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Abstract

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree
T in G is called a rainbow tree if no two edges of T receive the same color.
For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree.
The minimum number of colors that are needed in an edge-coloring of G
such that there is a rainbow S-tree for every set S of k vertices of V (G) is
called the k-rainbow index of G, denoted by rxk(G). Notice that a lower
bound and an upper bound of the k-rainbow index of a graph with order n
is k − 1 and n − 1, respectively. Chartrand et al. got that the k-rainbow
index of a tree with order n is n− 1 and the k-rainbow index of a unicyclic
graph with order n is n − 1 or n − 2. Li and Sun raised the open problem
of characterizing the graphs of order n with rxk(G) = n − 1 for k ≥ 3. In
early papers we characterized the graphs of order n with 3-rainbow index 2
and n− 1. In this paper, we focus on k = 4, and characterize the graphs of
order n with 4-rainbow index 3 and n− 1, respectively.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the terminology and notation of Bondy and Murty [1]. Let G be a nontrivial
connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where
adjacent edges may be colored the same. A path of G is a rainbow path if any two
edges of the path have distinct colors. G is rainbow connected if any two vertices
of G are connected by a rainbow path. The minimum number of colors required
to make G rainbow connected is called its rainbow connection number, denoted by
rc(G). Results on the rainbow connectivity can be found in [2, 3, 4, 5, 6, 10, 11].

These concepts were introduced by Chartrand et al. in [4]. In [7], they
generalized the concept of rainbow path to rainbow tree. A tree T in G is called
a rainbow tree if no two edges of T receive the same color. For S ⊆ V (G), a
rainbow S-tree is a rainbow tree that connects S. Given a fixed integer k with
2 ≤ k ≤ n, the edge-coloring c of G is called a k-rainbow coloring of G if, for
every set S of k vertices of G, there exists a rainbow S-tree, and we say that
G is k-rainbow connected. The k-rainbow index rxk(G) of G is the minimum
number of colors that are needed in a k-rainbow coloring of G. Clearly, when
k = 2, rx2(G) is nothing new but the rainbow connection number rc(G) of G.
For every connected graph G of order n, it is easy to see that rx2(G) ≤ rx3(G) ≤
· · · ≤ rxn(G).

The Steiner distance dG(S) of a set S of vertices in G is the minimum
size (number of edges) of a tree in G that connects S. Such a tree is called a
Steiner S-tree or simply an S-tree. The k-Steiner diameter sdiamk(G) of G is
the maximum Steiner distance of S among all sets S with k vertices in G. Then
there is a simple upper bound and lower bound for rxk(G).

Observation 1.1 [7]. For every connected graph G of order n ≥ 3 and each

integer k with 3 ≤ k ≤ n, we have k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

It is easy to get the following observations.

Observation 1.2 [7]. Let G be a connected graph of order n containing two

bridges e and f . For each integer k with 2 ≤ k ≤ n, every k-rainbow coloring of

G must assign distinct colors to e and f .

Observation 1.3 [8]. Let G be a connected graph of order n, and H be a con-

nected spanning subgraph of G. Then rxk(G) ≤ rxk(H).

The following is an immediate consequence of the observations above. Namely,
trees attain the upper bound of k-rainbow index, regardless of the value of k.

Proposition 1.4 [7]. Let T be a tree of order n ≥ 3. For each integer k with

3 ≤ k ≤ n, rxk(T ) = n− 1.
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In [7], they also showed that the k-rainbow index of a unicyclic graph is n−1
or n− 2.

Theorem 1.5 [7]. If G is a unicyclic graph of order n ≥ 3 and girth g ≥ 3, then

(1) rxk(G) =

{

n− 2, k = 3 and g ≥ 4;

n− 1, g = 3 or 4 ≤ k ≤ n.

Notice that a lower bound and an upper bound of the k-rainbow index of
a graph with order n is k − 1 and n − 1, respectively. In [10], the authors
raised an open problem: for k ≥ 3, characterize the graphs of order n with
rxk(G) = n − 1. It is not easy to settle down the problem for general k. In
[8] and [12], we characterized the graphs of order n with 3-rainbow index 2 and
n − 1, respectively. In this paper we mainly deal with the 4-rainbow index of
graphs with order n. More specifically, characterize the graphs of order n whose
4-rainbow index is 3 and n− 1, respectively.

