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Abstract

A constrained colouring or, more specifically, an (α, β)-colouring of a
hypergraph H, is an assignment of colours to its vertices such that no edge
of H contains less than α or more than β vertices with different colours. This
notion, introduced by Bujtás and Tuza, generalises both classical hypergraph
colourings and more general Voloshin colourings of hypergraphs. In fact, for
r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings
while an important instance of Voloshin colourings of r-uniform hypergraphs
gives (2, r− 1)-colourings. One intriguing aspect of all these colourings, not
present in classical colourings, is thatH can have gaps in its (α, β)-spectrum,
that is, for k1 < k2 < k3, H would be (α, β)-colourable using k1 and using
k3 colours, but not using k2 colours.

In an earlier paper, the first two authors introduced, for σ being a par-
tition of r, a very versatile type of r-uniform hypergraph which they called
σ-hypergraphs. They showed that, by simple manipulation of the param-
eters of a σ-hypergraph H, one can obtain families of hypergraphs which
have (2, r − 1)-colourings exhibiting various interesting chromatic proper-
ties. They also showed that, if the smallest part of σ is at least 2, then H

will never have a gap in its (2, r − 1)-spectrum but, quite surprisingly, they
found examples where gaps re-appear when α = β = 2.

In this paper we extend many of the results of the first two authors
to more general (α, β)-colourings, and we study the phenomenon of the
disappearance and re-appearance of gaps and show that it is not just the
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behaviour of a particular example but we place it within the context of a
more general study of constrained colourings of σ-hypergraphs.

Keywords: σ-hypergraphs, constrained colourings, hypergraph colourings.
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1. Introduction

Let X = {x1, x2, . . . , xn} be a finite set, and let D = {D1, D2, . . . , Dm} be a
family of subsets of X. The pair H = (X,D) is called a hypergraph with vertex-
set V (H) = X, and with edge-set E(H) = D. When all the subsets are of the
same size r, we say that H is an r-uniform hypergraph.

A constrained colouring or, more specifically, an (α, β)-colouring of a hy-
pergraph H, is an assignment of colours to its vertices such that no edge of H
contains less than α or more than β vertices with different colours. We shall
always assume that α ≥ 2.

This type of colouring is a special case of that introduced by Bujtás and Tuza
in [1] and studied further in [2, 3, 4, 5, 6]. For an r-uniform hypergraph, a (2, r)-
colouring is just a colouring in the classical sense, while a (2, r − 1)-colouring is
what Caro and Lauri called a non-monochromatic-non-rainbow (NMNR) colour-
ing in [7]. Since we shall only be considering colourings in which no edge has
r different colours, we also assume that β < r. This is a special instance of
Voloshin colorings of mixed hypergraphs. The references [8, 10] are examples
of recent works on colourings of mixed hypergraphs, and [11, 13] even give ap-
plications. The book [14] and the up-to-date website http://spectrum.troy.edu/
voloshin/publishe.html are recommended sources for literature on all these types
of colourings of hypergraphs.

For any hypergraph H, an (α, β)-colouring using exactly k colours is called
a k-(α, β)-colouring. The lower chromatic number χα,β is defined as the least
number k for which H has a k-(α, β)-colouring. Similarly, the upper chromatic

number χα,β is the largest k for which H has a k-(α, β)-colouring. It is possible
that H is not (α, β)-colourable and hence χα,β and χα,β are not defined. These
parameters are often simply referred to as χ and χ, repectively, when α, β are
clear from the context. The (α, β)-spectrum of H is the sequence, in increasing
order, of all k such that H has a k-(α, β)-colouring. Again, we often refer to this
simply as the spectrum of H. Clearly, the first and last terms of this sequence
are χα,β and χα,β respectively. We say that the chromatic spectrum has a gap

when there exist integers k1 < k2 < k3 such that the hypergraph is k1- and
k3-colourable but not k2-colourable.

In this paper, we will consider a special type of hypergraph defined in [7]. A
σ-hypergraphH(n, r, q | σ), where σ is a partition of r, is an r-uniform hypergraph
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having nq vertices partitioned into n classes of q vertices each. If the classes are
denoted by V1, V2, . . . , Vn, then a subset K of V (H) of size r is an edge if the
partition of r formed by the non-zero cardinalities | K ∩ Vi |, 1 ≤ i ≤ n, is σ. The
non-empty intersections K ∩ Vi are called the parts of K. The number of parts
of the partition σ is denoted by s(σ), while the size of the largest and smallest
parts of the partition σ are denoted by ∆ = ∆(σ) and δ = δ(σ), respectively.

These σ-hypergraphs are highly symmetric, often sparse and, as shown in
[7], they seem to offer a unified platform for obtaining hypergraphs with or with-
out gaps in their NMNR-spectrum by suitable modification of their parameters.
These are properties which have often been obtained by ad hoc methods in the
literature on colourings of mixed hypergraphs (for example, [12] and the remark-
able [9]), but which can often be obtained more systematically and smoothly
using σ-hypergraphs.

In this paper we show that σ-hypergraphs have the same features and capabil-
ities in the more general setting of (α, β)-colourings. The paper [7] showed that,
when δ ≥ 2, the corresponding σ-hypergaph cannot have a gap in its NMNR-
spectrum and concluded with an example showing a surprising phenomenon,
namely a σ-hypergraph with δ ≥ 2 and with a gap in its (2, 2)-spectrum. In fact,
the main aim of this paper is to extend the results of [7] to more general (α, β)-
colourings and particularly to show that this phenomenon is not just a sporadic
example but a general behaviour of (α, β)-colourings of σ-hypergraphs.

Finally, for any two positive integers p < q, by the interval [p, q] we mean the
sequence of all integer values k such that p ≤ k ≤ q.

