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Abstract

The well-known 1-2-3 Conjecture addressed by Karoński,  Luczak and
Thomason asks whether the edges of every undirected graph G with no iso-
lated edge can be assigned weights from {1, 2, 3} so that the sum of incident
weights at each vertex yields a proper vertex-colouring of G. In this work,
we consider a similar problem for oriented graphs. We show that the arcs

of every oriented graph
−→
G can be assigned weights from {1, 2, 3} so that

every two adjacent vertices of
−→
G receive distinct sums of outgoing weights.

This result is tight in the sense that some oriented graphs do not admit such
an assignment using the weights from {1, 2} only. We finally prove that
deciding whether two weights are sufficient for a given oriented graph is an
NP-complete problem. These results also hold for product or list versions of
this problem.
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1. Introduction

Let G be an undirected graph with vertex and edge sets V (G) and E(G), respec-
tively. For every vertex v of G, we denote by N(v) the set of vertices neighbouring
v. A k-edge-weighting w of G is an assignment w : E(G) → {1, 2, . . . , k}. From w,
one naturally deduces a vertex-colouring φw of G, where φw(v) =

∑

u∈N(v)w(vu)

http://dx.doi.org/10.7151/dmgt.1791
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for every vertex v. In other words, every vertex v receives the sum of its incident
weights by w as its “colour”. If φw is proper, i.e. we have φw(u) 6= φw(v) for
every two adjacent vertices u and v of G, then we say that w is neighbour-sum-

distinguishing (nsd for short).
The study of neighbour-sum-distinguishing edge-weighting of graphs was ini-

tiated in 2004, with Karoński,  Luczak and Thomason posing the following con-
jecture.

1-2-3 Conjecture. Every graph with no isolated edge admits an nsd 3-edge-
weighting.

Despite many efforts to tackle it, the 1-2-3 Conjecture is still an open question.
The best result towards the 1-2-3 Conjecture at the moment is due to Kalkowski,
Karoński and Pfender, who proved that every graph with no isolated edge admits
an nsd 5-edge-weighting [6].

Many edge-weighting problems inspired by the 1-2-3 Conjecture have been
introduced in the literature. As examples, let us mention the notions of detectable
colouring [12] or locally irregular edge-colouring [11] of graphs. We refer the
interested reader to [1], where numerous more variants of the original problem
are surveyed. Most of these works are devoted to undirected graphs, but one
could wonder about an oriented version of the 1-2-3 Conjecture.

We first introduce some terminology related to oriented graphs. Let
−→
G be an

oriented graph, i.e. a loopless directed graph whose every two vertices are joined

by at most one arc in either direction, with vertex and arc sets V (
−→
G) and A(

−→
G),

respectively. Given a vertex v of
−→
G , we denote by N−(v) (resp. N+(v)) the set

{u ∈ V (
−→
G) : −→uv ∈ A(

−→
G)} (resp. {u ∈ V (

−→
G) : −→vu ∈ A(

−→
G)}). The indegree (resp.

outdegree) of v, denoted d−(v) (resp. d+(v)), is |N−(v)| (resp. |N+(v)|).
To our knowledge, the only link between the 1-2-3 Conjecture and oriented

graphs is the following problem. Let w be a k-arc-weighting of
−→
G , and let q−w (v)

and q+w (v) be
∑

u∈N−(v)w(−→uv) and
∑

u∈N+(v)w(−→vu), respectively, for every ver-

tex v. The functions q−w and q+w naturally yield a vertex-colouring qw of
−→
G ,

where qw(v) = q+w (v) − q−w (v) for every vertex v of
−→
G . It was proved in [8] that

every oriented graph admits a 2-arc-weighting w which yields a proper vertex-
colouring qw. A list version of the same result was also proved independently
in [7] and [9] using different methods.

We here investigate another problem. As for the undirected case, a k-arc-

weighting w of
−→
G yields a vertex-colouring φw of

−→
G where φw(v)=

∑

u∈N+(v)w(−→vu)

for every v ∈ V (
−→
G). This time, the “colour” of v by φw, sometimes called its

weighted outdegree (with respect to w), is the sum of its outgoing weights (one
could similarly consider the sum of its ingoing weights). Again, if φw has the
property to be proper, then we say that w is neighbour-sum-distinguishing (nsd
for short).
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A quick investigation on small oriented graphs suggests that all oriented graphs
should admit an nsd 3-arc-weighting. Besides, there exist oriented graphs, such
as the circuit on three vertices, which do not admit an nsd 2-arc-weighting. We
hence investigate the following question.

Question 1. Does every oriented graph admit an nsd 3-arc-weighting?

Although Question 1 and the 1-2-3 Conjecture are quite similar in essence, the
two underlying problems do not seem to share any systematic relationship. The
fact that weighting some arc −→uv only affects the weighted outdegree of u makes
Question 1 easier to handle. We hence answer this question in the affirmative in
Section 2. We then turn our concern on conditions for some specific classes of
oriented graphs to admit an nsd 2-arc-weighting in Section 3. We next prove, in
Section 4, that an “easy” characterization of oriented graphs which admit an nsd
2-arc-weighting cannot exist unless P=NP. For this purpose, we show that the
problem of deciding whether an oriented graph admits an nsd 2-arc-weighting
is NP-complete. Concluding remarks can be found in Section 5. In particular,
we point out that our results directly apply to product or list versions of the
problem.