2. Characterization of Graphs with rx4(G)= 3

First we give a necessary and sufficient condition for rx4(G) = 3. Note that if a
connected graph of order 4 has three colors, then it has a rainbow spanning tree.
Thus, the following lemma holds.

Lemma 2.1. Let G be a connected graph of order n (n ≥ 4). Then rx4(G) = 3
if and only if each induced subgraph of G with order 4 is connected and has three

different colors.

Next we give some necessary conditions for rx4(G) = 3. By Lemma 2.1, it is
easy to get the following proposition.

Proposition 2.2. Let G be a graph of order n with rx4(G) = 3, where n ≥ 5.
Then δ(G) ≥ n− 3 and ∆(G) ≤ 2. In other words, G is the union of some paths

(may be trivial) and cycles.

For fixed integers p, q, an edge-coloring of a complete graph Kn is called
a (p, q)-coloring if the edges of every Kp ⊆ Kn are colored with at least q dis-
tinct colors. Clearly, (p, 2)-colorings are the classical Ramsey colorings with-
out monochromatic Kp as subgraphs. Let f(n, p, q) be the minimum number
of colors needed for a (p, q)-coloring of Kn. In [9], Erdős and Gyárfás got that
f(10, 4, 3) = 4, and so the following proposition holds.

Proposition 2.3. Let G be a graph of order n with rx4(G) = 3. Then n ≤ 9.

By Lemma 2.1 and Theorem 1.5, we get the following proposition.
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Proposition 2.4. Let G be a connected graph of order n (n ≥ 4) with rx4(G) = 3.
Then G contains neither C4 nor C5.

When G is a graph of order 4, it is obvious that rx4(G) = 3 if and only if G
is connected. Hence, for the remaining values of n with 5 ≤ n ≤ 9 we distinguish
five cases.

Lemma 2.5. Let G be a connected graph of order 5. Then rx4(G) = 3 if and

only if G is a subgraph of P5 or K2 ∪K3.

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, it is easy to
check that if G is not a subgraph of P5 or K2 ∪K3, then G is isomorphic to C4

or C5, a contradiction by Proposition 2.4.
Conversely, by Observation 1.3, we need to provide an edge-coloring C : E →

{1, 2, 3} of G when G is isomorphic to P5 or K2 ∪K3. Suppose G is isomorphic
to P5, denote V (G) = {v1, . . . , v5} and E(G) = {v1v2, v2v3, v3v4, v4v5}. Set
c(v1v3) = 2, c(v1v4) = 1, c(v1v5) = 3, c(v2v4) = 3, c(v2v5) = 2, c(v3v5) = 1.
Suppose G is isomorphic to K2 ∪ K3, denote V (G) = {v1, . . . , v5} and E(G) =
{v1v2, v2v3, v1v3, v4v5}. Set c(v1v4) = 1, c(v1v5) = 2, c(v2v4) = 2, c(v2v5) = 3,
c(v3v4) = 3, c(v3v5) = 1. It is easy to show that the two edge-colorings make G
4-rainbow connected.

Lemma 2.6. Let G be a graph of order 6. Then rx4(G) = 3 if and only if G is

a subgraph of C6 or 2K3.

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a
subgraph of C6 or 2K3, then G contains C4 or C5, a contradiction by Proposition
2.4.

Conversely, by Observation 1.3, we need to provide an edge-coloring C : E →
{1, 2, 3} of G when G is isomorphic to C6 or 2K3. Suppose G is isomorphic to
C6, denote V (G) = {v1, . . . , v6} and E(G) = {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1}.
Set c(v1v3) = 2, c(v1v4) = 3, c(v1v5) = 1, c(v2v4) = 1, c(v2v5) = 2, c(v2v6) =
3, c(v3v5) = 3, c(v3v6) = 1, c(v4v6) = 2. Suppose G is isomorphic to 2K3,
denote V (G) = {v1, . . . , v6} and E(G) = {v1v2, v1v3, v2v3, v4v5, v4v6, v5v6}. Set
c(v1v4) = 3, c(v1v5) = 2, c(v1v6) = 1, c(v2v4) = 1, c(v2v5) = 3, c(v2v6) = 2,
c(v3v4) = 2, c(v3v5) = 1, c(v3v6) = 3. It is easy to show that the two edge-
colorings make G 4-rainbow connected.

