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Abstract

A signed graph (or sigraph for short) is an ordered pair S = (Su, σ),
where Su is a graph, G = (V,E), called the underlying graph of S and σ :
E → {+,−} is a function from the edge set E of Su into the set {+,−}. For
a sigraph S its •-line sigraph, L•(S) is the sigraph in which the edges of S are
represented as vertices, two of these vertices are defined adjacent whenever
the corresponding edges in S have a vertex in common, any such L-edge ee′

has the sign given by the product of the signs of the edges incident with the
vertex in e ∩ e′. In this paper we establish a structural characterization of
•-line sigraphs, extending a well known characterization of line graphs due
to Harary. Further we study several standard properties of •-line sigraphs,
such as the balanced •-line sigraphs, sign-compatible •-line sigraphs and
C-sign-compatible •-line sigraphs.
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1. Introduction

For standard terminology and notation in graph theory we refer the reader to
Harary [8] and West [19], and Zaslavsky [21, 22] for sigraphs. Throughout the
paper, we consider finite, undirected graphs with no loops or multiple edges.

A signed graph (or sigraph for short; see [7]) is an ordered pair S = (Su, σ),
where Su is a graph G = (V,E), called the underlying graph of S and σ : E →
{+,−} is a function from the edge set E of Su into the set {+,−}, called the
signature of S. The edges of S with positive and negative signs are called positive

edges and negative edges, respectively. In a pictorial representation of a sigraph
S, when S is small enough, its positive edges are shown as bold oriented line
segments and negative edges as broken line segments. The positive (negative)
degree of a vertex v ∈ V (S) denoted by d+(v)(d−(v)) is the number of positive
(negative) edges incident with the vertex v and d(v) = d+(v) + d−(v). The edge
degree de(ej) of an edge ej in a sigraph S is the total number of edges adjacent
to ej in S. If the end vertices of the edge ej are u and v, then edge-degree of ej
is defined as the number de(ej) = d(u) + d(v) − 2. A vertex is called pendent if
its degree is one.

A sigraph is all-positive (all-negative) if all its edges are positive (negative);
further, it is said to be homogeneous if it is either all-positive or all-negative and
heterogeneous otherwise.

A marked sigraph is an ordered pair Sµ = (S, µ) where S = (Su, σ) is a
sigraph and µ : V (S) → {+,−} is a function from the vertex set V (S) of S

into the set {+,−}, called a marking of S. In particular, a sigraph S = (Su, σ)
has a canonical marking or C-marking, µσ, defined for each vertex v ∈ V (S) by
µσ(v) =

∏
e∈Ev

σ(e).

The line graph L(G) of a graph G is that graph whose vertex set can be put
in one-to-one correspondence with the edge set of G, such that two L-vertices
of L(G) are adjacent if and only if the corresponding edges of G are adjacent.
The edges of the line graph L(G) are called L-edges. The line graphs were first
studied by Whitney [20] and the first characterization of line graphs in terms of
complete subgraphs was obtained by Krausz [11]. In the literature, we find that
different authors gave different name to line graphs; particularly, line graphs are
termed as derivative (see [14]), interchange graph ([13]), adjoint ([12]), derived
graph ([4]) and covering graph (see [10]). Harary and Norman [9] finally fixed the
terminology by calling it a ‘line graph’. A forbidden subgraph characterization
of line graphs was established by Beineke [5]. The following theorem is the well
known characterization of a line graph given in most of the standard text-books
on graph theory (e.g., see Harary [8], Ch. 8, p. 74), originally due to Beineke [4].

Theorem 1 [8]. The following statements are equivalent:

(a) G = (V,E) is a line graph.
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(b) The edges of G can be partitioned into some of its complete subgraphs in

such a way that no vertex lies in more than two of the subgraphs.

(c) G does not have K1,3 as an induced subgraph, and if two odd triangles have

a common edge then the subgraph induced by their vertices is K4.

(d) None of the nine subgraphs shown in Figure 1 is an induced subgraph of G.

A triangle is said to be odd if there is a vertex in the graph adjacent to an
odd number of vertices of the triangle.

Figure 1. Beineke’s nine forbidden subgraphs for a line graph.