This paper is structured as follows. In Section 2 we present two useful lemmas
which we shall often use throughout the paper. In Section 3, we shall consider
that part of the chromatic spectrum which we call the monochromatic zone. We
consider when the monochromatic zone exists and determine its range. We also
consider when the spectrum is precisely the monochromatic zone. We then show
that when s(σ) is outside the range [α, β], usually there is no monochromatic
zone and the corresponding σ-hypergraph is not (α, β)-colourable. In Section
4 we shall show that a σ-hypergraph has no gaps in its (2, β)-spectrum when
δ ≥ r − β + 1, and in Section 5 we shall demonstrate that gaps can reappear for
(α, β)-colourings when δ ≤ r − β. We finish off with some open questions and
ideas for further extending this research.

2. Useful Lemmas

Before delving into the presentation of our main results, we give in this section
two useful lemmas which we shall often use in this paper.

Lemma 2.1. Let a, b, d be positive integers such that 2 ≤ a ≤ d and a ≤ b. Let

f=f(a, b, d)=max
{

∑i=b
i=1 xi : x1≥x2≥ · · · ≥xb≥1, xi∈Z

+,
∑i=a−1

i=1 xi≤d− 1
}

.
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Then f = (b− a+ 1)
⌊

d−1
a−1

⌋

+ d− 1.

Proof. We may assume
∑i=a−1

i=1
xi = d− 1

otherwise we can increase x1 by 1, increasing the value of f(a, b, d). We may
also assume, without loss of generality, that x1−xa−1 ≤ 1, for otherwise we may
delete 1 from x1 and add 1 to xa−1 and rearrange the largest a− 1 terms.

Since
∑i=a−1

i=1
xi = d− 1,

each xi, for 1 ≤ i ≤ a− 1, satisfies
⌊

d− 1

a− 1

⌋

≤ xi ≤

⌈

d− 1

a− 1

⌉

,

since

(a− 1)

⌊

d− 1

a− 1

⌋

≤ d− 1 ≤ (a− 1)

⌈

d− 1

a− 1

⌉

.

The same condition also holds for xi, a ≤ i ≤ b, since the values are in non-

increasing order. Let a− 1 = h+ g such that h of these xi’s are equal to
⌊

d−1
a−1

⌋

and the remaining g values are equal to
⌈

d−1
a−1

⌉

. If (a − 1)|(d − 1), then the

maximum value of f is obtained by taking g = 0, which gives a sum exactly
equal to d−1, and hence, f = b(d−1

a−1) which is the required maximum. So assume
(a− 1) 6 |(d− 1). Then

h

⌊

d− 1

a− 1

⌋

+ g

⌈

d− 1

a− 1

⌉

= h

⌊

d− 1

a− 1

⌋

+ g

(⌊

d− 1

a− 1

⌋

+ 1

)

= d− 1,

hence

g = d− 1− (h+ g)

⌊

d− 1

a− 1

⌋

= d− 1− (a− 1)

⌊

d− 1

a− 1

⌋

.

Now, to maximise the value of f , we take xj =
⌊

d−1
a−1

⌋

for j = a, . . . , b.

Therefore

f = g

⌈

d− 1

a− 1

⌉

+ (b− g)

⌊

d− 1

a− 1

⌋

= g + b

⌊

d− 1

a− 1

⌋

= b

⌊

d− 1

a− 1

⌋

+ d− 1− (a− 1)

⌊

d− 1

a− 1

⌋

= (b− a+ 1)

⌊

d− 1

a− 1

⌋

+ d− 1, as required.
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Lemma 2.2. Let a, b, d, n be positive integers such that 2 ≤ a ≤ d and a ≤ b ≤ n.

Let

bmin=min

{

b :
∑i=b

i=1
xi= n, x1≥x2≥ · · · ≥xb≥1, xi∈Z

+,
∑i=a−1

i=1
xi≤d− 1

}

.

Then

bmin =









n−
(

d− 1− (a− 1)
⌊

d−1
a−1

⌋)

⌊

d−1
a−1

⌋









.

Proof. By the previous lemma, we require the minimum value of b such that
f(a, b− 1, d) < n ≤ f(a, b, d) – this implies that

(b−1)

⌊

d− 1

a− 1

⌋

+d−1−(a−1)

⌊

d− 1

a− 1

⌋

< n ≤b

⌊

d− 1

a− 1

⌋

+ d− 1− (a− 1)

⌊

d− 1

a− 1

⌋

,

so

(b− 1)

⌊

d− 1

a− 1

⌋

< n−

(

d− 1− (a− 1)

⌊

d− 1

a− 1

⌋)

≤ b

⌊

d− 1

a− 1

⌋

, hence

b− 1 <
n−

(

d− 1− (a− 1)
⌊

d−1
a−1

⌋)

⌊

d−1
a−1

⌋ ≤ b.

So, since b is an integer,

bmin =









n−
(

d− 1− (a− 1)
⌊

d−1
a−1

⌋)

⌊

d−1
a−1

⌋









,

as stated.

3. The Monochromatic Zone

An important concept is the following. The (α, β)-monochromatic zone, denoted
by M(α, β), of a σ-hypergraph, or more simply the monochromatic zone, consists
of all those integers k for which there exists a k-(α, β)-colouring in which, for
every class Vi of the hypergraph, all the vertices in Vi are given the same colour,
hence Vi is monochromatic.

It might happen that, for certain values of the parameters, the monochro-
matic zone is empty. So the first questions we shall consider will be about the
conditions for the existence of the monochromatic zone, and its range when it
exists.
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The monochromatic zone for an NMNR-colouring of a σ-hypergraph is {k :
⌈

n
s(σ)−1

⌉

≤ k ≤ n} where 2 ≤ s ≤ r − 1, as shown in [7]. We now consider

the monochromatic zone for (α, β)-colourings of σ-hypergraphs.

