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Abstract

Necessary conditions for an undirected graph G to contain a graph H as
induced subgraph involving the smallest ordinary or the largest normalized
Laplacian eigenvalue of G are presented.
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1. INTRODUCTION

We consider two fixed finite, undirected, and simple graphs: Let G = (V| E) be
a graph without isolated vertices, where V' = {1,...,n} and E (with |E| = m)
denote the vertex set and the edge set of GG, respectively. Let § > 1 denote the
minimum degree of G. Furthermore, let dfy = 2—};" be the average degree of a graph

H = (V(H),E(H)), where |V(H)| = h and |E(H)| =e.

The eigenvalues A; < --- < A, of the adjacency matrix A of G are the ordinary
eigenvalues (or shortly the eigenvalues) of G. Note that —r < A < \,, = r for all
eigenvalues A of an r-regular graph G, and if G is connected, then A\ = —A\, if

and only if G is bipartite [4, 7].
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Let D be the degree matriz of G, that is an (n x n) diagonal matrix, where
the degree d; of vertex ¢ € V is the i-th entry at the main diagonal. Moreover, let
0=mn1 <--- <y, be the eigenvalues of the Laplacian L =D — A of G |1, 13]. If
G is r-regular, then 7 is an eigenvalue of the Laplacian if and only if r — 7 is an
eigenvalue of A.

For G without isolated vertices, the normalized Laplacian is the (nxn) matrix

L= (lij) with l;; = 1if i = j, l;; = —\/ﬁ if ij € E, and l;; = 0 otherwise. The
]

eigenvalues 0 = o1 < - -+ < g, of L are the normalized Laplacian eigenvalues of G
[5, 6, 13]. It is known that 1 < 0, < 2 and that G is bipartite if and only if o,, = 2
[10, 12, 13]. For an r-regular graph G, o is a normalized Laplacian eigenvalue if
and only if 7(1 — o) is an eigenvalue of A.

For further notation and terminology we refer to [8].

In the present paper, we are interested in necessary conditions in terms of
eigenvalues for the fact that G contains a copy of H as an induced subgraph. If
all eigenvalues of G and all eigenvalues ¢; < --- < ¢y of the adjacency matrix
Ap of H are taken into consideration, then Theorem 1 is a typical result of this
kind.

Theorem 1 (Cauchy’s Inequalities, Interlacing Theorem [4, 7|). If H is an in-
duced subgraph of G with eigenvalues ¢p1 < --- < ¢p, then A\j < ¢ < Ap—pti for
i=1,...,h.

In general, it is difficult to determine the spectra of large graphs G and H, how-
ever, the largest and the smallest eigenvalues of the matrices A, L, and L of a
graph are well investigated (|1, 4, 5, 6]). Hence, we focus on simpler necessary
conditions for H being an induced subgraph of GG just involving smallest or largest
eigenvalues. The inequalities (1) obtained from Theorem 1 are possible results of
this type.

(1) M<d and A > dpe

If the largest Laplacian eigenvalue 7, of G and the degrees of the vertices of H in
G are taken into account, then the assertion of Theorem 2 holds.

Theorem 2 (Bollobés, Nikiforov [3]). If H is an induced subgraph of G, then
(Zz’eV(H) d; — 26) n < ny,h(n — h).

In general, it is not easy to determine the value ZiEV( H) d; exactly. If the degrees
of G do not differ too much, then the inequality Ziev( H) d; > 0h is reasonable
and it follows

Corollary 3. If H is an induced subgraph of G, then n,h < (dg + nn — d)n.
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Note that Corollary 3 only makes sense if § > dy. If G is r-regular, then § = r,
N = r — A\, and ZieV(H) d; = rh, hence, Theorem 2, Corollary 3, and the
following Corollary 4, proved by Haemers already in [9], coincide in this case.

Corollary 4 (Haemers [9]). If H is an induced subgraph of the r-reqular graph
G, then (r — A)h < (dg — A\1)n.