The •-line sigraph L•(S) of a sigraph S is the line graph of S = (Su, σ), with
each L-edge ee′ (e, e′ ∈ E(S)) signed with µσ(e∩ e′). There are two more notions
of a ‘signed line graph’ of a given sigraph S = (Su, σ) in the literature, viz., L(S)
and L×(S), both have L(Su) as their underlying graph; only the rule to assign
signs to the edges of L(Su) differ. An L-edge ee′ in L(S) is negative if and only
if both the edges e and e′ in S are negative [3] and an L-edge ee′ in L×(S) has
the product σ(e)σ(e′) as its sign [6].

2. Balance in •-Line Sigraphs

The sign of a cycle Z in a sigraph S is the product of the signs of all its edges
and is denoted by θ(Z). A cycle in a sigraph S is said to be positive (negative)
if its sign is positive (negative). A sigraph S is said to be balanced if and only if
all its cycles are positive.

Harary [7] derived the following structural criterion called partition criterion

for balance in sigraphs.
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Theorem 2 [7]. A sigraph S is balanced if and only if its vertex set V (S) can

be partitioned into two subsets V1 and V2, one of them possibly empty, such that

every positive edge joins two vertices in the same subset and every negative edge

joins two vertices from different subsets.

The following important lemma on balanced sigraphs is given by Zaslavsky.

Lemma 3 [23]. A sigraph in which every chordless cycle is positive, is balanced.

Now, the following theorem gives us the solution for L•(S) to be balanced.

Theorem 4. For a sigraph S, L•(S) is balanced if and only if the following

conditions hold:

(i) for every cycle Z in S, Z has even number of negatively marked vertices and

(ii) for v ∈ V (S), if d(v) > 2, then d−(v) ≡ 0 (mod 2).

Proof. Necessity: Suppose L•(S) is balanced. Then, by definition of L•(S),
every L-cycle Z ′ in L•(S) contains an even number of negative edges. Suppose
there is any cycle in S that has odd number of negatively marked vertices. Then,
by the definition of L•(S), there are odd number of negative L-edges in L•(S),
a contradiction to the hypothesis. Thus, (i) follows. Now, by the definition of
L•(S), any three edges of S incident with v are the L-vertices of an all-negative
L-triangle in L•(S), contrary to the hypothesis. Thus condition (ii) is necessary.
Hence, both conditions are necessary.

Sufficiency: Suppose conditions (i) and (ii) hold for a given sigraph S. We
shall show that L•(S) is balanced. If S is all-positive then, by definition, L•(S)
is also all-positive and hence, it is trivially balanced. Now, suppose that L•(S) is
not balanced. Then, we may assume the negative L-cycle Z ′

k is of least possible
length with this property. Let it be (e1, e2, . . . , ek, e1), where each ei is an L-
vertex. Suppose it has a chord eiej , then one of the L-cycles (ei, ei+1, . . . , ej , ei) or
(ej , ej+1, . . . , ek, e1, . . . , ei, ej) is negative, contrary to the least length assumption.
So we may assume Z ′

k chordless. Now for any graph G, a chordless L-cycle of
L(G) must consist either of three L-vertices corresponding to edges of G incident
with a single vertex, or of an L-cycle whose L-vertices are the edges of a chordless
cycle of G. The result follows.

3. Sign-Compatibility and Canonical Sign-Compatibility of L•(S)

A sigraph S = (Su, σ) is sign-compatible [16] if it has a vertex marking µ such that
each edge e = vw has σ(e) = − if and only if µ(v) = µ(w) = −. If the canonical
marking µσ has this property, then S is said to be canonically sign-compatible

(or C-sign-compatible.)
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The conditions for a sigraph S to have these properties are known (Theorems
5, 6 and 8 below). In this section we establish the conditions for a •-line sigraph
L•(S) to have each of these properties.

Theorem 5 [17]. A sigraph S is sign-compatible if and only if there is a subset

W of V (S) whose induced subsigraph has for its edge set exactly the negative

edges of S.

