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Abstract

Let G be a connected graph of size at least 2 and c :E(G)→{0, 1, . . . , k−
1} an edge coloring (or labeling) of G using k labels, where adjacent edges
may be assigned the same label. For each vertex v of G, the color code of
v with respect to c is the k-vector code(v) = (a0, a1, . . . , ak−1), where ai is
the number of edges incident with v that are labeled i for 0 ≤ i ≤ k − 1.
The labeling c is called a detectable labeling if distinct vertices in G have
distinct color codes. The value val(c) of a detectable labeling c of a graph
G is the sum of the labels assigned to the edges in G. The total detection
number td(G) of G is defined by td(G) = min{val(c)}, where the minimum
is taken over all detectable labelings c of G. We investigate the problem of
determining the total detection numbers of cycles.
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2010 Mathematics Subject Classification: 05C15, 05C45, 05C78.

1. Introduction

We refer to the book [6] for graph-theoretical notation and terminology not de-
scribed in this paper.

http://dx.doi.org/10.7151/dmgt.1792
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Let G be a connected graph of size at least 2 and c : E(G) → {0, 1, . . . , k−1}
an edge coloring (or labeling) of G for some positive integer k, where adjacent
edges may be assigned the same label. If c uses k labels, then c is a k-labeling.
The color code of a vertex v of G (with respect to c) is the ordered k-vector
codec(v) = (a0, a1, . . . , ak−1) (or simply codec(v) = a0a1 · · · ak−1), where ai is the
number of edges incident with v that are labeled i for 0 ≤ i ≤ k − 1. Thus,

(1)
∑k−1

i=0
ai = degG v.

If the labeling c is clear, then we use code(v) to denote the color code of a vertex
v. The labeling c is called a detectable labeling of G if distinct vertices of G
have distinct color codes, that is, for every two vertices of G, there exists a label
such that the numbers of incident edges assigned that label are different for these
two vertices. Thus, a detectable labeling is a vertex-distinguishing edge labeling.
The detection number det(G) of G is the minimum positive integer k for which
G has a detectable k-labeling. A detectable labeling of a graph G using det(G)
labels is called a minimum detectable labeling of G. Since there is no nontrivial
irregular graph (a graph in which no two distinct vertices have the same degree),
every detectable labeling of a graph must use at least two labels by (1). Thus,
det(G) ≥ 2 for every connected graph G of size at least 2. Detectable labelings
have been studied in [1, 2, 3, 4, 5], sometimes with different terminology and
notation.

For a detectable labeling c of a graph G, define the value val(c) of c by
val(c) =

∑

e∈E(G) c(e). The total detection number td(G) of G is then defined by
td(G) = min{val(c)}, where the minimum is taken over all detectable labelings
c of G. Thus, in the case of the detection number det(G) of G, we minimize
the number of labels used in a detectable labeling of G; while in the case of the
total detection number td(G) of G, we minimize the sum of labels of the edges
of G used in a detectable labeling of G (which may or may not be a minimum
detectable labeling). The concept of the total detection numbers of graphs was
suggested by Slater and has been studied by Escuadro and Fujie-Okamoto in [8].
Complete bipartite graphs and their total detection numbers were considered in
[7].

In general, for a given connected graph, determining the exact value of its
detection number is not always a trivial task, although the numbers have been
investigated for many well-known graphs. Finding the total detection number of a
graph is even more challenging. For example, the detection numbers of complete
graphs and cycles have been completely determined while only partial results are
known for the total detection numbers for these graphs (see [8], also shown in
Table 3).
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Theorem 1 [5]. Let n ≥ 3 be an integer and p =
⌈

√

n/2
⌉

. Then det(Kn) = 3

and

det(Cn) =

{

2p− 1 if 2(p− 1)2 < n ≤ p(2p− 1),
2p if p(2p− 1) < n ≤ 2p2.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

td(Kn) 3 3 4 6 8 9 11 13 16 18 20 22 25

td(Cn) 3 3 4 6 9 11 12 14 17 21 23 26 29

Table 1. td(Kn) and td(Cn) for small values of n.

Note that td(Kn) ≤ td(Cn) for 3 ≤ n ≤ 15. This is true for n ≥ 16 as well.
In fact, the following is among the results obtained in [8].

Theorem 2 [8]. If G is a graph of order at least 3 containing a connected regular

spanning subgraph H, then td(G) ≤ td(H).