2. All Oriented Graphs Admit an nsd 3-arc-weighting

Our first result states that every oriented graph admits an nsd 3-arc-weighting.
This relies on the fact that every oriented graph has a “convenient” vertex, i.e. a
vertex which admits a large number of potential weighted outdegrees compared
to its number of neighbours. The existence of such a vertex allows the use of an
inductive proof scheme. Our proof also yields a polynomial-time algorithm for
finding an nsd 3-arc-weighting of every oriented graph.

Theorem 2. Every oriented graph
−→
G admits an nsd 3-arc-weighting.

Proof. The claim is proved by induction on the size of
−→
G , i.e. its number of

arcs. As a base case, the claim is clearly true when
−→
G has size 0 or 1. Suppose

now that the claim is true for every oriented graph with at most m− 1 arcs, and

assume
−→
G has size m ≥ 2.

Note that
−→
G necessarily has a vertex v such that d+(v) > 0 and d+(v) ≥

d−(v) since otherwise we would have
∑

v∈V (
−→
G)

d−(v) 6=
∑

v∈V (
−→
G)

d+(v). A nsd

3-arc-weighting of
−→
G is then obtained as follows. Start by removing the arcs

outgoing from v. According to the induction hypothesis, the remaining oriented
graph admits an nsd 3-arc-weighting w. Now put back the arcs outgoing from v

to
−→
G , and extend w to these arcs in such a way that the weighted outdegree of v is

different from the weighted outdegrees of the d−(v)+d+(v) vertices neighbouring
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v. This is possible since there are 2d+(v) + 1 potential weighted outdegrees for v,
namely those from {d+(v), d+(v)+1, . . . , 3d+(v)}, while the number of forbidden
weighted outdegrees is at most d−(v) + d+(v) < 2d+(v) + 1 by our assumption
on d−(v) and d+(v). Because assigning a weight to the arcs outgoing from v

does not affect the weighted outdegree by w of any vertex neighbouring v, the

extension of w to
−→
G remains neighbour-sum-distinguishing.

3. Conditions for Some Families of Oriented Graphs to Admit

an nsd 2-arc-weighting

By Theorem 2, we know that every oriented graph admits an nsd 3-arc-weighting.
Throughout this section, we focus on some common families of oriented graphs
and exhibit conditions for their members to admit an nsd 2-arc-weighting.

3.1. Acyclic oriented graphs

An oriented graph is acyclic if it has no directed cycle −−−−−−−−→v1v2 · · · vkv1, with k ≥ 3,
as a subgraph. We show that every such oriented graph admits an nsd 2-arc-
weighting.

Theorem 3. Every acyclic oriented graph admits an nsd 2-arc-weighting.

Proof. We prove the claim by induction on the order, i.e. the number of vertices,
of acyclic oriented graphs. As a starting point, note that an oriented graph with
only one vertex admits an nsd 2-arc-weighting. Suppose now that the claim is
true for every acyclic oriented graph with order at most n − 1 for some n ≥ 2,

and let
−→
G be an acyclic oriented graph on n vertices.

Since
−→
G is acyclic, there are vertices of

−→
G with indegree 0. Let v be such a

vertex, and consider the graph
−→
G′ obtained by removing v from

−→
G . Clearly

−→
G′ is

acyclic and admits an nsd 2-arc-weighting w according to the induction hypoth-

esis. We now extend w to
−→
G , i.e. we weight the arcs outgoing from v in such

a way that w remains neighbour-sum-distinguishing. There are d+(v) + 1 possi-
ble weighted outdegrees for v, namely those from {d+(v), d+(v) + 1, . . . , 2d+(v)},
while there are at most d+(v) forbidden weighted outdegrees for v, namely the
weighted outdegrees by w of the vertices in N+(v). Since weighting the arcs out-
going from v does not alter the weighted outdegree of any vertex neighbouring v,
we can choose an available weighted outdegree for v and weight the arcs outgoing
from v consequently. This completes the proof.

3.2. Oriented graphs whose underlying graphs are k-colourable

Given an undirected graph G, a proper k-vertex-colouring of G is a partition
of V (G) into k parts V1, . . . , Vk such that Vi is an independent set for every
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i ∈ {1, 2, . . . , k}. The least number of parts of a proper vertex-colouring of G

is referred to as the chromatic number of G, denoted χ(G). Assuming
−→
G is

an orientation of G, i.e.
−→
G is obtained by orienting every edge of G in either

direction, we denote by und(
−→
G) the underlying undirected graph of

−→
G , that is

G.
As pointed out in some references of the literature (see e.g. [12] or [10]),

first partitioning a graph into several independent sets before weighting its edges
can be a good method for finding a specific edge-weighting. This is also the case
regarding neighbour-sum-distinguishing arc-weighting, as shown in the following
result.

Theorem 4. Every oriented graph
−→
G admits an nsd χ(und(

−→
G))-arc-weighting.