Theorem 3.1. Let H = H(n, r, q | σ) and consider (α, β)-colourings of H for

given integers β ≥ α ≥ 2. Suppose α ≤ s(σ) ≤ β. Then the (α, β)-monochromatic

zone of H is

M(α, β) =













n−
(

s(σ)− 1− (α− 1)
⌊

s(σ)−1
α−1

⌋)

⌊

s(σ)−1
α−1

⌋









, n



 .

Proof. Suppose H is coloured such that all its classes are monochromatic. Clear-
ly, n, which is the maximum number of colours possible does give a valid (α, β)-
colouring since, if every class is coloured monochromatically using a different
colour, each edge has exactly s(σ) colours, and recall that α ≤ s(σ) ≤ β.

Let k be the number of colours used and let ni be the number of classes
coloured monochromatically by colour i, for 1 ≤ i ≤ k. First of all, we note
that

∑k
i=1 ni = n, the number of classes. Let us assume that the ni are in non-

increasing order. Hence we require the minimum value of k such that
∑k

i=1 ni = n

and
∑α−1

i=1 ni ≤ s(σ)− 1. Therefore, by Lemma 2.2, the minimum value of k is








n−
(

s(σ)− 1− (α− 1)
⌊

s(σ)−1
α−1

⌋)

⌊

s(σ)−1
α−1

⌋









.

Hence the range of the monochromatic zone is as claimed.
Finally, the monochromatic zone is gap-free since, if H is coloured with all

classes monochromatic, using less than n colours, a new colour can be added each
time by choosing a colour which is repeated more than once, and changing one
of the classes using this colour to a new colour, thus increasing the number of
colours used by one. This process can be continued until no colour appears more
than once, in which case n colours are used. Therefore the monochromatic zone
is gap-free.

So the monochromatic zone gives a gap-free interval in the (α, β)-spectrum of a
σ-hypergraph when α ≤ s(σ) ≤ β. This gap-free interval can be extended as
shown in the proposition below.

Proposition 3.2. Consider H = H(n, r, q | σ) such that α ≤ s = s(σ) ≤ β .

Then the (α, β)-spectrum of H contains the interval












n−
(

s− 1− (α− 1)
⌊

s−1
α−1

⌋)

⌊

s−1
α−1

⌋









,min

{

nq, β + (n− s)

⌊

β

s

⌋}



 .
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Proof. Consider the σ-hypergraph H as stated. We first observe that if q < ∆
or n < s(σ), then H has no edges and we can trivially colour the vertices using
up to nq colours.

Let β = sk + t where k ≥ 1 and 0 ≤ t ≤ s − 1. We may assume that
q ≥ ∆ and n ≥ s(σ). The latter implies that β − sk ≤ s − 1 < n. Also, as
s∆ ≥ r > β and hence s∆

k
> β

k
≥ s, it follows that ∆ > k and hence q ≥ ∆ > k.

Thus the number of vertices in H equals nq ≥ n(k + 1) ≥ nk + β − sk, making

min
{

nq, β + (n− s)
⌊

β
s

⌋}

= β + (n− s)
⌊

β
s

⌋

.

Since s ∈ [α, β], the monochromatic zone is defined as in Theorem 3.1. Con-
sider a colouring such that each class is coloured using precisely k colours, with
distinct sets of k colours for each different class, that is we use nk colours alto-
gether. Consider any edge of H: it contains at most ks colours which is at most β
by the definition of q, and since s ≥ α, it also contains at least α colours. Hence
this is a valid (α, β)-colouring of H.

So let us consider this (nk)-colouring of H. Consider an edge containing r

vertices. As observed, this edge has at most ks colours. Let us consider one
vertex of each colour of each part of the edge to keep the original colour. Now
consider the remaining vertices: let us change the colour of up to β− ks vertices,
giving each vertex a new colour. Then the resulting edge has at least α colours
because we preserved the original colours, and has at most ks + β − ks = β

colours, making it a valid (α, β)-coloured edge. Similarly, any other edge which
intersects the vertices which have received new colours, has at least α and at
most β colours, and any edge which does not intersect these vertices remains
unchanged. Thus we have valid (nk)- up to (nk + β − ks)-colourings of H.

As we have seen above the interval [nk, nk + β − ks] is gap-free. So we have
to consider the interval [n, nk]. For k = 1 we have nothing to prove. Assume
k > 1. We start with the (nk)-colouring described above. In each class we fix
a colour to be unchanged. Now we select all the vertices in a given class having
another colour distinct from the fixed one, and recolour them by the colour we
fixed.

This gives an (nk − 1)-coloring which is valid because every edge is still
coloured with at least α colours and at most β colours. This recolouring process
is now repeated colour after colour, class after class each time reducing the number
of colours used by 1 and keep the resulting colouring legitimate, until each class is
monochromatic with the colour we fixed initially, which is distinct in each class.
Hence the range [n, nk] is in the spectrum and is gap-free.

Hence, for any value k ≥ 1, the interval













n−
(

s− 1− (α− 1)
⌊

s−1
α−1

⌋)

⌊

s−1
α−1

⌋









,min

{

nq, β + (n− s)

⌊

β

s

⌋}
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is contained in the chromatic spectrum of H, and is gap-free.

One way to obtain hypergraphs with a gap-free chromatic spectrum is to con-
struct σ-hypergraphs where the chromatic spectrum is completely covered by the
monochromatic zone. As we shall see in Theorem 3.4, for the monochromatic
zone to exist, s(σ) must lie in the interval [α, β]. Proposition 3.2 shows that if
s(σ) < β, we can always extend the monochromatic zone. So we consider the
case when s(σ) = β and show that for large enough values of n and q, there are
σ-hypergraphs with (α, β)-spectrum equal to the monochromatic zone.