Theorem 2 suggests that studying the total detection numbers of cycles may
shed some light on the total detection numbers of Hamiltonian graphs in general.
For this reason, we discuss the problem of determining the total detection num-
bers of cycles in this article. In particular, we will give upper and lower bounds
for the total detection number of a cycle in terms of its order, namely,

(2) 2
3n

1.5 − 3
2n < td(Cn) ≤ 2

3n
1.5 − 1

2n

for n ≥ 8. We also present an infinite set S ⊆ {3, 4, 5, . . .} such that the exact
value of td(Cn) can be calculated for each n ∈ S.

2. A Lower Bound

Let there be given a detectable k-labeling of Cn, where k ≥ det(Cn). Then
equation (1) implies that the dot product of the color code of each vertex in the
cycle and the k-vector (1, 1, . . . , 1) equals 2. In [8], a lower bound for td(Cn) was
obtained by considering sets of n distinct vectors ~v such that ~v · (1, 1, . . . , 1) = 2.
The lower bound in (2) is then a consequence of this result.

Theorem 3 [8]. For each integer n ≥ 5, let p = ⌈√n ⌉. Then

td(Cn) ≥



























1

2

(

n(2p− 3)− 1

6
p(p− 1)(4p− 5)

)

if (p− 1)2 < n ≤ p(p− 1)− 2,

1

2

(

n(2p− 2)− 1

6
(4p3 − 3p2 − p− 6)

)

if n ∈ {p(p− 1)− 1, p(p− 1)},
1

2

(

n(2p− 2)− 1

6
p(p− 1)(4p+ 1)

)

if p(p− 1) < n ≤ p2 − 2,

1

2

(

n(2p− 1)− 1

6
(p− 1)(4p2 + 7p+ 6)

)

if n ∈ {p2 − 1, p2}.
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Theorem 4. For each integer n ≥ 3, td(Cn) >
2
3n

1.5 − 3
2n.

Proof. Since the result holds for 3 ≤ n ≤ 15, assume that n ≥ 16. Let p = ⌈√n ⌉.
Therefore,

√
n ≤ p <

√
n+ 1 ≤ 1

8n+ 3. We consider the following four cases.

Case 1. (p− 1)2 + 1 ≤ n ≤ p(p− 1)− 2. Then n+ p+ 2 ≤ p2 ≤ n+ 2p− 2.
Therefore,

td(Cn) ≥ np− 3
2n− 1

12(4p
3 − 9p2 + 5p)

≥ np− 3
2n− 1

3p(n+ 2p− 2) + 3
4(n+ p+ 2)− 5

12p

≥ 2
3np− 3

4n− 2
3(n+ 2p− 2) + p+ 3

2

≥ 2
3n

1.5 − 17
12n− 1

3

(

1
8n+ 3

)

+ 17
6 = 2

3n
1.5 − 35

24n+ 11
6

> 2
3n

1.5 − 3
2n.

Case 2. p(p− 1)− 1 ≤ n ≤ p(p− 1). Then n+ p ≤ p2 ≤ n+ p+ 1 and so

td(Cn) ≥ np− n− 1
12(4p

3 − 3p2 − p− 6)

≥ np− n− 1
3p(n+ p+ 1) + 1

4(n+ p) + 1
12p+

1
2

≥ 2
3np− 3

4n− 1
3(n+ p+ 1) + 1

2

≥ 2
3n

1.5 − 13
12n− 1

3

(

1
8n+ 3

)

+ 1
6 = 2

3n
1.5 − 9

8n− 5
6

> 2
3n

1.5 − 3
2n.

Case 3. p(p− 1) + 1 ≤ n ≤ p2 − 2. Then n+ 2 ≤ p2 ≤ n+ p− 1 and

td(Cn) ≥ np− n− 1
12(4p

3 − 3p2 − p)

≥ np− n− 1
3p(n+ p− 1) + 1

4(n+ 2) + 1
12p

≥ 2
3np− 3

4n− 1
3(n+ p− 1) + 5

12p+
1
2 ≥ 2

3n
1.5 − 13

12n+ 1
12p+

5
6

> 2
3n

1.5 − 3
2n.

Case 4. p2 − 1 ≤ n ≤ p2. Then n ≤ p2 ≤ n+ 1 and

td(Cn) ≥ np− 1
2n− 1

12(4p
3 + 3p2 − p− 6)

≥ np− 1
2n− 1

3p(n+ 1)− 1
4(n+ 1) + 1

12p+
1
2

≥ 2
3n

1.5 − 3
4n− 1

4

(

1
8n+ 3

)

+ 1
4 = 2

3n
1.5 − 25

32n− 1
2

> 2
3n

1.5 − 3
2n.