Proof. Let k = χ(und(
−→
G)), and V0, . . . , Vk−1 be a proper k-vertex-colouring of

und(
−→
G). Process the vertices of

−→
G in arbitrary order. If the vertex v belongs to

the part Vi, then weight the arcs outgoing from v with weights from {1, 2, . . . , k}
in such a way that the weighted outdegree of v is congruent to i modulo k, e.g.
by assigning i to one arc outgoing to v (or k if i = 0), and k to all of its other
outgoing arcs. This is possible unless d+(v) = 0 since, in such a situation, the only
possible weighted outdegree for v is 0. Once the process is achieved, two adjacent
vertices u and v cannot have the same weighted outdegrees since otherwise either
u and v would both belong to some part Vi, which is impossible since Vi is an
independent set, or we would have d+(u) = d+(v) = 0, which is impossible since
u and v are adjacent.

As a corollary of Theorem 4, we get in particular the following result.

Corollary 5. Every oriented graph
−→
G whose underlying graph is bipartite admits

an nsd 2-arc-weighting.

3.3. Tournaments

Our strategy for weighting the arcs of a tournament
−→
T is based on the following

lemma, which could be also deduced from result of Landau regarding so-called
score sequences (see [3], Theorem 29).

Lemma 6. For every k ∈ {1, 2, . . . , |V (
−→
T )|}, let nk ≥ 0 denote the number of

vertices with outdegree at most k of a tournament
−→
T . Then nk ≤ 2k + 1.

Proof. Let k be fixed, with 1 ≤ k ≤ |V (
−→
T )|. Denote by X ⊆ V (

−→
T ) the set of

the nk vertices of
−→
T whose outdegree is at most k, and by s the sum of outdegrees

of the vertices in X. Naturally, we have s ≤ nkk. We also have s ≥ nk(nk−1)
2

since X induces a tournament, and there may be arcs of
−→
T whose tails lie in X,
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and whose heads do not lie in X. We hence get nk(nk−1)
2 ≤ nkk, which implies

that nk ≤ 2k + 1.

We now give an easy sufficient condition for a tournament to admit an nsd 2-arc-
weighting.

Theorem 7. For every k ∈ {1, 2, . . . , |V (
−→
T )|}, let nk ≥ 0 denote the number of

vertices with outdegree at most k of a tournament
−→
T . If nk ≤ k + 1 for every

k ∈ {1, 2, . . . , |V (
−→
T )|}, then

−→
T admits an nsd 2-arc-weighting.

Proof. The proof is based on the following simple weighting scheme for
−→
T .

Process the vertices of
−→
T in increasing order of their outdegrees. For each vertex

v, weight the arcs outgoing from v in such a way that the weighted outdegree
of v gets the smallest possible value which does not appear among the weighted
outdegrees of the vertices considered in earlier steps of the process.

It has to be noted that this weighting scheme necessarily produces an nsd arc-

weighting of
−→
T when the weights among {1, 2, 3} are used. Suppose indeed that,

at some point of the process, we are dealing with a vertex v but we cannot weight
v satisfyingly. Set k = d+(v). This situation means that we have attributed all
the weighted outdegrees among {k, k+1, . . . , 3k} to the vertices considered before
v, i.e. that at least 2k + 1 vertices have been treated before v. Due to how the
process is led, these vertices have outdegree at most k. But then it means that
nk > 2k + 1, which is impossible according to Lemma 6.

Now assume we are using the weights among {1, 2} only. Since the weighted
outdegree of v can take any value from {k, k+1, . . . , 2k} and at most nk−1 < k+1
vertices have been considered in earlier steps of the process, there is necessarily
one non-conflicting value which can be chosen as the weighted outdegree of v.
We then just have to weight the arcs outgoing from v consequently.

It is worth mentioning that a tournament
−→
T admits an nsd 1-arc-weighting if

and only if the vertices of
−→
T have distinct outdegrees, i.e.

−→
T is transitive. This

improves Theorem 7 for transitive tournaments.

3.4. Cartesian products of oriented graphs

Let
−→
G and

−→
H be two oriented graphs. The Cartesian product of

−→
G and

−→
H ,

denoted
−→
G �

−→
H , is the oriented graph with vertex set V (

−→
G)× V (

−→
H ), and whose

two vertices (u, v) and (u′, v′) are joined by an arc from (u, v) towards (u′, v′) if

and only if u = u′ and
−→
vv′ ∈ E(

−→
H ), or

−→
uu′ ∈ E(

−→
G) and v = v′.

The Cartesian product of graphs is a classic graph operation which has been
studied a lot since its introduction [2]. The reason for focusing on the Cartesian

product of oriented graphs is that if
−→
G and

−→
H both admit an nsd k-arc-weighting
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for some value of k, one could expect
−→
G �

−→
H to need k′ weights to obtain an nsd

arc-weighting, where k′ depends on k. In the next result, we show that the

existence of nsd k-arc-weightings of
−→
G and

−→
H implies the existence of an nsd

k-arc-weighting of
−→
G �

−→
H .