Theorem 6 [17]. A sigraph S is sign-compatible if and only if S does not contain

a subsigraph isomorphic to either of the two sigraphs, S1 formed by taking the path

P4 = (x, u, v, y) with both the edges xu and vy negative and the edge uv positive

and S2 formed by taking S1 and identifying the vertices x and y Figure 2.

Figure 2. Acharya and Sinha forbidden subsigraphs for a sign-compatible sigraph.

Now, we present the condition for a •-line sigraph to be sign-compatible.

Theorem 7. Let S = (Su, σ) be a canonically-marked sigraph. Then L•(S) is

sign-compatible if and only if S has the following property : Let ei, ej , ek, el ∈ E(S)
such that there are vertices v, w, x (not necessarily distinct) with ei ∩ ej = v,

ek ∩ ei = w and el ∩ ej = x and µσ(v) = +. Then, either µσ(w) = + or

µσ(x) = +.

Proof. Necessity: Suppose L•(S) is sign-compatible. Then, by Theorem 6, L•(S)
does not contain a subsigraph isomorphic to S1 or S2 in Figure 2.

Let ei and ej be two adjacent edges in S and v be the common vertex between
them and µσ(v) = +. Now, suppose that ek is adjacent with ei and el is adjacent
with ej and w and x are common vertices between them respectively. If possible,
suppose the condition is false. Then, µσ(v) = + and µσ(w) = µσ(x) = −. If
ek = el then, by the definition of L•(S), we have an L-triangle with two negative
and one positive L-edges in L•(S). Thus, we have a subsigraph isomorphic to S2

in Figure 2 in L•(S), a contradiction to the hypothesis. Now, suppose ek 6= el,
then we have an L-path P ′

4 = (ek, ei, ej , el) in L•(S) such that eiej is a positive
L-edge while ekei and ejel are negative L-edges. Thus, we have a subsigraph
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isomorphic to S1 in Figure 2 in L•(S), a contradiction to the hypothesis. Thus, in
both the conditions we have a contradiction. Hence, the conditions are necessary.

Sufficiency: Suppose the condition in the statement of the theorem holds for
a sigraph S. We want to show that L•(S) is sign-compatible. Suppose to the
contrary that L•(S) contains a subsigraph isomorphic to S1 or S2.

Case I: Suppose L•(S) contains a subsigraph, say P4
′, isomorphic to S1. Let

P4
′ = (ei, ej , ek, el) be such that eiej and ekel are negative L-edges and ejek is a

positive L-edge in L•(S). Then, by the definition of L•(S), there exists a vertex
between ej and ek in L•(S) such that it is positively marked in S and the common
vertices between ei, ej and ek, el are marked negatively in S, a contradiction to
the hypothesis. Thus, L•(S) does not contain a subsigraph isomorphic to S1.

Case II: Now, let L•(S) contain a subsigraph isomorphic to S2. Then this
L-triangle is either due to the edges of a triangle or due to a vertex v ∈ V (S) in
S with d(v) ≥ 3. Let Z ′ be an L-triangle in L•(S) which is isomorphic to S2.

Case II(a): If all the vertices of Z ′ are due to the adjacent edges of a single
triangle Z in S, then by the definition of L•(S), we have a triangle Z in S such
that its two vertices are marked negatively while one vertex is marked positively,
a contradiction to the hypothesis.

Case II(b): Now, since this triangle is not due to any triangle of S, therefore
Z ′ must contain an L-vertex, say ep, which corresponds to an edge ep incident
with a vertex v with d(v) ≥ 3 in S. Then either µσ(v) = + or µσ(v) = −. Then,
by the definition of L•(S), such L-triangle is either all-positive or all-negative,
a contradiction to the hypothesis. Hence, in all the conditions L•(S) does not
contain a subsigraph isomorphic to S2. Hence, by Theorem 6, L•(S) is sign-
compatible.

The following characterization of the C-sign-compatible sigraph is given by
the authors in [18]. This theorem is useful for our further investigation of C-sign-
compatible L•(S).

Theorem 8 [18]. A sigraph S = (Su, σ) is C-sign-compatible if and only if the

following conditions hold in S:

(i) for every vertex v ∈ V (S) either d−(v) = 0 or d−(v) ≡ 1 (mod 2), and

(ii) for every positive edge ek = vivj in S, d−(vi) = 0 or d−(vj) = 0.