This completes the proof.
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3. An Upper Bound

For an integer n ≥ 3, suppose that c is a detectable labeling of Cn = (v1, v2, . . . , vn,
v1) and consider a corresponding function c∗ : V (Cn) → Z× Z defined by

c∗(vi) =
(

max{c(vi−1vi), c(vivi+1)},min{c(vi−1vi), c(vivi+1)}
)

for 1 ≤ i ≤ n. Thus, val(c) = 1
2

∑n
i=1 c

∗(vi) · (1, 1).
Now consider the sequence s : c∗(v1), c

∗(v2), . . . , c
∗(vn), c

∗(v1), c
∗(v2). Ob-

serve that if (ai1 , bi1), (ai2 , bi2), (ai3 , bi3) are consecutive terms in s, then either

(i) ai2 ∈ {ai1 , bi1} and bi2 ∈ {ai3 , bi3} or

(ii) ai2 ∈ {ai3 , bi3} and bi2 ∈ {ai1 , bi1}.
As an example, suppose that c is the detectable labeling of C8 shown in Figure 1.
Then we obtain the sequence s : (0, 0), (1, 0), (2, 1), (2, 0), (3, 0), (3, 1), (4, 1), (4, 0),
(0, 0), (1, 0). Note also that this sequence s can be expressed geometrically in the
R
2 plane as shown in Figure 1.

Figure 1. A detectable labeling of C8 and the corresponding diagram.

Conversely, if there is a sequence s : c1, c2, . . . , cn+2 of length n+ 2 where

(a) each term in s is of the form (a, b), where a and b are integers with

0 ≤ b ≤ a,

(b) the first n terms in s are distinct and cn+i = ci for i = 1, 2, and

(c) if (ai1 , bi1), (ai2 , bi2), (ai3 , bi3) are consecutive terms in s, then either

(i) ai2 ∈ {ai1 , bi1} and bi2 ∈ {ai3 , bi3} or

(ii) ai2 ∈ {ai3 , bi3} and bi2 ∈ {ai1 , bi1},
then one can find a corresponding detectable labeling of Cn.

For example, suppose that n = (2p)2 + 1 for some positive integer p. Then
one can construct a diagram inducing a sequence satisfying (a)–(c) from which we
obtain a detectable labeling of Cn whose value is 2

3p(8p
2 − 3p+ 1). See Figure 2

for how such a diagram can be obtained for n = 5, 17, 37 and note that this can
be easily generalized for all n = (2p)2 + 1. Similarly, one can show that there is
a detectable labeling of Cn whose value equals 1

6(n− 1)(4
√
n− 3) when

√
n is an

odd integer. (See Figure 3 for n = 9, 25, 49.) Hence, we obtain the following.
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Figure 2. Grid diagrams for n = 5, 17, 37.

Figure 3. Grid diagrams for n = 9, 25, 49.

Proposition 5. For an integer n ≥ 5,

td(Cn) ≤







1
6(n− 1)(4

√
n− 1− 3) + 1

3

√
n− 1 if

√
n− 1 is an even integer,

1
6(n− 1)(4

√
n− 3) if

√
n is an odd integer.

For other values of n ≥ 16 not described in Proposition 5, we can modify
these diagrams to obtain detectable labelings of cycles of the desired orders and
calculate their values. The diagrams in Figure 4 for 20 ≤ n ≤ 23 are obtained
from the diagram for n′ = 17 in Figure 2. We then see that td(C20) ≤ 49,
td(C21) ≤ 52, td(C22) ≤ 54, and td(C23) ≤ 58.

Let us describe this procedure more precisely. For a given n ≥ 16, let p =
⌊√n/2⌋. First, if (2p)2 ≤ n < 4(p2 + p+ 1), then we begin with the diagram D′

for n′ = (2p)2 + 1. For 0 ≤ i ≤ 3, let n′

i = n′ + i − 1. Since n′

1 = n′, we already
have a detectable labeling of Cn′

1
whose value equals t′1 = 2

3p(8p
2 − 3p + 1) =

2pn′

1− 2
3p(4p

2+3p+2). For n′

0 = n′−1, delete the vertex at (2p−1, 2p−1) from
D′ and join the two vertices at (2p−1, 2p−2) and (2p, 2p−1). The new diagram
results in a detectable labeling of Cn′

0
whose value equals t′0 = t′1 − (2p − 1) =

2pn′

0 − 2
3p(4p

2 + 3p + 2) + 1. For n′

2 = n′ + 1, start again with D′ and insert
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Figure 4. Grid diagrams for 20 ≤ n ≤ 23.