The identity matriz is the (n X n) square matrix with ones on the main
diagonal and zeros elsewhere. It is denoted simply by I if the size is immaterial
or can be trivially determined by the context. In the sequel, x denotes a vector,
where 1 = (1,1,...,1)7 and 0 = (0,0,...,0)”, and we write > 0 if z; > 0 for
each entry x; of x.

Our first result is Theorem 5 concerning the case that G is regular and in-
volving the smallest eigenvalue A1 of G.

Theorem 5. Let G be r-regular. If H is an induced subgraph of G, then (Ag —
Mz =1 is solvable, and, for any solution x of this equation,
r— /\1
n

1

<min {7 (A — M)z [ 2 RV, 1Tz =1} =

18

Moreover, if \i < ¢1, then Ag — M1 is reqular and 17z equals the sum of all
entries of (Ag — M\ 1)L

If z = (%,...,%)T € R" then 17z = 1 and 27 (Ag — M)z = 26;# Thus,
Theorem 5 is an extension of Corollary 4. If in Theorem 5, additionally, H is

T
assumed to be p -regular, then z = (p_%l, e p—il)\l) is a solution of (Ay —

M)z = 1, thus, ﬁ = (p_hAl) = (dH;)‘l), hence, Corollary 4 and Theorem 5
coincide in this case.

Now consider the following example, where the assertion of Theorem 5 is
stronger than that one of Corollary 4 and inequalities (1) only lead to trivial
statements. We ask for a necessary condition that the r-regular graph G contains
k > 1 disjoint and independent copies of the path P3 on 3 vertices, that is, H
consists of k components each of them is isomorphic to P3. The eigenvalues of P;
are —/2,0,v/2 ([4]), hence, with Theorem 1 we may assume \; < —v/2 < —%.
With h = 3k and dyg = %, Corollary 4 leads to k < ﬁfﬁbn.

If we consider the system (Ag — A1I)x = 1, then, by Theorem 5, it is solvable
and it follows 172 = leg, where y is a solution of (Ap, — A1)y = 1. It is easy

32
to see that lTy = 4;3:‘%1, thus, again by Theorem 5, k < mn, which is
4—3\1

stronger than k < 3 )
If, additionally, G is assumed to be bipartite, then A\; = —r and \,, = r. The

inequalities (1) just imply v/2 < r in this case.
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Next we consider again the case that G is not necessarily regular and try
to establish a result similar to Theorem 5. Therefore, let M (G, H) be the set
of non-empty induced subgraphs H* of H such that By = 1 has a solution y =
(y1,...,y0)" with ys > 0 for s = 1,...,t = |V(H")|, where Ag- denotes the
adjacency matrix of H* and B = Ap+ + (0, — 1)dI. In this case y is called a
positive solution of By = 1. With H* = Ky and y; = m > 0 (note that
on > 1), it follows Ky € M(G,H) # 0 .

If H* € M(G,H) and y; and y are positive solutions of By = 1, then,
since B is symmetric, 1Ty; = 127 By; = y271 = 17ys, hence, the value 17y is
independent on the choice of the positive solution y. We define g(G, H*) = 1Ty,
where y is an arbitrary positive solution of By = 1. a

If the induced subgraph H* of H is p—rggular, then it is easy to see that
(Ag+ + (0, —1)01)y = 1 has a positive solution y = (p+(0'111—1)67 el P+(071L—1)5>T>
hence, H* € M(G, H).

If H{ and H3 are independent induced subgraphs of H and H{ ,H; € M (G, H),
then the disjoint union H{ U H3 of H{ and HJ also belongs to M (G, H) and
g(G, Hf U H;) = g(G’ H{) + g(Ga H;)

Eventually, let f(G, H) = ming-cp(a,m) ﬁ Our second result is Theo-
rem 6 involving the largest normalized Laplacian eigenvalue o, of G.