Now, the following theorem determines the condition for L•(S) to be C-sign-
compatible.

Theorem 9. For a given sigraph S = (Su, σ), L•(S) is C-sign-compatible if and

only if the following conditions hold in S:
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(a) for each edge e of S, the number of edges that are adjacent with e and incident

with a negative vertex that is also adjacent with e, is zero or odd, and

(b) for every positively marked vertex in S, say vi, if there are two negatively

marked vertices, say vj and vk, adjacent with vi, then there is no other vertex

adjacent with vj or there is no other vertex adjacent with vk.

Proof. Necessity: Let •-line sigraph L•(S) be C-sign-compatible. Then, condi-
tions (i) and (ii) of Theorem 8 hold for L•(S).

Let θ denote the signature of L•(S). Thus, for any edge e = vw of S, the
L-vertex e of L•(S) has µθ(e) equal to the number of edges of S that are adjacent
with e and incident with v (if v is negative) or w (if w is negative). If this number
is even and positive, then L•(S) is not C-sign-compatible. Hence condition (a) is
necessary.

Now, suppose there is a positively marked vertex vi in S and two negatively
marked vertices vj and vk such that vj and vk are adjacent with vi. Suppose vj
and vk are adjacent with some vertices. Then, one possibility is that vj and vk are
adjacent with each other. In this case, we have an L-triangle (vivj , vjvk, vkvi, vivj)
with one positive L-edge vivjvkvi and two negative L-edges in L•(S). So there
exists a positive L-edge in L•(S) such that it does not satisfy condition (ii) of
Theorem 8. Thus, by Theorem 8, L•(S) is not C-sign-compatible, a contradiction
to the hypothesis. Hence, vj and vk are not adjacent with each other in L•(S).

Now, suppose vl is a vertex adjacent with vj and vm is a vertex adjacent
with vk respectively in S. Then, by the definition of L•(S), we have an L-path
p4 = (vlvj , vjvi, vivk, vkvm) in L•(S) such that L-edge vjvivivk is a positive edge
while L-edges vlvjvjvi and vivkvkvm are negative edges. Thus, again there exists
a positive L-edge in L•(S) such that it does not satisfy condition (ii) of Theorem
8. So by the same argument as above, we get a contradiction to the hypothesis.
Hence, condition (b) is necessary.

Sufficiency: Suppose conditions (a) and (b) hold for a given sigraph S. We
shall show that L•(S) is C-sign-compatible. Suppose on contrary that L•(S) is
not C-sign-compatible. Then, by Theorem 8 condition (i) or condition (ii) is not
satisfied for L•(S).

Suppose condition (i) of Theorem 8 is not satisfied for L•(S) i.e., there is
an L-vertex e ∈ V (L•(S)) such that neither d−(e) = 0 nor d−(e) ≡ 1 (mod 2).
This shows that there are even number of edges adjacent with e in S such that
these edges are incident with vertices with negative marking, a contradiction to
condition (a).

Now, suppose condition (ii) of Theorem 8 is not satisfied i.e., for any positive
edge k = ee′ there are negative L-edges on e and e′ in L•(S). Suppose this
positive L-edge lies on an L-path P ′

4 = (ei, ej , ek, el) such that ejek is a positive
L-edge while eiej and ekel are negative L-edges in L•(S). Then, by the definition
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of L•(S), we have a path p5 = (u, v, w, x, y) in S such that ei = uv, ej = vw,
ek = wx and el = xy. Clearly, ejek is a positive L-edge in L•(S) so, by the
definition of L•(S), common vertex w between ej and ek is surely positively
marked in S. Similarly, eiej and ekel are negative L-edges in L•(S), so their
common vertices v and x, respectively, receive negative mark in S. Thus, for a
positively marked vertex w in S, two negative vertices v and x are adjacent with
w in S. Also, u and y are adjacent with v and x in S, a contradiction to (a).

This positive L-edge can be in a triangle also. Let Z ′ be such L-triangle in
L•(S). Now, this L-triangle is either due to the edges of a triangle of S or due
to a triangle v ∈ V (S) in S with d(v) ≥ 3.