Theorem 8. Assume
−→
G and

−→
H admit an nsd k- and ℓ-arc-weighting, respec-

tively. Then
−→
G �

−→
H admits an nsd max{k, ℓ}-arc-weighting.

Proof. Let w−→
G

and w−→
H

be nsd k- and ℓ-arc-weighting of
−→
G and

−→
H , respectively.

Let w be a max{k, ℓ}-arc-weighting of
−→
G �

−→
H defined as follows:

w(
−−−−−−−−→
(u, v)(u′, v′)) =

{

w−→
H

(
−→
vv′) if u = u′,

w−→
G

(
−→
uu′) otherwise.

Assume
−−−−−−−−→
(u, v)(u′, v′) is an arc of

−→
G �

−→
H . Then we have φw((u, v)) = φw−→

G
(u) +

φw−→
H

(v) and φw((u′, v′)) = φw−→
G

(u′) + φw−→
H

(v′). Since (u, v) and (u′, v′) are ad-

jacent, we have either u = u′ or v = v′ by construction. Assume u = u′

without loss of generality. Then φw−→
G

(u) = φw−→
G

(u′). Now, because w−→
H

is

neighbour-sum-distinguishing, we have φw−→
H

(v) 6= φw−→
H

(v′). It then follows that

φw((u, v)) 6= φw((u′, v′)).

An immediate corollary of Theorem 8 is the following result.

Corollary 9. Assume
−→
G and

−→
H both admit an nsd 2-arc-weighting. Then

−→
G �

−→
H

admits an nsd 2-arc-weighting.

4. Algorithmic Complexity

In this section, we focus on the complexity of the following decision problem.

neighbour-sum-distinguishing k-arc-weighting—k-nsdaw

Instance: An oriented graph
−→
G .

Question: Does
−→
G admit an nsd k-arc-weighting?

An oriented graph
−→
G admits an nsd 1-arc-weighting if and only if every

two adjacent vertices of
−→
G have distinct outdegrees. Since this property can be

checked in polynomial time, the problem 1-nsdaw is in P. Besides, every problem
k-nsdaw with k ≥ 3 is also in P since the answer to every of its instances is yes,
according to Theorem 2.

We deal with the complexity of the remaining problem, i.e. 2-nsdaw. We
show this problem to be NP-complete in Theorem 12 below, by reduction from
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Figure 1. The forbidding gadget
−−→
F3,4.

3-sat. For this purpose, we first introduce several gadgets to “force” the propa-
gation of an nsd 2-arc-weighting along an oriented graph.

We first introduce two kinds of forbidding gadgets. A forbidding gadget
−→
F is

composed of one root vertex with outdegree 0 adjacent to forcing vertices. The

weighting property of
−→
F is that each of its forcing vertices has always the same

weighted outdegree by every nsd 2-arc-weighting of
−→
F . Assume x1, x2, . . . , xk

denote the respective outdegrees of the forcing vertices. Then, after having iden-

tified the root of
−→
F with a vertex v of some graph

−→
G , the vertex v cannot have

weighted outdegree x1, x2, . . . , xk by an nsd 2-arc-weighting of
−→
G because of the

forcing vertices of
−→
F neighbouring v.

First, we define a (2k − 1, 2k)-forbidding gadget, denoted
−−−−−→
F2k−1,2k, for every

integer k ≥ 2. These gadgets are defined inductively. The gadget
−−→
F3,4 is the

one depicted in Figure 1. The root of
−−→
F3,4 is v3, while its forcing vertices are v1

and v2. Now, for every value of k ≥ 3 such that the oriented graphs
−−−−−−→
F2k′−1,2k′

have been defined for every k′ < k, the oriented graph
−−−−−→
F2k−1,2k is constructed

as follows. Let vk1 , vk2 and vk3 be three distinct vertices joined by
−−→
vk1v

k
2 ,

−−→
vk1v

k
3 and

−−→
vk2v

k
3 . Now, for every k′ ∈ {2, 3, . . . , k − 1}, identify vk1 and the root of a copy

of
−−−−−−→
F2k′−1,2k′ . Repeat the same procedure but with vk2 instead of vk1 and new

copies of the forbidding gadgets. Finally add an arc from vk1 towards k − 2 new
vertices with outdegree 0, and similarly from vk2 towards k − 1 new vertices with

outdegree 0. The root of
−−−−−→
F2k−1,2k is vk3 , while its forcing vertices are vk1 and vk2 .

Lemma 10. Let k ≥ 2 be fixed. In every nsd 2-arc-weighting of
−−−−−→
F2k−1,2k, one of

the forcing vertices has weighted outdegree 2k − 1, while the other forcing vertex

has weighted outdegree 2k.

Proof. We prove the claim by induction on k. At each step, let w be an nsd

2-arc-weighting of the considered forbidding gadget. Start with
−−→
F3,4. Since u1

and u2 are adjacent and both have outdegree 1, we have {φw(u1), φw(u2)} =
{1, 2}. By the same argument, we have {φw(u4), φw(u5)} = {1, 2}. Since u3
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and u6 are adjacent, both adjacent to vertices with weighted outdegree 2, and
have outdegree 2, we necessarily have {φw(u3), φw(u6)} = {3, 4}. Because u7
is adjacent to u3 and u6 and has outdegree 2, we necessarily get φw(u7) = 2.