Theorem 6. If H is an induced subgraph of G, then

002

o < min {27 (A + (o0 — )3z | z€ RV, 172 = 1,2 > 0} = £(G. H).
If G is r-regular, then the assertion of Theorem 6 is weaker than that one of
Theorem 5 because A\; = r(1 —oy,), Uzn% = ﬁ, and min {gT(AH —Ml)z|ze€
RVEI 1Tz =1} <min {2T(Ay — M)z | z € RVEI 172 =1,z > 0} in this
case.

In general, it is not easy to calculate min {27 (Ag + (05, — 1)61)z | 1T
z > 0}, however, in special cases it can be done efficiently.

Therefore, we consider an example, where the graph G is non-regular (i.e.,
Corollary 4 and Theorem 5 are not applicable), f(G, H) can be determined easily,
and the necessary condition of Theorem 6 for the graph H to be an induced
subgraph of G is stronger than that one of Theorem 2.

For positive integers p and g, where p is even, let G = C,lJP3 be the Cartesian
product! of the cycle C), and the path P3 on 3 vertices (for p = 20, G is shown in
the figure) and let H consist of ¢ copies of K 4.

z=1,

LGiven graphs G; and G2 with vertex set Vi and Va, respectively, their Cartesian product
G10G: is the graph with vertex set Vi x Va, where (v1, v2)(w1,w2) € E(G10G2) when either
v1 = w1 and vaws € E(G2) or v2 = w2 and viwi € E(Gy).
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We have n = 3p, m = 5p, d = 3, and, since G is bipartite, o, = 2. The Laplacian
eigenvalues of C, and of P3 are 2 — QCOS(%J) for j =0,...,p—1 and 0,1, 3,
respectively ([4]). Moreover, if y’ and 7" are Lapla(nan eigenvalues of G’ and G”,
respectively, then 1’ + 7" is a Laplacian eigenvalue of G'OG” ([4]). Because p is
even, it follows 7, =2 —2cos(m) +3 =T.

It is easy to see that Z'LGV d; — 2e = 10q and, using h = 5¢, Theorem 2
implies q < 7p in this case.

If H* is an induced subgraph of Kj 4, then H* = K; s or H* = K (the
edgeless graph on s vertices) for suitable s € {1, 2, 3,4}.

Let H* = K, and consider the system (Ag+ + (0, — 1)61)y = (Ap~ +
3l)y = 1. It is easy to see that Ki4,K13 ¢ M(G,H), KLQ,KLlie M(G,H),
g(G7 Kl,?) :E’ and g(G7 K171) =3

If H* = K, then H* € M(G, H) and (Ag+ +31)y = 1lead to g(G, H*) = 3,
hence, f(G,H) = 4%. By Theorem 6, it follows ¢ < %p < %p.

If H* with |V (H")| > 1 is an arbitrary induced subgraph of H and z =

(21,...,20)7 with z; = |V(H*)| if i € V(H*) and z; = 0 otherwise, then 172z = 1
and 27 (Ag + (0, — 1)61)z = %, where dp+ denotes the average degree

of H*. Thus, Corollary 7 is a consequence of Theorem 6.

Corollary 7. If H is an induced subgraph of G, then U;ﬂ‘i < dHTJ((Z,Z)ll) , where

H* is an arbitrary induced subgraph of H with |V (H*)| > 1.

Obviously, Corollary 7 is an extension of Corollary 4 if G is regular. We conclude
with an example, where Corollary 3 is weaker than Corollary 7 for not necessarily
regular G. Therefore, let V(H) be an independent set of G, i.e. dg = 0. By
Corollary 3 and Corollary 7, it follows that h < 77"*5n and h < 2(‘7” 1)m if G
contains h independent vertices, respectively. In [11] it is shown that there are
infinitely many graphs G such that 2om 51)m < 77’;] .

n

2. PROOFS

In [11], the following Lemma 8 is proved. For completeness we give a proof here.
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Lemma 8. If zq,...,x, are real numbers, then

n 2 n 9
(2) On (Zi=1 dix,) —2(op — 1)m Zi:l diz; < 4m ZijeE TiT;.