Case I: If all the vertices of Z ′ are due to the adjacent edges of a single
triangle Z in S, then by the definition of L•(S), we have triangle Z in S with one
and two negatively marked vertices in S. Thus, again we have a contradiction to
(a).

Case II: Now, since this L-triangle is not due to any triangle of S, therefore Z ′

must contain an L-vertex, say ep, such that it is incident with a vertex v ∈ V (S)
with d(v) ≥ 3 in S. Then, by the definition of L•(S), either such L-triangle is
all-positive or all-negative. So there is no such positive L-edge in L•(S). Hence,
by Theorem 8, L•(S) is C-sign-compatible. This completes the proof.

4. Existential Characterization of L•(S)

In this section we establish the characterization of the •-line sigraph. While the
characterization problem has been solved for ‘line sigraph’ (i.e., sigraph S for
which there exists a sigraph H such that L(H) ∼= S) as in [2], the same remains
to be solved for the ×-line sigraph’ (i.e., sigraph S for which there exists a sigraph
H such that L×(H) ∼= S) as well as for the ‘•-line sigraph’ (i.e., sigraph S for
which there exists a sigraph H such that L•(H) ∼= S).

Hence, for any given isolate-free sigraph S, consider the sigraph equation

L•(H) ∼= S(1)

where any sigraph H satisfying (1) (i.e., a ‘solution’ of (1)) will be called an
L•-root of S [1]. By the definition of •-line sigraph it is clear that

L•(S
u) ∼= L(Su),

so Theorem 1 is a characterization of •-line graphs also. We have the follow-
ing important observation by Sampatkumar, which is useful in the upcoming
theorem.
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Remark 10 [15]. Every canonically marked sigraph contains an even number of

negative vertices.

Now, we give two following lemmas which are essential for the characteriza-
tion of •-line graphs.

Lemma 11. Let S be a connected graph and let U be any even subset of V (S).
Then there is a signature σ for S such that µσ(v) = − if and only if v ∈ U .

Proof. Let |U | = 2k. If k = 0 then we have the all-positive signature; now
inductively suppose the statement true for even subsets of size 2, 4, . . . , 2(k−1).
Let u, v be any two elements of U . By the inductive hypothesis there is a signature
σ such that µσ(w) = − if and only if w ∈ U − {u, v} (or w could be anything
other than u or v). There is a path from u to v; change the sign of every edge on
the path, giving a signature τ . It is clear that µτ (w) = − if and only if w ∈ U .

Lemma 12. Let S = (Su, σ) be the •-line graph of sigraph T = (T u, τ) and

extend T u to a graph T̂ u by adding a new vertex t and an edge e = st, where

s ∈ V (T u) (so that t is pendent). Now extend σ to a signature σ̂ on L(Su) as

follows. The new L-edges are e1e, e2e, . . . , ede where the ei are the edges of T u

incident with s; give all these the same sign (either + or −). Then Ŝ = (Ŝu, σ̂)
is a •-line graph.

Proof. Extend τ to a signature on T̂ u, by appropriately signing st so that the
canonical marking µ̂(s) of V (T ) agrees with the σ̂(eie).

Now, the following theorem gives us the solution of (1).

Theorem 13. A given connected sigraph S = (Su, σ) is a •-line graph if and

only if following conditions hold in S:

(1) Su is a line graph and the edges of S can be partitioned into complete subsi-

graphs in such a way that no vertex lies in more than two of the subsigraphs

and each such complete subsigraph is homogeneous.

(2) if each vertex of S belongs to exactly two of these subsigraphs, then the

number of all-negative complete sigraphs is even.

Proof. Necessity: We are given a sigraph S. Suppose S is a •-line sigraph. Then
there exists a sigraph T , such that Su ∼= L•(T

u), so that Su is a line graph. Thus,
by Theorem 1, the edges of Su can be partitioned into complete subsigraphs such
that no vertex lies in more than two of these. The vertices of any such subsigraph
Q are the L-vertices of L•(T

u) corresponding to the edges of T u incident with
some vertex v of T u, and therefore the edges of Q are L-edges of L•(T

u) signed
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with µσ(v). Thus these complete subsigraphs are homogeneous, and condition
(1) is satisfied.