Theorem 3.3. Consider H = H(n, r, q | σ) with ∆ ≥ 2, 2 ≤ α ≤ s(σ) = β, such

that n ≥ s(σ)2 and q ≥ (∆− 1)β + 1. Then the only legitimate (α, β)-colourings
of H are those in the monochromatic zone, and hence the (α, β)-spectrum is

precisely the monochromatic zone.

Proof. Consider H = H(n, r, q | σ) with the stated conditions on ∆, s = s(σ), α,
β, q and n. Let σ = (a1, a2, . . . , as). If there are at least s classes, say V1, . . . , Vs,
such that each contains at least β+1 colours, then we can choose aj vertices with
distinct colours from class Vj , j = 1, . . . , s until we have chosen β + 1 colours,
which we can do since the sum of the parts of σ is r ≥ β + 1. This gives an edge
with more than β colours.

So we may assume there are at most s− 1 such classes. All the other classes
contain at most β distinct colours (but the colours in distinct classes can be
different). As q ≥ (∆− 1)β +1, each such class contains a colour that repeats at
least ∆ times. Let us call these colours the “chosen colours”.

Since there are n ≥ s2 = (s−1)s+s classes and at most s−1 classes contain
more than β colours, there are at least (s− 1)s+ 1 classes in which at least one
colour is repeated at least ∆ times. Hence there are either s classes in which
the same chosen colour is repeated at least ∆ times or s + 1 classes in which
the “chosen colours” that repeat ∆ times are all distinct. The former case gives
a monochromatic edge so we are done. So assume the classes with the distinct
chosen colours are V1, . . . , Vs+1 with chosen colours 1, . . . , s+ 1 respectively, and
recall that s = β and ∆ ≥ 2. Now consider some class among V1, . . . , Vs+1, say
V1, which is non-monochromatic. Hence it contains a vertex x whose colour is
different from its chosen colour 1: this vertex can have one of the chosen colours,
say colour 2 without loss of generality, or it can have a colour different from all
the chosen colours. In the former case we can form an edge by taking the ∆
part of σ from V1 to include colours 1 and 2, and the remaining s− 1 parts from
V3, . . . , Vs+1. This edge would include 2+ s− 1 = s+1 = β+1 colours, therefore
it is not possible. On the other hand, if the colour of x is different from all the
chosen colours, we can still form a (β + 1)-coloured edge by taking the ∆-part
from V1 to include this new colour and colour 1, and the remaining s − 1 parts
from s− 1 classes among V2, . . . , Vs+1.
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Hence V1, . . . , Vs+1 are monochromatic each using one of s + 1 distinct colours.
Consider the other classes, Vs+2, . . . , Vn. We show that these classes must also be
monochromatic. Consider a class Vk for some k > s + 1 containing two colours.
If both colours are not amongst the chosen colours, then a (β + 1)-coloured edge
can be formed by taking the ∆-part from Vk to include these two colours, and
the other s− 1 parts from any s− 1 classes out of V1, . . . , Vs+1.

If, on the other hand, one of the colours in Vk is a chosen colour, say it is
colour 1 in V1, and the other colour is distinct from the chosen colours, we can
form an edge by taking the ∆-part from Vk to include a vertex coloured 1 and
one with the other colour, and taking the other s− 1 parts from V2, . . . , Vs. Such
an edge would also include β + 1 colours.

Finally, assume that both colours in Vk are chosen colours, say colours 1 and
2. We can form an edge by taking the ∆-part from Vk to include both chosen
colours, and the remaining s−1 parts from V3, . . . , Vs+1, giving a (β+1)-coloured
edge.

This means that all classes Vs+2, . . . , Vn must be monochromatic, and there-
fore that all n classes must be monochromatic, implying that the only valid
colourings of H are those in the monochromatic zone.

It is possible that a σ-hypergraph does not have a monochromatic zone. It is also
possible that a σ-hypergraph does not even have any (α, β)-colouring for some
range of the parameters. Both these scenarios can arise when s(σ) is outside the
interval [α, β], as the next result shows.

Theorem 3.4. Let H = H(n, r, q | σ) and consider the (α, β)-spectrum of H.

Then

(1) For s(σ) < α ≤ β, the (α, β)-monochromatic zone is empty.

(2) For α ≤ β < s(σ), the (α, β)-monochromatic zone is empty when

n ≥ (β − α+ 1)

⌊

s(σ)− 1

α− 1

⌋

+ s(σ).

(3) Suppose 1 ≤ s(σ) < α ≤ β < r, q ≥ β(∆− 1) + 1 and n ≥ 2s(σ)− 1. Then

H is not (α, β)-colourable.

(4) Suppose 1 < α ≤ β < s(σ) < r, q ≥ β(∆− 1) + 1 and

n ≥

⌊

s(σ)− 1)

α− 1

⌋

(s(σ)− α) + 2s(σ)− 1.

Then H is not (α, β)-colourable.

Proof. (1) Since s(σ) < α, and an edge intersects at most s(σ) colour classes,
the classes cannot all be monochromatic. Hence the (α, β)-monochromatic zone
is empty.
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(2) Suppose H is coloured such that all its classes are monochromatic. Since
s(σ) > β, the number of distinct colours used is at most β, otherwise there is an
edge which uses more than β colours.

Also, at least α colours are needed, and any set of α− 1 colours can cover at
most s(σ)− 1 classes, otherwise we get an (α− 1)-coloured edge.