a new vertex at (2, 2) between the two at (2, 1) and (2, 0). In addition, insert
another vertex at (4, 4) between the two at (4, 3) and (4, 0) for n′

3 = n′ + 2.
Then the corresponding labelings are detectable labelings of Cn′

2
and Cn′

3
whose

values equal t′2 = t′1 + 2 = 2pn′

2 − 2
3p(4p

2 + 3p + 5) + 2 and t′3 = t′1 + 6 =
2pn′

3 − 2
3p(4p

2 +3p+8)+ 6, respectively. Now for (2p)2 +4 ≤ n < 4(p2 + p+1),
add the appropriate number of sets of four vertices. These are indicated as shaded
“squares” in Figure 5, which describes the situation for p = 3. While adding any

Figure 5. Constructing grid diagrams for (2p)2 ≤ n < 4(p2 + p+ 1) where p = 3.

one of these squares increases the order by 4, it also increases the value of the
corresponding labeling by 8p. Thus, the order in which these squares (there are
p of them) are added does not matter.

For 4(p2 + p + 1) ≤ n < (2p + 2)2, the procedure is quite similar. We first
add four vertices at (2p + 1, 2p), (2p + 1, 2p + 1), (2p + 2, 2p), (2p + 2, 2p + 1) to
the diagram for n′′ = (2p+ 1)2, as shown in Figure 6, and call this new diagram
D′′. For 0 ≤ i ≤ 3, let n′′

i = n′′ + i + 3. Then for n′′

1 = n′′ + 4, we obtain a
detectable labeling of Cn′′

1
whose value equals t′′1 = 2

3p(p+1)(8p+1)+ (8p+4) =

(2p+1)n′′

1 − 2
3p(4p

2+9p+8)−1. As before, one can obtain a detectable labeling
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Figure 6. Constructing grid diagrams for 4(p2 + p+ 1) ≤ n < (2p+ 2)2 where p = 3.

of Cn′′

0
by deleting the vertex at (2p + 1, 2p + 1) from D′′ and joining the two

vertices at (2p+1, 2p) and (2p+2, 2p+1). Similarly, adding the vertices at (2, 2)
and (4, 4) to D′′, we obtain detectable labelings of Cn′′

2
and Cn′′

3
.

For 4(p2 + p + 1) + 4 ≤ n < (2p + 2)2, adjust the order by adding the
appropriate number of squares, which is also shown in Figure 6. Any one of these
squares (there are p− 1 of them) increases the value of the labeling by 8p+ 4.

As a consequence, we obtain the following for general values of n ≥ 16.

Theorem 6. For each integer n ≥ 16, let p = ⌊√n/2⌋ and define f : [16,∞) ∩
Z → Z by

f(n) =



































































































2pn− 2
3p(4p

2 + 3p+ 2) + 1 if n < 4(p2 + p+ 1) and
n ≡ 0 (mod 4),

2pn− 2
3p(4p

2 + 3p+ 2) if n < 4(p2 + p+ 1) and
n ≡ 1 (mod 4),

2pn− 2
3p(4p

2 + 3p+ 5) + 2 if n < 4(p2 + p+ 1) and
n ≡ 2 (mod 4),

2pn− 2
3p(4p

2 + 3p+ 8) + 6 if n < 4(p2 + p+ 1) and
n ≡ 3 (mod 4),

(2p+ 1)n− 2
3p(4p

2 + 9p+ 8)− 1 if n ≥ 4(p2 + p+ 1) and
n ≡ 0, 1(mod 4),

(2p+ 1)n− 2
3p(4p

2 + 9p+ 11) if n ≥ 4(p2 + p+ 1) and
n ≡ 2 (mod 4),

(2p+ 1)n− 2
3p(4p

2 + 9p+ 14) + 3 if n ≥ 4(p2 + p+ 1) and
n ≡ 3 (mod 4).

Then there exists a detectable labeling of Cn whose value equals f(n).

In order to verify that td(Cn) ≤ 2
3n

1.5 − 1
2n for n ≥ 16, we present a few

lemmas.
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Lemma 7. For an integer n ≥ 16, let p = ⌊√n/2⌋. If f is the function defined

in Theorem 6, then

f(n) ≤
{

f(4p2) + 2p(n− 4p2) if n < 4(p2 + p+ 1),
f(4(p2 + p+ 1)) + (2p+ 1)(n− 4(p2 + p+ 1)) if n ≥ 4(p2 + p+ 1).