It is a tedious work to check whether a graph is 4-rainbow connected when
7 ≤ n ≤ 9. Hence we introduce an algorithm with the idea of backtracking to deal
with such cases. Given a graph G = (V (G), E(G)) with V (G) = {v1, v2, . . . , vn},
we color E(G) with colors {1,2,3} in a proper order: at the beginning, consider
the edge of the subgraph induced by {v1, v2}, namely the edge v1v2, and color
it with 1 initially. Once all edges of the subgraph induced by {v1, v2, . . . , vs} are
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colored, we come to deal with the new edges of the larger subgraph by adding
vs+1 to the former one. For a new edge e, we color it with 1, 2 or 3, and if
the subgraph induced by the vertices incident with already colored edges is 4-
rainbow connected, we go on to the next edge of e. Otherwise if all 1, 2 and
3 are not available, we go back to the former edge of e and give it a new color
and repeat the procedure. Clearly, the procedure always terminates. We should
point out that the algorithm has a good performance when n ≤ 9, although the
time complexity is not polynomial. In fact, we need the algorithm only to test
whether four graphs have 4-rainbow colorings in the following three lemmas.

Algorithm The 4-rainbow coloring of a graph

Input: a graph G = (V,E) with V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em}.
Output: give a 4-rainbow coloring colorlist[m] of G, or verify that G has no

4-rainbow coloring.
1. reorder the edge sequence e1, e2, . . . , em, to make sure E(G[v1, . . . , vt])
= {e1 . . . , es}, where s denotes the number of edges of G[v1, . . . , vt],
where 1 ≤ t ≤ n.

2. fix the color of e1 with 1. Initialize i = 2 and colorlist = [1, 0, 0, . . . , 0];
3. while i ≥ 2

if i > m
show colorlist; stop;
colorlist[i] = colorlist[i] + 1;

if colorlist[i] > 3
colorlist[i] = 0; i−−;

else if Boolean CHECK(ei)
i++;

4. there is no 4-rainbow coloring; stop.

Boolean CHECK(es)
Input: a graph G = (V,E) with V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em} with

the order described above. Set es = (vp, vq), where p < q. Give a color-
ing of the first s edges of E(G).

Output: determine whether the given coloring is not 4-rainbow.
1. for i = 1 up to q − 2 and i 6= p

for j = i+ 1 up to q − 1 and j 6= p
if all edges of the induced subgraph G[vi, vj , vp, vq] are colored but

G[vi, vj , vp, vq] is not 4-rainbow colored
return false; stop;

2. return true; stop.
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Lemma 2.7. Let G be a graph of order 7. Then rx4(G) = 3 if and only if G is

a subgraph of C6 or 2K2 ∪K3 or P5 ∪K2 or 2K3.

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a
subgraph of C6 or 2K2 ∪ K3 or P5 ∪ K2 or 2K3, then by Proposition 2.4, G is
isomorphic to P4 ∪ P3 or P4 ∪K3 or P7 or C7. By Observation 1.3, we need only
to verify that rx4(G) 6= 3 when G is isomorphic to P4 ∪ P3. By the algorithm,
rx4(G) 6= 3.

Conversely, by Observation 1.3 again, we need to provide an edge-coloring
of G when G is isomorphic to C6 or 2K2 ∪ K3 or P5 ∪ K2 or 2K3. The four
colorings are shown in Figure 1. It is easy to show that these four colorings make
G 4-rainbow connected.

Figure 1. Graphs for Lemma 2.7 (lines of the same type have the same color).

Figure 2. Graphs for Lemmas 2.8 and 2.9.

Lemma 2.8. Let G be a graph of order 8. Then rx4(G) = 3 if and only if G is

a subgraph of K2 ∪ 2K3 or P6 ∪K2.

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a
subgraph of K2∪2K3 or P6∪K2, then by Proposition 2.4, it is easy to check that
either G contains P4 ∪ P3 ∪K1 or G is isomorphic to C6 ∪ 2K1. By Observation
1.3, we need to verify that rx4(G) 6= 3 when G is isomorphic to P4 ∪ P3 ∪K1 or
G is isomorphic to C6 ∪ 2K1. If G is isomorphic to P4 ∪P3 ∪K1, then by Lemma
2.7, rx4(G) 6= 3. If G is isomorphic to C6 ∪ 2K1, by the algorithm, rx4(G) 6= 3.
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Conversely, by Observation 1.3 again, we need to provide an edge-coloring
of G when G is isomorphic to K2 ∪ 2K3 or P6 ∪ K2. The two edge-colorings
are shown in the first two graphs of Figure 2. It is easy to show that the two
edge-colorings make G 4-rainbow connected.