So, given b ≤ β colours 1, . . . , b, let ni represent the number of classes which
receive colour i, 1 ≤ i ≤ b. Let these ni be listed in non-increasing order. Clearly
∑i=b

i=1 ni = n, and we require the condition
∑i=α−1

i=1 ni ≤ s(σ) − 1. Hence, by
Lemma 2.1, n ≤ f(α, b, s) ≤ f(α, β, s). Thus if

n ≥ (β − α+ 1)

⌊

s(σ)− 1

α− 1

⌋

+ s(σ),

then the (α, β)-monochromatic zone is empty.

(3) Suppose q ≥ β(∆ − 1) + 1. Then, by the pigeon-hole principle, in every
class Vj there are either β+1 or more distinct colours, or there is a colour which
appears at least ∆ times.

Suppose there are s(σ) classes in which there is a colour which appears ∆
times. Then we can choose an edge from these classes that uses exactly s(σ) < α

colours. Hence, we may assume there are at most s(σ) − 1 such classes, with
the remaining classes each containing at least β + 1 distinct colors. Now, since
n ≥ 2s(σ) − 1, there are at least s(σ) classes containing at least β + 1 colours.
Consider σ = (a1, a2, . . . , as). Then if we take a1 distinct colors from the first
class, a2 distinct colours from the second class, and continue in this fashion, we
obtain an edge which is (β + 1)-coloured, which is always possible since β < r.

(4) Suppose q ≥ β(∆ − 1) + 1. Then, as in part (1), in every class Vj there
are either β +1 or more distinct colours, or there is a colour which appears ∆ or
more times.

Suppose there are
⌊

s(σ)−1)
α−1

⌋

(s(σ)− α) + s(σ) classes in which, in each class,

there is a colour which appears ∆ times. Let us call these colours the ∆-colours.
Suppose that less than s(σ) ∆-colours are used across these classes. Then by
Lemma 2.1, taking a = α, d = s(σ) and b = s(σ) − 1, α − 1 of these ∆-colours
cover s(σ) classes, because

⌊

s(σ)− 1

α− 1

⌋

(s(σ)− α) + s(σ) >

⌊

s(σ)− 1

α− 1

⌋

(s(σ)− α) + s(σ)− 1

= f(α, s(σ)− 1, s(σ)).

This results in an (α − 1)-coloured edge. On the other hand, if s(σ) or more
∆-colours are used, then we have an edge with exactly s(σ) > β colours.

Hence, we may assume there are at most
⌊

s(σ)−1
α−1

⌋

(s(σ)−α) + s(σ)− 1 such

classes, with the remaining classes each containing at least β+1 distinct colours.
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But as n ≥
⌊

s(σ)−1
α−1

⌋

(s(σ) − α) + 2s(σ) − 1, there are at least s(σ) such classes,

which, as in part (1) of this proof, result in a (β + 1)-coloured edge.

In the next sections, the use of the monochromatic zone will prove to be an im-
portant technique for constructing σ-hypergraphs with or without gaps in their
chromatic spectrum in this manner: we do this by first establishing the monochro-
matic zone and then studying whether gaps exist above and below this zone.
However, before leaving this section, we shall give two examples which show that
the existence of this zone is not the full story behind the presence or absence of
gaps in the chromatic spectrum.

Example 3.5. The (α, β)-monochromatic zone is empty and there is a gap in
the (α, β)-spectrum

Let us consider H = H(n, 12, 6 | σ = (6, 6)), and (α, β) = (3, 3). H has no
monochromatic zone since s(σ) < α = β. Thus s(σ) = 2 < α = 3. H is 3-
colourable by using each colour on two vertices in each class. In this way one
uses exactly three colours. It is also (n + 1)-colourable by giving five vertices
in each class the same colour (say 1) in all the classes, and giving the sixth
vertex in each class a different colour for each class. So H is 3-colourable and
(n+ 1)-colourable.

Consider four colours now. No class can have four colours, otherwise we can
have an edge which includes four colours. If some class contains three colours,
then the 4th colour must be used in some other class, again giving an edge which
includes four colours. So let us suppose that each class uses at most two colours.
There are six ways of choosing two different colours out of four. There cannot be
more than one class which includes only one colour, since otherwise we have an
edge using only two colours. So if n ≥ 7, then we have the same two colours used
in two different classes, giving an edge which uses two colours. Hence for n ≥ 7,
H is not 4-colourable.

This shows that there is a gap in the chromatic spectrum of H under these
conditions.

Example 3.6. The (α, β)-monochromatic zone is empty and there is no gap in
the (α, β)-spectrum

Now we consider H(n, 4, 2 | σ = (2, 2)) with (α, β) = (3, 3). Thus s(σ) = 2 <

α = 3 and H has no monochromatic zone. H is (n+1)-(3, 3)-colourable—in each
class Vj we use the colours 0 and j. This requires exactly n + 1 colours, and an
edge taken from classes Vi and Vj will contain the colours 0, i, j and hence this is
a valid (3, 3)-colouring.

Now any valid (3, 3)-colouring of H requires that any pair of classes contain
exactly three colours. Now consider the case where no class is monochromatic.
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Then each class uses two colours, and each pair of classes must have a common
colour. If n > 3, this common colour must be the same throughout, and the other
colour must be different in each class, otherwise we would get two classes with four
different colours, or two classes using the same two colours, and both cases would
give invalid colourings. Hence for n > 3, the only valid (3, 3)-colouring is the one
in which there is a common colour, say colour 0, throughout the classes, and a
different colour in each class, that is the (n+ 1)-colouring previously described.

Now suppose there is a monochromatic clas, say V1, coloured using colour 1.
Then every other class must have at least two colours so that an edge intersecting
V1 has three colours. So, except for class V1, every other class must contain two
colours, and every pair of these classes must have exactly three colours between
them. If there are more than three such classes, the only possibility is that all
classes share one common colour (different from colour 1) and have another colour
which is distinct for all the classes. This gives another (n + 1)-(3, 3)-colouring.
So for n > 4, the only valid (3, 3)-colouring is that using n+ 1 colours.