Lemma 8. If f is the function defined in Theorem 6, then f(n) ≤ 2
3n

1.5 − 1
2n

for each integer n ≥ 16.

Proof. Let g : (1,∞) → R be given by g(x) = 2
3x

1.5− 1
2x. Also, for each positive

integer p, define gi,p : R → R by

gi,p(x) = (2p+ i)
(

x− (2p+ 1
2 + i)2

)

+ g
(

(2p+ 1
2 + i)2

)

for i = 0, 1. Then gi,p ≤ g on (1,∞). Also, observe that

g0,p(4p
2)− f(4p2) = 5

6

(

p− 5
4

)

,

g1,p(4(p
2 + p+ 1))− f(4(p2 + p+ 1)) = 5

6

(

p− 3
20

)

.

Hence, g0,p(4p
2) > f(4p2) and g1,p(4(p

2 + p + 1)) > f(4(p2 + p + 1)) for p ≥ 2.
For n < 4(p2 + p+ 1),

f(n) ≤ f(4p2) + 2p(n− 4p2) < g0,p(4p
2) + 2p(n− 4p2) = g0,p(n) ≤ g(n).

Similarly, for n ≥ 4(p2 + p+ 1),

f(n) ≤ f(4(p2 + p+ 1)) + (2p+ 1)(n− 4(p2 + p+ 1))

< g1,p(4(p
2 + p+ 1)) + (2p+ 1)(n− 4(p2 + p+ 1))

= g1,p(n) ≤ g(n).

This gives us the desired result.

The following is therefore a consequence of Table 1, Theorem 6, and Lemma 8.

Corollary 9. For each integer n ≥ 3, td(Cn) ≤ 2
3n

1.5 − 1
2n except for n = 3, 7

(td(Cn) <
2
3n

1.5 − 1
2n+ 1.1 for every n ≥ 3).

In closing, we determine the exact values of the total detection numbers
of Cn for each n ∈ {p(4p + 1), p(4p + 1) + 1, p(4p + 5), p(4p + 5) + 1 : p ∈
N}. For example, see Figure 7 for how we obtain grid diagrams of C18 and
C19 that produce detectable labelings whose values are the minimum possible.
Generalizing this construction, we obtain the following result.

Theorem 10. For each p ∈ N,

td(Cp(4p+1)) =
1
3p(16p

2 − 3p− 1) = td(Cp(4p+1)+1)− 2p,

td(Cp(4p+5)) =
1
3p(16p

2 + 21p− 1) = td(Cp(4p+5)+1)− 2p.
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Figure 7. Obtaining detectable labelings of C18 and C19.

We have seen that 2
3n

1.5 − 3
2n < td(Cn) ≤ 2

3n
1.5 − 1

2n for n ≥ 8. Table 2
suggests that 2

3n
1.5 − 3

4n could be an improved lower bound for td(Cn). Indeed,
we see that it is the case for those n that can be written in terms of p as in
Theorem 10 by verifying that 4

9n
3 <

(

td(Cn) +
3
4n

)2
. Also, Table 3 shows that

the same holds for 3 ≤ n ≤ 20.

n 5 6 9 10 18 19 26 27 39 40 51 52

td(Cn) 4 6 12 14 38 42 70 74 134 140 206 212
⌈

2

3
n
1.5

−

3

4
n
⌉

4 6 12 14 38 41 69 74 134 139 205 211

n 68 69 84 85 105 106 125 126 150 151 174 175

td(Cn) 324 332 452 460 640 650 840 850 1114 1126 1402 1414
⌈

2

3
n
1.5

−

3

4
n
⌉

323 331 451 459 639 649 838 849 1113 1124 1400 1413

Table 2. td(Cn) for n ∈ {p(4p+ 1), p(4p+ 1) + 1, p(4p+ 5), p(4p+ 5) + 1 : 1 ≤ p ≤ 6}.

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

td(Cn) 3 3 4 6 9 11 12 14 17 21 23 26 29 33 35 38 42 47
⌈

2

3
n
1.5

−

3

4
n
⌉

2 3 4 6 8 10 12 14 17 19 22 25 28 31 34 38 41 45

Table 3. td(Cn) for 3 ≤ n ≤ 20.

Conjecture 11. For every n ≥ 8, 2
3n

1.5 − 3
4n ≤ td(Cn) ≤ 2

3n
1.5 − 1

2n.

Problem 12. How close is td(Cn) to
2
3n

1.5 − 3
4n?
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