Lemma 2.9. Let G be a graph of order 9. Then rx4(G) = 3 if and only if G is

a subgraph of 3K3 or P3 ∪ 3K2.

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a
subgraph of 3K3 or P3 ∪ 3K2, then by Proposition 2.4, it is easy to check that
either G contains P4 or G is isomorphic to K3 ∪ 3K2. By Observation 1.3, we
need to verify that rx4(G) 6= 3 when G is isomorphic to P4 or K3 ∪ 3K2, by the
algorithm, in each case, rx4(G) 6= 3.

Conversely, by Observation 1.3 again, we need only to provide an edge-
coloring of G when G is isomorphic to 3K3 or P3 ∪ 3K2. The two edge-colorings
are shown in the last two graphs of Figure 2. It is easy to show that the two
edge-colorings make G 4-rainbow connected.

Combining the preceding five lemmas, we are ready to characterize the graphs
whose 4-rainbow index is 3.

Theorem 2.10. Let G be a connected graph of order n ≥ 4. Then rx4(G) = 3 if

and only if G is one of the following graphs:

(1) G is a connected graph of order 4;

(2) G is of order 5 and G is a subgraph of P5 or K2 ∪K3;

(3) G is of order 6 and G is a subgraph of C6 or 2K3;

(4) G is of order 7 and G is a subgraph of C6 or 2K2 ∪K3 or P5 ∪K2 or 2K3;

(5) G is of order 8 and G is a subgraph of K2 ∪ 2K3 or P6 ∪K2;

(6) G is of order 9 and G is a subgraph of 3K3 or P3 ∪ 3K2.

3. Characterization of Graphs with rx4(G)= n− 1

First of all, we need some notation and basic results.

Definition 3.1. Let G be a connected graph with n vertices and m edges. Define
the cyclomatic number of G as c(G) = m− n + 1. A graph G with c(G) = k is
called a k-cyclic graph. According to this definition, if a graph G meets c(G) = 0,
1, 2 or 3, then G is called acyclic (or a tree), unicyclic, bicyclic, or tricyclic,
respectively.

Definition 3.2. For a subgraph H of a connected graph G and v ∈ V (G), let
d(v,H) = min{dG(v, x) : x ∈ V (H)}.
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Let G be a connected graph. To contract an edge e = uv is to delete e and
replace its ends by a single vertex incident to all the edges which were incident to
either u or v. Let G

′

be the graph obtained by contracting some edges of G and
suppose that the resulting graph G

′

is a simple graph. Given a rainbow coloring
of G

′

, when it comes back to G, every modified edge takes the following operation:
assign the color of uv to uw and a new color to the edge wv if an edge uv of G

′

is
expanded into two edges uw, wv between the ends of the contracted edge. Then
G can be made to be 4-rainbow connected if G′ is 4-rainbow connected. Hence,
the following lemma holds.

Lemma 3.3. Let G be a connected graph, and G
′

be a connected graph by con-

tracting some edges of G. Then rx4(G) ≤ rx4(G
′

) + |V (G)| − |V (G
′

)|.

The Θ-graph is a graph consisting of three internally disjoint paths with
common end vertices and of lengths a, b, and c, respectively, such that a ≤ b ≤ c.
It follows that if a Θ-graph has order n, then a+ b+ c = n+ 1.

Let G be a connected graph of order n, to subdivide an edge e is to delete e,
add a new vertex x, and join x to the ends of e. We will first give some sufficient
conditions to make sure that the 4-rainbow index of G never attains the upper
bound n− 1.

G1
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3 5

5 4 4
1

2 3

4

3

1

4

G3

3
1

2

3

1

2

3 1 2

31 2

5

5
G2 G4

Figure 3. Graphs for Lemma 3.4.

Lemma 3.4. Let G be a connected graph of order n. If G contains three edge-

disjoint cycles, or a Θ-graph of order at least 5 as subgraphs, then rx4(G) ≤ n−2.