Therefore, for n > 4, H is only (n+1)-(3, 3)-colourable, and hence there are
no gaps in the (3, 3)-spectrum of H.

4. (2, β)-colourings: No Gaps when δ ≥ r − β + 1 and 2 ≤ s(σ) ≤ β

In this section we shall start to investigate the disappearance and reappearance
of gaps in the chromatic spectrum of σ-hypergraphs which was first observed in
[7]. In that paper it was shown that for δ ≥ 2, a σ-hypergraph cannot have gaps
in its NMNR-spectrum, but then the possibility of gaps reappeared when δ ≥ 2
for (2, 2)-colourings, r = 4. In this and the next section, we shall generalise these
results: to (2, β)-colourings for the case of a gap-free spectrum, and to general
(α, β)-colourings for the re-appearance of gaps.

Consider a (2, β)-colouring for H = H(n, r, q | σ) such that α ≤ s(σ) ≤ β

and δ ≥ r − β + 1. We will show that there are no gaps in the (α, β) chromatic
spectrum in this case. First of all observe that, given an edge, any s(σ)− 1 parts
of the edge have at most r − (r − β + 1) = β − 1 vertices altogether. So any
s(σ)−1 parts of an edge use at most β−1 colours. This observation is important
for the following results. In all cases we assume that 2 ≤ s(σ) ≤ β.

We first start with two “recolouring” lemmas.

Lemma 4.1. Let H = H(n, r, q | σ) with δ ≥ r − β + 1. Suppose we are given

a (2, β)-colouring of H. Suppose V is a class of H and that all colours of V

are changed into a new colour z. Then the new colouring of H is a valid (2, β)-
colouring.

Proof. Any edge of H which does not intersect V remains a (2, β)-coloured edge
in the new colouring. Let K be an edge which intersects V . Since K intersects
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another s(σ) − 1 ≥ 1 classes, then K still uses at least 2 colours since the new
colour z appears only in the class V . Also, since as previously observed, any
s(σ) − 1 parts of the edge use at most β − 1 colours, the edge contains at most
β colours. So the new colouring is still a valid (2, β)-colouring.

Lemma 4.2. Let H = H(n, r, q | σ) with δ ≥ r − β + 1. Suppose we are given a

(2, β)-colouring of H. Suppose V is a class of H and that x, y are two different

colours in V which do not appear in any other class of H. Suppose that all

occurences of the colours x and y in V are changed into a new colour z. Then

the new colouring of H is also a valid (2, β)-colouring.

Proof. As before, if K is a edge which does not interesect V , then it remains
unchanged and therefore is a (2, β)-coloured edge in the new colouring. Therefore
suppose that K intersects V . If it did not contain any of the colours x, y in
the original colouring, it would again remain unchanged and therefore a (2, β)-
coloured edge in the new colouring. Therefore suppose first that K contains at
least two vertices coloured x or y in the original colouring. Hence every edge
of the original colouring that contains both colours x and y or just one of these
colours has lost at least one colour and gained at most one new colour. Also,
since z does not appear in any other class and s(σ) ≥ 2, K contains some other
colour from another class which is not z. Therefore K contains at least 2 colours.

Now suppose that K contains only one vertex which is coloured z in the new
colouring. Then, as before, K is non-monochromatic, since s(σ) ≥ 2 and z is a
new colour appearing only in V . Also, suppose, without loss of generality, that
the vertex coloured z in K was coloured x in the original colouring—therefore
only one vertex was coloured x in K. Recall that K had at most β colours, and
x appeared only in the class V . Hence any edge which included the colour x has
lost one colour and gained the new colour z, and still has at most β colours.

We now consider the chromatic spectrum in two parts: that above the monochro-
matic zone and that below.

Proposition 4.3. The hypergraph H = H(n, r, q | σ) with δ(σ) ≥ r − β + 1 and

2 ≤ s(σ) ≤ β cannot have a gap above the monochromatic zone in its (2, β)-
spectrum.

Proof. Let us start with k0 being the largest integer for which H has a k0-
(2, β)- colouring. If k0 = n or even if k0 = n + 1 then we are done. We may
therefore assume that k0 > n + 1 and that therefore not all classes of H are
monochromatic. Choose that k0-(2, β)-colouring of H which has the largest num-
ber m0 of monochromatic classes amongst all k0-(2, β)-colourings. Let V0 be a
non-monochromatic class of H.

Suppose first that all colours in V0 appear in some other class of H. Replace
all the colours in V0 with a new colour z. By Lemma 4.1, this gives a (2, β)-
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colouring of H. But this colouring uses k0 + 1 colours. This case is therefore
impossible by the maximality of k0.

Therefore suppose that V0 contains just one colour x which is not in some
other class. Again we change all colours in V0 to the colour z and again we obtain
a (2, β)-colouring, this time with k0 colours but with one more monochromatic
class. This is also impossible by the maximality of m0.

Lastly, we suppose that V0 contains at least two colours x and y which appear
only in V0. We replace all occurrences of these two colours in V0 with the new
colour z. By Lemma 4.2, we again have a (2, β)- colouring, but this time with
k0 − 1 colours.

It is important for later to observe here that the number of monochromatic
classes of this (k0 − 1)-(2, β)-colourings is at least m0.