Repeating the same arguments to the oriented subgraph of
−−→
F3,4 induced by the

u′i’s, we also obtain φw(u′7) = 2. Finally, since v1 and v2 are adjacent, both
adjacent to a vertex with weighted outdegree 2, and have outdegree 2, we have
{φw(v1), φw(v2)} = {3, 4} as claimed.

Assume the claim is true for every k up to i − 1, and consider
−−−−−→
F2k−1,2k.

Because vk1 and vk2 have outdegree k by construction, their weighted outdegree by
w can only take value from {k, k + 1, . . . , 2k}. However, since these two vertices

are both identified with the roots of forbidding gadgets
−−→
F3,4,

−−→
F5,6, . . . ,

−−−−−−−→
F2k−3,2k−2,

their weighted outdegree cannot take value from {3, 4, . . . , 2k−3, 2k−2} according
to the induction hypothesis. Therefore, we have {φw(vk1 ), φw(vk2 )} = {2k− 1, 2k}
since vk1 and vk2 are adjacent.

−→
F5,6

−→
F7,8

v4
1

v4
2

(a) The gadget
−→

F4.

−→
F4

−→
F5,6

v3
1

v3
2

(b) The gadget
−→

F3.

Figure 2. Two examples of forbidding gadgets. A triangle represents a forbidding gadget.

We now define a k-forbidding gadget, denoted
−→
Fk, for every integer k ≥ 3. The

oriented graph
−→
Fk originally consists in an arc

−−→
vk1v

k
2 . We call vk2 and vk1 the root

and the forcing vertex of
−→
Fk, respectively. Next add an arc from vk1 towards k−1

new vertices with outdegree 0. The end of the construction depends on the parity
of k. If k is even, then identify vk1 and the root of each of the forbidding gadgets
−−−−−→
Fk+1,k+2,

−−−−−→
Fk+3,k+4, . . . ,

−−−−−→
F2k−1,2k. Otherwise, i.e. if k is odd, then identify vk1 and

the roots of
−−→
Fk+1, and

−−−−−→
Fk+2,k+3,

−−−−−→
Fk+4,k+5, . . . ,

−−−−−→
F2k−1,2k. The gadgets

−→
F3 and

−→
F4

are depicted in Figure 2.

Lemma 11. Let k ≥ 3 be fixed. In every nsd 2-arc-weighting of
−→
Fk, the forcing

vertex has weighted outdegree k.

Proof. Let w be an nsd 2-arc-weighting of
−→
Fk. Assume k is even. Since vk1

has outdegree k, its weighted outdegree by w can only take value from {k, k +
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1, . . . , 2k}. But, because vk1 is the root of forbidding gadgets
−−−−−→
Fk+1,k+2,

−−−−−→
Fk+3,k+4,. . . ,

−−−−−→
F2k−1,2k, it is adjacent to vertices with weighted outdegrees k + 1, k + 2, . . . , 2k
according to Lemma 10. Hence, the only remaining weighted outdegree for vk1
by w is k. The claim follows similarly when k is odd, the value k + 1 being
forbidden as the weighted outdegree of vk1 because it was identified with the root

of a forbidding gadget
−−→
Fk+1 with k + 1 being even.

Thanks to the two kinds of forbidding gadgets introduced above, we can now
“force” a vertex of some oriented graph to have a specific weighted outdegree

by an nsd 2-arc-weighting. Let v be a vertex of some oriented graph
−→
G , and

k ≥ d+(v) be some integer. Assume we are given a set D ⊆ {k, k + 1, . . . , 2k} of

“allowed” weighted outdegrees for v by an nsd 2-arc-weighting of
−→
G . Then, by

“turning v into a D-vertex”, we refer to the following operations:

• first add arcs from v towards k − d+(v) new vertices with outdegree 0 so
that v has outdegree k,

• then identify v and the respective root of each of the forbidding gadgets
−→
Fi

with i ∈ {k, k + 1, . . . , 2k} −D.

Clearly, because of the forcing vertices neighbouring v, the weighted outdegree of

v by an nsd 2-arc-colouring of
−→
G necessarily takes value among D.

We are now ready to introduce our hardness reduction.

Theorem 12. The problem 2-nsdaw is NP-complete.

Proof. Given a 2-arc-weighting w of
−→
G , one can first compute the vertex-colour-

ing φw of
−→
G from w, and then check whether it is proper. Since this procedure

can be achieved in polynomial time, 2-nsdaw is in NP.
We now prove that 2-nsdaw is NP-hard by reduction from the following

classical NP-complete problem [5].
3-sat

Instance: A 3CNF formula F over clauses C1, . . . , Cm and variables x1, . . . , xn.
Question: Does F admit a satisfying truth assignment?

Note that we can assume that every possible literal appears in F . Indeed, if
ℓi does not appear in any clause of F , then the 3CNF formula F ∧ (ℓi ∨ ℓi ∨ ℓi) is
satisfiable if and only if F is satisfiable. By repeating this procedure for all literals
which do not appear in F , we obtain a formula equivalent to F but involving all
possible literals over its variables. This procedure is achieved in polynomial time.