Proof. 1t is easy to see that ¢ is an eigenvalue of £ if and only if y = 1 — o fulfills
det(A — uD) =0, see [10, 12, 14]. Let p; =1 — 0p—jp1 fori=1,...,n.

Note that D is positive definite since 6 > 1. Define 2 Dy as the inner product
for vectors z,y € R" and let z and y be called D-orthogonal if QTDQ =0. If
2T Dx = 1 then z is called D-normal. A set of D-normal vectors being pairwise
D-orthogonal is a D-orthonormal set.

We consider the generalized eigenvalue problem Axz = puDzx for p € R and
z € R™ with z # 0. If the pair (u,z) is a solution of this equation, then z is a
D-eigenvector of G and p is the corresponding D-eigenvalue of G.

We use the well known fact (e.g. see [14]) that there is a D-orthonormal basis
of R™ consisting of D-eigenvectors of G. Next we will show the following assertion.
If {uq,...,up} is a D-orthonormal basis of R" such that u; is a D-eigenvector
with corresponding D-eigenvalue u; for ¢ = 1,...,n, then, for any vector z € R",
(3)  (p2—m)(@" Dug)? + - + (pn — 1) (2" Duy)? + mz’ Dz = z" Az

To see this, let z be given. There are real numbers ay,...,a, such that z =
ajul + -+ apn.

Then 27 Az = ula% + -4 una%, 2T Dx = a% + 4 a%, and gTD% = q; for
i =1,...,n. The desired equality (3) is equivalent to (g — p1)ad + -+ + (in —
p)ay, + p(af + - +ap) = pat + ...+ pnar.

As a consequence,

(4) (n — p1)(z" Duy)? + iz’ Dz < 27 Az

The vector \/%Tnl is a D-normal D-eigenvector of G with corresponding D-eigenva-
lue py, = 1, thus, inequality (4) and o, = 1 — pp imply the lemma. [

Proof of Theorem 5. Inequality (2) and A\ = r(1—0y,), if G is r-regular, imply
the fact that if G is r-regular and x1,...,x, are real numbers, then

(5) (r—A1) (Z;l xi>2 + A\in Z;l z? < 2n ZijeE TiT;.

Let U be an induced subgraph of G isomorphic to H and ¢ : V(H) — V(U)
be a graph isomorphism from H to U.

For real numbers z1,..., z, with 22:1 2g = 1, let x1,...,2, be defined as
follows: If i € V(U), then there is a suitable ¢ € {1,...,h} such that i = ¢(vg).
Set x; = z, in this case. If i € V' \ V(U), then let x; = 0.
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With z = (21,...,2,)7, we obtain > ,c 2; = 2221 Zg = 1, Yoy a? =
ZZ:l zg, and 2 ZijeE Tir; =2 quvq/GE(H) Zgzg = 2L Anz.

Inequality (5) implies (r — A1) + )\1(23:1 zg)n < 2" Apzn, hence, with B =
(Ag —\I), 1 < (r—ni>\1) minz' Bz = ﬁMIN, where the minimum is taken

over all vectors z = (z1,...,2;,)! with 22:1 zg = 1.

Note that this minimum exists, because A\; < ¢; follows from Theorem 1,
hence, all eigenvalues ¢1 — A\, P2 — A1,...,0n — A1 of B are non-negative. It
follows that B is positive semidefinite.

To investigate this value M TN, we consider the Lagrange function L(z, k) =
2'Bz— 2&(2221 24— 1) with Lagrange multiplier 2x and the necessary optimality

conditions L., = 0 for ¢ = 1,..., h (for more details an Lagrange Theory see [2]).
We obtain that the equations Bz = k1 and 172 = 1 are simultaneously
solvable.

Next we will show that x is unique. If Bz = k11, lTﬂ =1, Bz = k2l, and
lTQ =1, then k1 = mlTQ = leBQ = K]QﬂTl = Ko.