We have therefore shown that H has a (k0 − 1)-(2, β)-colouring. If k0 − 1 =
n + 1 then we are done. Otherwise we again proceed as above. In general, at
the j-th step of this procedure, we start with a (k0 − j)-(2, β)-colouring such
that k0 − j is still greater than n + 1. Therefore the colouring has some non-
monochromatic class Vj . We start with a (k0 − j)-(2, β)-colouring which has
a maximum number mj of monochromatic classes. By the above observation,
mj ≥ mj−1. By recolouring the vertices of Vj as we did before, we either obtain a
(k0 − j + 1)-(2, β)- colouring with strictly more than mj monochromatic classes,
which is impossible since mj ≥ mj−1, or a (k0 − j − 1)- (2, β)- colouring, as
required. We emphasise that the (k0− j− 1)-(2, β)-colouring we end up with has
at least as many monochromatic classes as the original (k0 − j)-(2, β)-colouring,
ensuring that, at the next stage, mj+1 ≥ mj .

Proceeding this way we eventually show that H has a k- (2, β)- colouring
with k all the way from k0 down to n+ 1, confirming that it has no gaps above
the monochromatic zone.

We now show, using similar ideas, that, when δ(σ) ≥ r − β + 1, a σ-hypergraph
cannot have gaps in its (2, β)-spectrum below the monochromatic zone.

Proposition 4.4. Let H = H(n, r, q | σ) be a σ-hypergraph with δ(σ) ≥ r−β+1
and 2 ≤ s(σ) ≤ β. Then H(n, r, q | σ) cannot have a gap in its (2, β)-spectrum
below the monochromatic zone.

Proof. We shall proceed very much as in Proposition 4.3. Recall that the

monochromatic zone starts at k =
⌈

n
s−1

⌉

since α = 2. Start with a k0-(2, β)-

colouring of H with the least value of k0. If k0 =
⌈

n
s−1

⌉

− 1 or k0 =
⌈

n
s−1

⌉

, then

we are done. So suppose that k0 ≤
⌈

n
s−1

⌉

−2. Therefore the colouring has a non-

monochromatic class V0. Choose that k0-(2, β)-colouring with a maximal number
m0 of monochromatic classes. By a suitable recolouring of the vertices of V0 we



Constrained Colouring and σ-hypergraphs 185

either obtain a colouring with more than the maximal number of monochromatic
classes or a k0 + 1-colouring and then repeat the process. We shall describe the
general case when we are at stage j.

In this case, we have a (k0 + j)-(2, β)-colouring where k0 + j is still less than
⌈

n
s−1

⌉

−1. Therefore the colouring has a non-monochromatic class Vj . We choose

a (k0 + j)-(2, β)-colouring with a maximal number mj of monochromatic classes,
and we observe that mj > mj−1. We then have these possibilities.

If Vj has at least two colours x, y which do not appear in any other class of
H, we colour all the vertices of Vj with a new colour z. This gives a legitimate
(2, β)-colouring, by Lemma 4.1 but with strictly less colours than k0+j (say, k0+i

colours, i < j), and one more monochromatic class (that is, 1+mj monochromatic
classes). This is a contradiction since 1 +mj > mj > mi, for all i < j, therefore
the new colouring has more monochromatic classes than the maximum possible
for a (k0 + i)-(2, β)-colouring, which is mi.

So suppose that Vj has only one special colour x which does not appear in any
other class of H. Again we recolour all the vertices of Vj using the colour z, giving
another (k0+j)-(2, β)-colouring by Lemma 4.1 but with one more monochromatic
class. This is a contradiction to the maximality of mj .

The last remaining case is therefore when every colour in Vj appears in some
other class of H. We now replace all the colours of the vertices in Vj by a new
colour z. This gives us a (k0 + j + 1)-(2, β)-colouring again by Lemma 4.1. Note
that the number of monochromatic classes has also increased, ensuring that, at
the next step, mj+1 will be larger than mj .

Proceeding this way we finally achieve a k-(2, β)-colouring with k =
⌈

n
s−1

⌉

−1,

giving us the required result.

Since, as we have seen, there is always a monochromatic zone in the (α, β)-
spectrum for α ≤ s(σ) ≤ β, which is gap-free, we can conclude the following
result, which generalises, for (2, β)-colourings, a result in [7].

Theorem 4.5. Let H = H(n, r, q | σ) with α ≤ s(σ) ≤ β and δ ≥ r − β + 1.
Then H(n, r, q | σ) has no gaps in its (2, β) spectrum.

5. Gaps for (α, β)-colourings when δ ≤ r − β and α ≤ s(σ) ≤ β

We continue on the same track started in the previous section. While there we
generalised the result of [7] that δ ≥ 2 stops gaps from appearing in the NMNR-
spectrum, here we prove that the example in [7] showing that there can exist gaps
in the (2, 2)-spectrum when δ = 2 is not an isolated example but is part of the
general result that when ∆ ≥ α and δ ≤ r−β, gaps appear in the (α, β)-spectrum
for a range of the parameters q and n.
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Theorem 5.1. Let H = H(n, r, q | σ) and consider the (α, β)-colourings of H,

such that ∆ ≥ α, δ ≤ r−β and α ≤ s(σ) ≤ β. Let q = (β−α+1)
⌊

∆−1
α−1

⌋

+∆−1,

and n ≥
(

β+1
α−1

)

(s(σ)− 1) + s(σ). Then

(1) H is not k-colourable for k ≤ β − 1.

(2) H is β-colourable.

(3) H is not (β + 1)-colourable.

(4) H is k-colourable for

k ∈













n− s(σ) + 1− (α− 1)
⌊

s(σ)−1
α−1

⌋

⌊

s(σ)−1
α−1

⌋









, n



 .

Therefore the (α, β)-spectrum of H has a gap.

Proof. (1) Suppose H is coloured with k ≤ β− 1 colours. Consider a class of H
and let the number of vertices coloured j in this class be xj . Then

∑k
j=1 xj = q.