We introduce some more terminology regarding an instance of 3-sat. The 2n
literals of F over its n variables are denoted by ℓ1, ℓ2, . . . , ℓ2n, the ordering being
arbitrary. By ni ≥ 1, we refer to the number of distinct clauses of F that contain
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the literal ℓi for every i ∈ {1, 2, . . . , 2n}. By cj ∈ {1, 2, 3}, we denote the number
of distinct literals which appear in the clause Cj for every j ∈ {1, 2, . . . ,m}. In
the case where cj = 1, i.e. Cj is of the form (ℓi ∨ ℓi ∨ ℓi), note that ℓi is set to
true by every satisfying truth assignment of F . In such a situation, we say that
ℓi is forced to true by Cj .

Our hardness reduction is described below. From a 3CNF formula F , we

construct an oriented graph
−→
GF such that F is satisfiable if and only if

−→
GF

admits an nsd 2-arc-weighting wF .

Let t and f be two injective mappings from {x1, x2, . . . , xn} to {2n, 2n +
1, . . . , 3n − 1} and {3n, 3n + 1, . . . , 4n}, respectively. Assuming ℓj = xi and
ℓj′ = xi, i.e. ℓj and ℓj′ are the literals associated with the variable xi, we set
t(ℓj) = f(ℓj′) = t(xi) and f(ℓj) = t(ℓj′) = f(xi).

{f(ℓ1), f(ℓ2), f(ℓ3)}

v1 v2

{t(ℓ3), f(ℓ3)}

v3

{t(ℓ2), f(ℓ2)}{t(ℓ1), f(ℓ1)}

zj

u
j
1

u
j
2

u
j
3

Figure 3. Partial resulting clause gadget for a clause Cj = (ℓ1 ∨ ℓ2 ∨ ℓ3). The integer sets
represent the allowed weighted outdegrees at each vertex by an nsd 2-arc-weighting of
−→
GF .

First, for every literal ℓi of F , add a vertex vi in
−→
GF . Now consider every clause

Cj of F . We associate a clause gadget in
−→
GF with Cj , its structure depend-

ing on the value of cj . Denote by ℓj1 , . . . , ℓjcj the distinct literals of Cj . Let
−−−→
u
j
j1
vj1 , . . . ,

−−−−→
u
j
jcj

vjcj be cj arcs of
−→
GF , where u

j
j1
, . . . , u

j
jcj

are new vertices. If

cj = 1, i.e. ℓj1 is forced to true by Cj , then turn u
j
j1

into a {t(ℓj1)}-vertex.

Otherwise, i.e. cj ∈ {2, 3}, turn each vertex u
j
ji

into a {t(ℓji), f(ℓji)}-vertex, add

a vertex zj to
−→
GF , add arcs from zj towards u

j
j1
, . . . , u

j
jcj

, and turn zj into a

{f(ℓj1), . . . , f(ℓjcj )}-vertex. This construction is depicted in Figure 3.

Claim 13. Let Cj = (ℓj1 ∨ ℓj2 ∨ ℓj3) be a clause of F . Then at least one of t(ℓj1),

t(ℓj2) and t(ℓj3) belongs to {φwF
(ujj1), φwF

(ujj2), φwF
(ujj3)}.

Proof. The claim is true when cj = 1 since u
j
j1

is a {t(ℓj1)}-vertex. When

cj ∈ {2, 3}, note that we cannot have φwF
(ujj1) = f(ℓj1), . . . , φwF

(ujjcj
) = f(ℓjcj )

since zj is a {f(ℓj1), . . . , f(ℓjcj )}-vertex. On the contrary, note that if there is
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an i ∈ {1, 2, . . . , cj} such that φwF
(ujji) = t(ℓji), then we can weight the arcs

outgoing from zj in such a way that the weighted outdegree of zj by wF is f(ℓji).

{t(ℓi), f(ℓi)}vi {t(ℓi), f(ℓi)}vi′

Figure 4. Partial subgraph of
−→
GF for two literals ℓi and ℓi′ such that ℓi′ = ℓi. The integer

sets represent the allowed weighted outdegrees at each vertex by an nsd 2-arc-weighting

of
−→
GF .

Let i ∈ {1, 2, . . . , 2n}. Note that, so far, the vertex vi has indegree ni. Consider

i′ ∈ {1, 2, . . . , 2n} such that ℓi′ = ℓi. To finish the construction of
−→
GF , add the arc

−−→vi′vi, and turn vi and vi′ into {t(ℓi), f(ℓi)}-vertices. This step of the construction
is illustrated in Figure 4.

Claim 14. Let i ∈ {1, 2, . . . , 2n}, and i1, i2, . . . , ini
be the indexes of the distinct

clauses of F that contain ℓi. Then φwF
(ui1i ) = φwF

(ui2i ) = · · · = φwF
(u

ini

i ).