Proof. Consider two graphs G1, G2 in Figure 3, and by checking the given edge-
coloring in the figure, we have rx4(Gi) ≤ |V (Gi)|−2, i = 1, 2. Thus, if G contains
three edge-disjoint cycles C1, C2, C3,then we can extend the three triangles of G1

or G2 to C1, C2 and C3 respectively by a sequence of operations of subdivision.
Then add to the cycles an additional set of edges, to get a spanning subgraph
G′ of G. By Observation 1.3 and Lemma 3.3, we have rx4(G) ≤ rx4(G

′) ≤
rx4(Gi) + |V (G

′

)| − |V (Gi)| ≤ n− 2.
Let G be the set of Θ-graphs whose order is exactly 5. Then G = {G3, G4} (see

Figure 3). By checking the given edge-coloring, we have rx4(Gi) ≤ |V (Gi)| − 2,
i = 3, 4. Similarly, rx4(G) ≤ n− 2 follows.
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A graph G is a cactus if every edge is part of at most one cycle in G.

Lemma 3.5. Let G be a cactus of order n and c(G) = 2. Then rx4(G) = n− 1.

Proof. Let the two cycles of G be C1 and C2, where C1 = v1v2 · · · vℓv1, C
2 =

v′1v
′

2 · · · v
′

ℓ′v
′

1, the unique path connecting the two cycles be viPv′j , where the two
end-vertices vi and v′j may coincide. Suppose we have a color set C and |C| =
n−2. Set C = {1, 2, . . . , n−2} and Ei is the set of edges colored with i, ci = |Ei|,
1 ≤ i ≤ n − 2. Without loss of generality, we always set c1 ≥ c2 ≥ · · · ≥ cn−2.
Notice that

∑n−2

i=1
ci = n+ 1. We distinguish the following cases.

Case 1. c1 = 4, c2 = c3 = · · · = cn−2 = 1. We have the following claim.

Claim 1. No three edges of C1 or C2 have the same color.

Proof. Suppose c(v1v2) = c(vpvp+1) = c(vqvq+1), where v1v2, vpvp+1, vqvq+1

are three distinct edges. Let S = {v1, vp, vq}. It is easy to check that any
tree connecting S contains at least two edges of v1v2, vpvp+1 and vqvq+1, this
contradiction proves the claim. �

By Observation 1.2 and Claim 1, at least 3 edges of E1 exist on cycles and
each cycle has at most two of them. Suppose v1v2 and vpvp+1 of C1 have color 1,
we distinguish two subcases: (1) there is a cut edge uu′ in E1. Suppose d(u,C

1) ≥
d(u′, C1) and d(u, vi) = d(u,C1), where 2 ≤ i ≤ p. Any tree connecting v1 and u
contains at least two edges colored with 1. (2) no cut edge has color 1. Then at
least two edges, say v′1v

′

2 and v′qv
′

q+1 of C2 have color 1, and the end-vertices of

the path connecting C1 and C2 are vi and v′j , where 2 ≤ i ≤ p, 2 ≤ j ≤ q. Again,
any tree connecting v1 and v′1 contains at least two edges in E1.

Case 2. c1 = 3, c2 = 2, c3 = · · · = cn−2 = 1. We also have the following
claim.

Claim 2. No four edges of a cycle can have only two colors.

Proof. Suppose otherwise four edges, v1v2, vpvp+1, vqvq+1, vrvr+1 of C1 have
color a or b, where a, b ∈ C. Set S = {v1, vp, vq, vr}. It is easy to check that any
tree connecting S contains at least three of the four edges above. By the Pigeon
Hole Principle, one of the two colors occurs at least twice, a contradiction. �

By Claim 2, at most three edges of Ci(i = 1, 2) can have colors 1 and 2.
Notice that |E1 ∪E2| = 5. Since no two cut edges can have the same color, there
are the following possibilities:

(1) three edges of E1 ∪E2 are in a cycle, say C1. Then there exist cut edges
in E1 ∪E2, or the other two edges of E1 ∪E2 are both in C2. Similar to Case 1,
we can choose three vertices such that no rainbow tree connects them.
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(2) two edges of E1 ∪ E2 are in each cycle. Then a cut edge uu′ exists in
E1∪E2. There are two situations according to the positions of uu′ and the other
four edges of E1 ∪ E2 in cycles. We can always find three vertices such that any
tree connecting them contains at least three edges of E1 ∪ E2. (3) two edges of

E1 ∪ E2 are in one cycle, and other two of them are cut edges. The argument is
similar, and it also produces a contradiction.

Case 3. c1 = c2 = c3 = 2, c4 = · · · = cn−2 = 1. In a number of subcases
similar to those in Cases 1 and 2, a set S of vertices can be found such that a
tree connecting them contains at least four edges from E1 ∪ E2 ∪ E3. So by the
Pigeon Hole Principle again, one of the three colors occurs at least twice.