With 1 < 55 MIN, it follows MIN = 2" Bz =k > 0.
If z = %g, then Bz =1 and 17z = %

If A1 < ¢1, then B isregular and 1 = 172 = k1TB711, hence, 1Tz = 17 B~ 1.
|

Proof of Theorem 6. The proof of Theorem 6 is similar to that one of Theo-
rem 5.
Let ; > 0 for i = 1,...,n and, since o, > 1, inequality (2) implies

an(Z?zl dixi)Q - M Z?ﬂ(dixi)Z = % ijeE(diﬂfi)(djﬂﬁj)'

Substituting w; = d;x; for i = 1,...,n, it follows
2 " 2
(6) on0” —2(op — 1)md Zi:l w; < 4m ZijeE‘ wiwy,

for arbitrary w; > 0 for i = 1,...,n with > " ; w; = 1.

Again, let U be an induced subgraph of G isomorphic to H and ¢ : V(H) —
V(U) be a graph isomorphism from H to U, and, for real numbers z1,...,2 >0
with 22:1 zg = 1, let wq,...,w, be defined as follows: If i € V(U), then there
is a suitable ¢ € {1,...,h} such that i = ¢(v,). Set w; = 2, in this case. If
i€ V\V(U), then let w; = 0.

Inequality (6) implies 200% < min(zT Agz+ (0, —1)8212z) = MIN, where the

2m

.. . h
minimum is taken over S, = {2 = (21,...,2,)T | 2, > 0forqg=1,...,h, Zq:l 2q
= 1}. Note that this minimum exists because 2% Agz+(0,—1)dz7 2 is a continuous
function and Sy, is a compact set.
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Let z = (z1,. .. ,zh)T € Sy, with gTAHg—l—(Un—l)dng = MIN. Furthermore,
let H' be the induced subgraph of H with vertex set V(H') = {q € V(H) | z4 >
0} # 0.

Ift = |V(H')| =1, then H = K; € M(G, H) with V(H') = {q}, z = 1,
and MIN = (o, — ) > 0. Hence, y = ((J 1)6) is a positive solution of
(A + (an —1)6I)y = 1 and it follows g(G,H') = 1Ty = (Gn_l)é = 4% and
1< oitemy

If t > 2, then 0 < 2, < 1 for all ¢ € V(H'). Thus, MIN = min(u? Agru +
(0, — 1)6u"u), where the minimum is taken over the relative interior rint(S;) =
{u=(u1,...,u)" |us >0fors=1,...,t, Zi:l us = 1} of S, consequently, this
minimum is a local minimum at the hyperplane H; = {u = (u1, ..., us)7 | Eizl U
=1}

To investigate this value M IN, we consider the Lagrange function L(u, k) =
ul Agru+ (0, — 1)6uTu — 26(3°%_, us — 1) with Lagrange multiplier 2« and the
necessary optimality conditions L,, =0 for s=1,...,t.

With B = A + (0, — 1)61, we obtain that the system Bu = r1, 1Tu =1
has a positive solution wu.

Next we will show that & is unique If Bu; = k11, 1T u1 = 1, Bug = k21, and
lTug =1, then k1 = k117 Uy = Uy Buz = kour Ll = Ko.

With 1 < 2Zm MIN, it follows MIN = u"Bu =« > 0.

If y = lu then By = 1 has a posmve solution y, consequently, H €
M (G, H). Moreover, g(G, H’) =1Ty =1 = 2~ and we obtain 1 < W.

To see that f(G,H) = m, assume there is H” € M (G, H) with g(G, H")
> g(G, H'). Then there exists u € rint(S;) with t = |[V/(H")| such that u” Agnu+
(0 — DéuTu < MIN.

Let ; = u; if i € V(H") and z; =0 for i € V(H) \ V(H").

It follows z = (z1,...,2)! € Sy and 2T Az + (0, — 1)62T2z < MIN,
contradicting the definition of MIN. |
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