Proof. Recall that the u
ij
i ’s can only have weighted outdegree t(ℓi) or f(ℓi) by

wF . Now note that if one of the u
ij
i ’s has weighted outdegree t(ℓi) by wF while

another such vertex has weighted outdegree f(ℓi), then wF cannot be extended
to the arcs outgoing from vi since vi is a {t(ℓi), f(ℓi)}-vertex. On the contrary,

if all the u
ij
i ’s neighbouring vi have the same weighted outdegree, say t(ℓi), then

the arcs outgoing from vi can be weighted in such a way that φwF
(vi) = f(ℓi).

Claim 15. Let i, i′ ∈ {1, 2, . . . , 2n} be two integers such that ℓi′ = ℓi. Then

φwF
(vi) 6= φwF

(vi′).

Proof. The claim follows from the fact that vi and vi′ are adjacent.

We now claim that F has a satisfying truth assignment if and only if
−→
GF admits

its nsd 2-arc-weighting wF . Assume Cj = (ℓj1 ∨ ℓj2 ∨ ℓj3) is a clause of F , and

that having φwF
(ujji) = t(ℓji) (resp. f(ℓji)) simulates the assignment of ℓji to

true (resp. false) in Cj by a truth assignment of F . Then, by Claim 13, every

clause gadget of
−→
GF must have a vertex u

j
ji

whose weighted outdegree by wF is
t(ℓji). This simulates the fact that every clause of F must have one true literal
by a satisfying truth assignment of F . Claim 14 depicts the fact that, by a
truth assignment of F , every literal of F provides the similar truth value to every
clause it appears in. Finally, Claim 15 represents the fact that two opposite
literals cannot be assigned the same truth value by a truth assignment of F .
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With these arguments, we can deduce a satisfying truth assignment of F from
wF , and vice-versa.

5. Discussion

Recall that the proof of Theorem 2 mainly relies on the fact that the number of
possible weighted outdegrees by an arc-weighting for a vertex with outdegree d is
sufficiently large, i.e. at least 2d + 1, when the weights from {1, 2, 3} are allowed
for each arc. By showing this property to hold for every triple {a, b, c} of weights,
we can strengthen Theorem 2.

Lemma 16. Let v be a vertex with outdegree d of some oriented graph
−→
G , and

{a, b, c} be a set of three real numbers. Then there are at least 2d + 1 possible

weighted outdegrees for v by an arc-weighting of
−→
G assigning value among {a, b, c}

to the arcs outgoing from v.

Proof. We prove this claim by induction on d. If d = 1, then the arc outgoing

from v can be weighted either a, b, or c by an arc-weighting of
−→
G . Since a, b and

c are distinct, there are exactly three weighted outdegrees for v, namely a, b and
c, respectively.

Assume the claim is true for every value of d up to i− 1, and assume d = i.

Let
−→
G′ be the oriented graph obtained by removing exactly one arc −→vu outgoing

from v. Then there are at least 2(d − 1) + 1 possible weighted outdegrees for v

by an arc-weighting of
−→
G′ taking value among {a, b, c} according to the induction

hypothesis. Let D′ be the set of these possible weighted outdegrees, and denote
inf and sup the minimum and maximum elements of D′, respectively, and w′

inf

and w′

sup two arc-weighting of
−→
G′ such that φw′

inf
(v) = inf and φw′

sup
(v) = sup,

respectively.
Assume a < b < c. Note that if the result holds for {a, b, c}, then it also

holds for {−a,−b,−c}. Hence, we only have two cases to consider, namely

1. 0 ≤ a < b < c, and

2. a < 0 ≤ b < c.

In the first case, by extending every arc-weighting of
−→
G′ to

−→
G by weighting the

arc −→vu with weight a, we directly obtain that the set D = {x + a : x ∈ D′} is a
set of at least 2(d− 1) + 1 possible weighted outdegrees for v. The two remaining
weighted outdegrees for v are obtained by extending w′

sup by weighting b or c

the arc −→vu. We then obtain that sup + b and sup + c are two other possible
weighted outdegrees for v since none of these two values can appear in D because
a < b < c. There are thus at least 2d + 1 possible weighted outdegrees for v.
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In the second case, by extending every arc-weighting of
−→
G′ to

−→
G by weighting b

the arc −→vu, we get that D = {x + b : x ∈ D′} is a set of at least 2(d − 1) + 1
weighted outdegrees for v. The two remaining weighted outdegrees for v are

obtained by extending w′

inf and w′

sup to
−→
G by weighting a and c, respectively,

the arc −→vu. From these two extensions, we get that v can also have weighted
outdegree inf + a and sup+ c, which do not appear in D by our assumptions on
a, b and c. This completes the proof.

As a corollary of Lemma 16, we directly get that the proof of Theorem 2 is appli-
cable no matter what are the three weights allowed to weight the arcs outgoing
from every vertex. This implies the following list version of our main result.

Corollary 17. For every vertex v of some oriented graph
−→
G , let L(v) be an

arbitrary list of three distinct real weights allowed at v. Then
−→
G admits an nsd

arc-weighting such that the arcs outgoing from every vertex v are weighted with

values among L(v).