By the analysis above, all the possibilities of an (n − 2)-coloring lead to a
contradiction, thus we have rx4(G) ≥ n− 1. On the other hand, by Observation
1.1, it follows that rx4(G) = n− 1.

To characterize all the graphs with 4-rainbow index n− 1, we need to intro-
duce more graphs. Let G1 be the set of graphs by identifying each vertex of K4

with an end-vertex of an arbitrary path, and G2 be the set of graphs by identifying
each vertex of K4 − e with the root of an arbitrary tree.

Lemma 3.6. Let G be a connected graph of order n. If G ∈ G1 ∪ G2, then

rx4(G) = n− 1.

Proof. Suppose G ∈ G1, and v1, v2, v3 and v4 are the four pendant vertices of G.
We have dG({v1, v2, v3, v4}) = n − 1. Combining with Observation 1.1, we have
rx4(G) = n − 1. Let G ∈ G2. Denote by H the induced subgraph K4 − e of G,
where E(H) = {v1v2, v2v3, v3v4, v4v1, v2v4} and denote by Ti the tree rooted at
vi, i = 1, 2, 3, 4. We have the following claim.

Claim 3. No three edges of H share colors with the cut edges.

Proof. Let v′iv
′′

i , 1 ≤ i ≤ 3, be the cut edges whose colors exist in H. We may
assume that d(v′i, H) ≥ d(v′′i , H). Notice that the deletion of any three edges of H
disconnects G, and we will get some components. Let v be an arbitrary vertex of
H in the component different from the one containing v′1. Set S = {v, v′1, v

′

2, v
′

3}.
There is no rainbow tree connecting S, which verifies Claim 3. �

Now we are aiming to prove that H needs at least three new colors different
from the n − 4 colors of cut edges to make sure that G is 4-rainbow connected.
Then we get the conclusion rx4(G) = n− 1. Since rx4(H) = 3 and by Claim 3,
one or two edges of H have the color of cut edges. Assume first that the colors
of cut edges v′1v

′′

1 , v′2v
′′

2 appear in H. Suppose d(v′i, H) ≥ d(v′′i , H), i = 1, 2.
Since the deletion of two edges incident to a vertex of degree two disconnects
H, the position of the two edges of H having the colors of cut edges may have
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the following possibilities: v1v4, v2v4 or v1v4, v3v4 or v1v2, v3v4. Notice that the
remaining three edges can only have new colors. If only two colors are used, then
at least two edges of H have the same color. It is easy to find two vertices vi, vj
of H, such that no rainbow tree connects S, where S = {v′1, v

′

2, vi, vj}. Assume
then only one edge of H has the color of cut edge, say v′1v

′′

1 of Ti. Suppose
d(v′1, H) ≥ d(v′′1 , H). Then any tree connecting v′1 and the three vertices of H
except vi makes use of at least three edges ofH, namely at least three new distinct
colors are needed in H. Thus the result follows.

G5 G6 G7

2 21
1

33

4

4

1
1

22 33

4

4

1

1
2

23

3 4

4

Figure 4. Graphs for Theorem 3.7.

Now we are prepared to characterize the graphs of order n whose 4-rainbow
index is n− 1.

Theorem 3.7. Let G be a graph of order n. Then rx4(G) = n− 1 if and only if

G is a tree, or a unicyclic graph, or a cactus with c(G) = 2, or G ∈ G1 ∪ G2.

Proof. By Lemma 3.3, 3.4, 3.5, 3.6, we only need to prove the necessity. Let G
be a graph with rx4(G) = n − 1. By Proposition 1.4, Theorem 1.5, Lemma 3.4
and Lemma 3.5, we know that if G is not a tree or a unicyclic graph or a cactus
with c(G) = 2, then G contains a K4 or K4 − e as an induced subgraph. Now
suppose that G contains a K4 or K4 − e but G /∈ G1 ∪ G2. Consider the three
graphs G5, G6, G7 (see Figure 4). By checking the given coloring in Figure 4,
we have rx4(Gi) ≤ n− 2, i = 5, 6, 7. Thus we can extend G5, G6 or G7 to get a
spanning subgraph G′ of G, then rx4(G) ≤ rx4(G

′) ≤ n− 2, a contradiction.
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