Next, suppose all the vertices in S lie in exactly two such subsigraphs and
number of all-negative subsigraphs is odd. By the definition of •-line sigraph, it
is clear that there are odd number of negatively marked vertices in the L•-root
of S, a contradiction to the Remark 10. Hence, by contradiction, (2) holds.

Now, suppose there are some vertices in S such that these are not in two
such subsigraphs. While making the L•-root of S by the help of these subsets,
it is clear that there are some pendent vertices in the L•-root of S. Since the
vertices are pendent in L•-root of S, so there are not any other edges incident
with these vertices in the L•-root of S. By the definition of L•(S), these vertices
are not giving any contribution to the signing of any complete subsigraphs in
the •-line sigraph. Thus, by including or excluding these vertices the number of
negatively marked vertices, in L•-root of S, is even. So the number of all-negative
homogeneous complete subsigraphs is either even or odd according to the number
of pendent vertices and their canonical marking in the L•-root of S.

Sufficiency: Suppose S is a sigraph satisfying the conditions. We shall show
that S is the •-line sigraph, that is, there exists a sigraph T such that S ∼= L•(T ).

Let T u be the graph such that Su = L(T u). We wish to find a signature τ on
T u such that µτ is the canonical marking of V (T u) giving the required signature
of Su. Assume, first that there is an even number of all-negative complete subsi-
graphs in the partitioning of E(S). Let U be the corresponding set of vertices of
T u. By Lemma 11, there is a signature τ on T u such that µτ is negative exactly
on U . Finally, if T u has a pendent vertex t, then by Lemma 12 there is a complete
sigraph whose sign may be chosen independently. This completes the proof.

Note: If a sigraph S is disconnected then S is a •-line sigraph if and only if its
every component satisfies the conditions of Theorem 13 separately.

Corollary 14. Every homogeneous complete sigraph Kn is a •-line sigraph.

Proof. Suppose we are given a homogeneous complete sigraph. It is easy to see
that L•-root for K

u
n is star Ku

1,n. Thus, K
u
n is a line graph. Thus, the conditions

of Theorem 13 are satisfied. Hence, every homogeneous complete sigraph Kn is
a •-line sigraph.

Corollary 15. Every path sigraph Pn is a •-line sigraph.

Proof. Suppose we are given a path sigraph Pn. It is easy to see that L•-root
for P u

n is P u
n+1. Thus, P

u
n is a line graph. We can partition Pn into (n − 1) K2

complete subsigraphs in such a way that no vertex lies in more than two of the
subsigraphs and each such K2 is homogeneous. Since there are pendent vertices
in Pn, number of such complete subsigraph may be even or odd. So both the
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conditions of Theorem 13 are satisfied. Hence, every path sigraph Pn is a •-line
sigraph.

Corollary 16. A cycle Cn is a •-line sigraph if it contains even number of

negative edges.

Proof. Suppose we are given a cycle Cn. It is easy to see that the L•-root for
Cu
n is Cu

n . Thus, C
u
n is a line graph. We can partitioned Cn into n, K2 complete

subsigraphs in such a way that no vertex lies in more than two of the subsigraphs
and each such K2 is homogeneous. Since there are no pendent vertices in Cn and
there is an even number of negative edges in Cn, the number of such complete
subsigraphs K2 is even. So both the conditions of Theorem 13 are satisfied.
Hence, every cycle sigraph Cn is a •-line sigraph.

Corollary 17. Every balanced cycle Cn is a •-line sigraph.

Proof. The result is trivial by Lemma 3 and Corollary 16.

Figure 3. Showing a •-line sigraph and its two L•-root sigraphs.

Note: We know that if there are odd (even) number of negative edges incident
with any vertex, then due to its canonical marking µσ(v) = − (µσ(v) = +).
Therefore, for a given •-line sigraph its L•-root sigraphs is not unique. The
pictorial presentation of this is shown in Figure 3. Hence, the following problem
is open.

Problem 18. Characterize •-line sigraphs having exactly one L•-root sigraph
up to isomorphism.
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