As for the undirected case, one can also consider a variant of the problem in-
vestigated in this work where the weighted outdegree of a vertex is the product

of its outgoing weights rather than their sum (see e.g. [4]). Formally, from a

k-arc-weighting w of some oriented graph
−→
G one obtains a vertex-colouring ρw

defined as ρw(v) =
∏

u∈N+(v)w(−→vu) for every v ∈ V (
−→
G). If ρw is proper, then we

say that w is neighbour-product-distinguishing (npd for short).

Regarding npd-arc-weightings, note that the range of possible weighted out-
degrees for a vertex is as wider as in the product version than in the sum version
when the weights from {1, 2, 3} are allowed (this can be proved in a similar man-
ner as Lemma 16). Hence, our proof of Theorem 2 is also a proof that every
oriented graph admits an npd-3-arc-weighting.

Theorem 18. Every oriented graph
−→
G admits an npd-3-arc-weighting.

Note that there are k + 1 possible weighted outdegrees for a vertex with out-
degree k by an npd-2-arc-weighting of some oriented graph, namely those from
{1, 2, 4, . . . , 2k}. Since there are as many possible weighted outdegrees for a vertex
by an nsd 2-arc-weighting and an npd-2-arc-weighting, our results from Section 3
also hold regarding npd-2-arc-weightings.

Finally, we can adapt the reduction scheme from Section 4 to prove that it
is NP-complete to decide whether a given oriented graph admits an npd-2-arc-
weighting. The forbidding gadgets can be obtained, for instance, as follows. Start
from the circuit −−−−−−→u1u2u3u1 on three vertices, and add an arc −−→u1u4 where u4 is a

new vertex. This resulting oriented graph
−→
F4 is a 4-forbidding gadget since u1

necessarily gets weighted outdegree 4 by every npd-2-arc-weighting. The root of
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−→
F4 is u4. Now consider another oriented graph

−−→
F1,2 with vertices v1, v2, v3 and

v4 such that −−→v1v2,
−−→v1v3,

−−→v2v3 and −−→v2v4 are arcs, and v1 and v2 are each identified

with the root of one copy of
−→
F4. Clearly, since v1 and v2 are adjacent vertices

with outdegree 2, and they are both identified with the root of a gadget
−→
F4, their

weighted outdegree can only be 1 and 2 without loss of generality, and
−−→
F1,2 is thus

a (1, 2)-forbidding gadget with root v3. Now to obtain a 2k-forbidding gadget
−→
F2k

assuming that a 2k
′

-forbidding gadget has been defined for every k′ < k (with
the exception that there is a (1, 2)-forbidding gadget rather than a 1−forbidding
gadget and a 2-forbidding gadget), start from the arc −−−→w1w2, then add arcs from
w1 towards k− 1 new vertices so that w1 has outdegree k, and finally identify w1

and the roots of all the forbidding gadgets constructed in previous steps. Clearly,

w1 can only have weighted outdegree 2k by every npd-2-arc-weighting of
−→
F2k .

Thus,
−→
F2k is a 2k-forbidding gadget with root w2. With these forbidding gadgets,

our reduction scheme can then be directly adapted for the product version of the
problem.

Another direction for extending our problem could be to consider undirected
graphs.

Question 19. What is the least k ∈ {1, 2, 3} such that every undirected graph

admits an orientation which admits an nsd k-arc-weighting?

Recall that an oriented graph admits an nsd 1-arc-weighting if and only if ev-
ery two of its adjacent vertices have distinct outdegrees. According to a result
from [8], the answer to Question 19 is 1. We give a reformulated proof of this
statement using our terminology.

Lemma 20. Every undirected graph G admits an orientation in which every two

adjacent vertices have distinct outdegrees.

Proof. We prove this result by induction on the order n of G. Since the result
is true for n = 1, we assume the claim is true for every n up to i − 1, and now
consider n = i. Let v be a vertex whose degree is maximum in G. According

to the induction hypothesis, the graph G′ = G − v admits an orientation
−→
G′ in

which every two adjacent vertices have distinct outdegrees. Note that in
−→
G′, the

outdegree of every vertex in N(v) is at most d(v)−1 since v has maximum degree

in G. Now start from
−→
G′, and let

−→
G be the orientation of G obtained by orienting

all edges incident with v from v towards its neighbours. Since the outdegree of

v in
−→
G is then d(v), and the outdegrees of all vertices neighbouring v are not

altered, the orientation still satisfies the claim.

Corollary 21. Every undirected graph admits an orientation which admits an

nsd 1-arc-weighting.
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phs into locally irregular subgraphs, Preprint MD 065 (2012), available at
http://www.ii.uj.edu.pl/preMD/index.php.

[12] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge

partitions , J. Combin. Theory (B) 94 (2005) 237–244.
doi:10.1016/j.jctb.2005.01.001

Received 8 October 2013
Revised 17 March 2014
Accepted 29 April 2014

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.ipl.2008.01.006
http://dx.doi.org/10.1016/j.jctb.2009.06.002
http://dx.doi.org/10.1002/jgt.20354
http://dx.doi.org/10.1016/j.ipl.2011.09.011
http://dx.doi.org/10.1016/j.jctb.2003.12.001
http://dx.doi.org/10.1016/j.jctb.2005.01.001
http://www.tcpdf.org