Let us order these as x1 ≥ x2 ≥ · · · ≥ xk ≥ 1

Since k < β, q > (k−α+1)
⌊

∆−1
α−1

⌋

+∆−1. Hence by Lemma 2.1,
∑i=α−1

i=1 xi >

∆−1. So the α−1 colours which appear most frequently cover at least ∆ vertices.

This is true in every colour class. Since k ≤ β − 1 colours are used, and

n ≥

(

β + 1

α− 1

)

(s(σ)− 1) + s(σ) ≥

(

β − 1

α− 1

)

(s(σ)− 1) + s(σ),

there are at least s(σ) classes that contain a set of ∆ vertices covered by the same
set of α− 1 colours, giving an edge which uses α− 1 colours.

(2) Now suppose we are given β colours. Clearly no edge can contain more
than β colours. If α− 1|∆− 1 then q = β(∆−1

α−1 ). In this case, colour the vertices

in each class so that each colour is repeated exactly ∆−1
α−1 times. Then any set of

α− 1 colours covers exactly (α− 1)∆−1
α−1 = ∆− 1 < ∆ vertices. Therefore no edge

has less than α colours.

If α − 1 6 |∆ − 1, then (∆ − 1) − (α − 1)
⌊

∆−1
α−1

⌋

colours appear
⌊

∆−1
α−1

⌋

+ 1

times, and the remaining colours appear
⌊

∆−1
α−1

⌋

times. Then by Lemma 2.1, any

set of α− 1 colours cover at most ∆− 1 vertices. Hence for any set of ∆ vertices
we need at least α colours, and we use at most β colours since we are using β

colours in all, making this a valid (α, β)-colouring for H.

(3) We will now show that H is not (β + 1)-colourable. For the rest of the
proof, let the parts of the partition of σ be denoted by ∆ = a1 ≥ a2 ≥ · · · ≥ as = δ

in non-increasing order. Note that a1 + a2 + · · ·+ as−1 = r − δ ≥ β.
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So suppose H is coloured with the colours 1, 2, . . . , β + 1. We observe first that
the same α−1 colours can cover ∆ vertices (or more) in at most s(σ)−1 classes,
otherwise we obtain an edge which has only (α− 1) colours. Also since there are
β+1 colours, there are at most

(

β+1
α−1

)

(s(σ)− 1) classes which contain some α− 1
colours which cover at least ∆ vertices.

But n >
(

β+1
α−1

)

(s(σ)− 1)+ s(σ), so there are at least s(σ) classes in which no

set of α− 1 colours cover more than ∆− 1 vertices. Since q = β
⌊

∆−1
α−1

⌋

+∆− 1−

(α − 1)
⌊

∆−1
α−1

⌋

, these classes must contain β or β + 1 colours. Let us call these

classes “colourful” classes, and list them as V1, V2, . . . , Vs.

We now consider two cases. Firstly, suppose some colour x is missing from
all these classes. Therefore x must appear at least once in some other class.
We may assume, by re-numbering, that x = β + 1, and that therefore each of
these classes contains the colours 1, 2, . . . , β. In that case we can form an edge
K with (β + 1) colours by choosing the first s(σ)− 1 parts of the partition from
V1, V2, . . . , Vs−1 to include β colours (this is possible since β ≤ r − δ). For the
last part of σ required for the edge, we choose δ vertices from the class which
includes the vertex coloured β + 1, giving a (β + 1)- coloured edge.

We now consider the second case, that is, when each of the colours 1, 2, . . . ,
β+1 appears at least once in one of these s(σ) colourful classes. Again, we shall
construct a (β+1)-coloured edge K. The first β distinct colours in K are chosen
by the previous greedy fashion: choose aj new distinct colours from the Vj , for
j = 1, 2, . . . , s − 1. We just need to assign the last colour to K. Note that K

already contains all colours except one, call it x, say. If x appears in Vs then we
assign it as the last colour to K by choosing the remaining δ vertices to include
the vertex coloured x. Otherwise, x must be in some Vj from which we have
chosen aj distinct colours. But then these aj colours must all appear in Vs, since
Vs misses colour x and it can miss at most one colour. Therefore we re-assign to
K the colour x from Vj instead of some colour y from the aj colours previously
assigned, and then we assign to K the colour y from Vs by choosing the vertex
coloured y in the last part of σ. This, again, gives us the (β + 1)-coloured edge
K, which is the final contradiction.

(4) We have already shown that the monochromatic zone is as stated in the
theorem, and therefore H is n-(α, β)-colourable. We observe that

n =

(

β + 1

α− 1

)

(s− 1) + s > β + 1

since
(

β+1
α−1

)

≥ β + 1 and s > 1.

Hence there is a gap in the (α, β)-spectrum of H, because H is β-colourable,
not (β + 1)-colourable and is n-colourable where n > β + 1.
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6. Conclusion

In this paper we have managed, incoporating some new ideas, to extend most of
the results of [7] to the more general situation of (α, β)-colourings, showing that
σ-hypergraphs are just as versatile here as they were with NMNR colourings. In
particular we have shown that techniques for analysing gaps in the spectrum, like
the use of the monochromatic zone, extend very smoothly to (α, β)-colourings,
and we have shown that the example of the disappearance and re-appearance of
gaps given in [7] is not an isolated phenomenon but it can be understood within a
general theory of (α, β)-colourings of σ-hypergraphs. Just as Voloshin colourings
introduce gaps where they did not exist in classical colourings of hypergraphs, for
σ-hypergraphs, constrained colourings introduce gaps where they did not exist
in Voloshin colourings.

We finish this paper with an interesting open problem: Investigate the ex-
istence or otherwise of gaps in the (α, β)-spectrum of σ-hypergraphs when δ ≥
r − β + 1.
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