) =
ℓ′ + (k − 1) in G that contains P for each ℓ with k + 1 ≤ ℓ ≤ n.

If 2 ≤ k ≤ n − 2, then Theorem 3.4 can also be verified with the aid of
Theorem 2.6 as follows. Assume, to the contrary, that G is not k-path pancyclic.
It then follows by Theorem 2.6 that there is a vertex u in G such that deg u <
n+k
2 ≤ n − 1 (since k ≤ n − 2). Thus there is a vertex v in G such that u and

v are nonadjacent and so degG v ≤ n − 2. However then, degG u + degG v <
n+k
2 + (n− 2) = 3n+k−4

2 , which is a contradiction.

The lower bound (3n + k − 4)/2 in Theorem 3.4 for the sum of the degrees
of two nonadjacent vertices of a graph cannot be replaced by (3n + k − 6)/2.
For example, let H = K2p be the complete graph of order 2p for some integer
p ≥ 3, let F = Kk be the complete graph of order k ≥ 3 and let P = (x =
v1, v2, . . . , vk = y) be an x − y Hamiltonian path in F . Partition V (H) into V1

and V2 with |V1| = |V2| = p. Define G to be the graph obtained by (1) joining
x to every vertex in V1, (2) joining y to every vertex in V2, and (3) joining each
vertex vi (2 ≤ i ≤ k−1) to every vertex in H. Then the order of G is n = 2p+k.
Furthermore, degG x = degG y = p + (k − 1) and deg z = (2p − 1) + (k − 1) =
2p+ k− 2 for all z ∈ V (G)−V (F ). Thus if u and v are two nonadjacent vertices
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in G, then degG u+degG v = (2p+ k− 2) + (p+ k− 1) = 3p+ 2k− 3 = 3n+k−6
2 .

Observe that the path P of order k does not lie on a cycle of order k + 1 in
G and so G is not k-path pancyclic. On the other hand, it is not known if the
lower bound (3n + k − 4)/2 in Theorem 3.4 for the sum of the degrees of two
nonadjacent vertices of a graph cannot be replaced by (3n+k−5)/2 when n and
k are of opposite parity.

The following two results provide sufficient conditions on the size of a graph
G such that G is panconnected and geodesic-pancyclic, respectively (see [2, 15] ).

Theorem 3.5 (Williamson). If G is a graph of order n ≥ 4 and size m ≥
(

n−1
2

)

+ 3, then G is panconnected.

Theorem 3.6 (Chan, Chang, Wang and Horng). If G is a graph of order n ≥ 4
and size m ≥

(

n−1
2

)

+ 3, then G is geodesic-pancyclic.

Since the diameter of a graph of order n ≥ 4 and size m ≥
(

n−1
2

)

+ 3 is
at most 2, the following is an extension of Theorems 3.5 and 3.6 as well as
Theorem 1.9.

Theorem 3.7. Let k and n be positive integers such that n ≥ k + 2. If G is a

graph of order n and size m ≥
(

n−1
2

)

+ k + 1, then G is k-path pancyclic.

Proof. By Theorem 3.5, the statement is true for k = 2. Thus, we may assume
that k ≥ 3. Let G be a graph of order n ≥ k + 2 and size m ≥

(

n−1
2

)

+ k + 1
and let P = (u = v1, v2, . . . , vk = v) be a path of order k in G. Let H =
G− {v2, v3, . . . , vk−1}. Thus H has order nH = n− k + 2 and size

mH ≥

(

n− 1

2

)

+ k + 1− [(n− 1) + (n− 2) + · · ·+ (n− k + 2)]

=

(

n− k + 1

2

)

+ 3 =

(

nH − 1

2

)

+ 3.

Thus H is panconnected by Theorem 3.5 and furthermore dH(x, y) ≤ 2. There-
fore, H contains a u−v path Qℓ′ of length ℓ′ for each integer ℓ′ with 2 ≤ ℓ′ ≤ nH−
1 = n−k+1. Then Qℓ′ and P form a cycle of order ℓ = ℓ′+1+(k−2) = ℓ′+(k−1)
in G that contains P for each ℓ with k + 1 ≤ ℓ ≤ n.

The bound on the size m of a graph in Theorem 3.7 cannot be improved.
To see this, let G be a graph of order n ≥ k + 2 ≥ 4 consisting of a complete
subgraph G′ of order n− 1, where V (G′) = {v1, v2, . . . , vn−1} and another vertex
v adjacent to v1, v2, . . . , vk. Then the size of G is m =

(

n−1
2

)

+ k. However, the
path P = (v1, v2, . . . , vk) of order k lies on no Hamiltonian cycle of G. Hence P
cannot be extended to a cycle of order n in G. Thus G is not k-path pancyclic.
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