($k-1$)-KERNELS IN STRONG k-TRANSITIVE DIGRAPHS

Ruixia Wang
School of Mathematical Sciences
Shanxi University
Taiyuan Shanxi,030006, PR China
e-mail: wangrx@sxu.edu.cn

Abstract

Let $D=(V(D), A(D))$ be a digraph and $k \geq 2$ be an integer. A subset N of $V(D)$ is k-independent if for every pair of vertices $u, v \in N$, we have $d(u, v) \geq k$; it is l-absorbent if for every $u \in V(D)-N$, there exists $v \in N$ such that $d(u, v) \leq l$. A (k, l)-kernel of D is a k-independent and l-absorbent subset of $V(D)$. A k-kernel is a $(k, k-1)$-kernel.

A digraph D is k-transitive if for any path $x_{0} x_{1} \cdots x_{k}$ of length k, x_{0} dominates x_{k}. Hernández-Cruz [3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219] proved that a 3-transitive digraph has a 2 -kernel if and only if it has no terminal strong component isomorphic to a 3-cycle. In this paper, we generalize the result to strong k-transitive digraphs and prove that a strong k-transitive digraph with $k \geq 4$ has a $(k-1)$-kernel if and only if it is not isomorphic to a k-cycle.

Keywords: digraph, transitive digraph, k-transitive digraph, k-kernel.
2010 Mathematics Subject Classification: 05C20.

1. Terminology and Introduction

We assume that the reader is familiar with the standard terminology on digraphs and refer the reader to [1] for terminology not defined here. We only consider finite digraphs without loops or multiple arcs. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. For a vertex x in D, its out-neighborhood $N^{+}(x)=\{y \in$ $V(D): x y \in A(D)\}$ and its in-neighborhood $N^{-}(x)=\{y \in V(D): y x \in A(D)\}$. For a pair X, Y of vertex sets of D, define $(X, Y)=\{x y \in A(D): x \in X, y \in Y\}$.

Let x and y be two vertices of $V(D)$. The distance from x to y in D, denoted $d(x, y)$, is the minimum length of an (x, y)-path, if y is reachable from x, and
otherwise $d(x, y)=\infty$. The distance from a set X to a set Y of vertices in D is $d(X, Y)=\max \{d(x, y): x \in X, y \in Y\}$. The diameter of D is $\operatorname{diam}(D)=$ $d(V(D), V(D))$. A digraph D is said to be strongly connected or just strong, if for every pair x, y of vertices of D, there is an (x, y)-path. Clearly, D has finite diameter if and only if D is strong.

A cycle is a finite sequence of distinct vertices $C=x_{0} x_{1} \cdots x_{n} x_{0}$ such that $x_{i-1} \rightarrow x_{i}$ for every $1 \leq i \leq n$ and $x_{n} \rightarrow x_{0}$, whose length is $n+1$. We denote the subpath of C from x_{i} to x_{j} by $C\left[x_{i}, x_{j}\right]=x_{i} x_{i+1} \cdots x_{j}$. Let C be a cycle of length $k \geq 2$ and let $V_{1}, V_{2}, \ldots, V_{k}$ be pairwise disjoint vertex sets. The extended k-cycle $C\left[V_{1}, V_{2}, \ldots, V_{k}\right]$ is the digraph with vertex set $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ and arc set $\bigcup_{i=1}^{k}\left\{v_{i} v_{i+1}: v_{i} \in V_{i}, v_{i+1} \in V_{i+1}\right\}$, where subscripts are taken modulo k.

A biorientation of the graph G is a digraph D obtained from G by replacing each edge $\{x, y\} \in E(G)$ by either the arc $x y$ or the arc $y x$ or the pair of arcs $x y$ and $y x$. A complete digraph is a biorientation of a complete graph obtained by replacing each edge $\{x, y\}$ by the arcs $x y$ and $y x$. A complete bipartite digraph is a biorientation of a complete bipartite graph obtained by replacing each edge $\{x, y\}$ by the arcs $x y$ and $y x$. A digraph is k-transitive if for any path $x_{0} x_{1} \cdots x_{k}$ of length k, x_{0} dominates x_{k}. A 2-transitive digraph is called a transitive digraph. The family of k-transitive digraphs have been studied in $[4,5,6,7]$.

A subset N of $V(D)$ is k-independent if for every pair of vertices $u, v \in N$, we have $d(u, v) \geq k$; it is l-absorbent if for every $u \in V(D)-N$ there exists $v \in N$ such that $d(u, v) \leq l$. A (k, l)-kernel of D is a k-independent and l absorbent subset of $V(D)$. A k-kernel is a $(k, k-1)$-kernel. A 2 -kernel is called kernel. Kernels have been widely studied. A nice survey on the subject is [2]. Chvátal proved in [3] that recognizing digraphs that have a kernel is an NPcomplete problem, so finding sufficient conditions for a digraph to have a kernel or finding large families of digraphs with kernels have been a very prosperous line of investigation explored by many authors. In 1980, Kwaśnik [9] introduced the concept of (k, l)-kernels generalizing the notion of kernels. The existence of (k, l)-kernels in some digraphs has been studied. In [8], Galeana-Sánchez et al. showed that every k-transitive digraph has a k-kernel. In [5], Hernández-Cruz proved that a 3-transitive digraph has a 2-kernel if and only if it has no terminal strong component isomorphic to a 3-cycle. In this paper, we generalize the result to strong k-transitive digraphs and prove that a strong k-transitive digraph with $k \geq 4$ has a $(k-1)$-kernel if and only if it is not isomorphic to a k-cycle.

2. $(k-1)$-Kernels in Strong k-Transitive Digraphs

We begin with a useful lemma.
Lemma 1 [4]. Let D be a strong k-transitive digraph with $k \geq 2$. Then $\operatorname{diam}(D) \leq$ $k-1$.

When a strong k-transitive digraph D contains a cycle of length at least k, Hernández-Cruz and Montellano-Ballesteros characterized the structure of D as follows.

Theorem 2 [7]. Given an integer k with $k \geq 2$, let D be a strong k-transitive digraph. Suppose that D contains a cycle of length n such that $(n, k-1)=d$ and $n \geq k+1$. Then each of the following holds:
(1) If $d=1$, then D is a complete digraph.
(2) If $d \geq 2$, then D is either a complete digraph, a complete bipartite digraph or an extended d-cycle.

Theorem 3 [7]. Given an integer k with $k \geq 2$, let D be a strong k-transitive digraph of order at least $k+1$. If D contains a cycle of length k, then D is a complete digraph.

When a strong k-transitive digraph D contains a cycle of length $k-1$, the following lemma holds.

Lemma 4. Let D be a strong k-transitive digraph with $k \geq 4$ and let $C=$ $x_{0} x_{1} \cdots x_{k-2} x_{0}$ be a cycle of length $k-1$. Then for every $x \in V(D) \backslash V(C)$, $(x, V(C)) \neq \emptyset$ and $(V(C), x) \neq \emptyset$.

Proof. Since the converse of a k-transitive digraph is still a k-transitive digraph, we only need to show $(x, V(C)) \neq \emptyset$. Again, since D is strong, there exists a path from x to C. Let $P=y_{0} y_{1} \cdots y_{s}$ be a shortest path from x to C, where $s \geq 1$, $y_{0}=x$ and $y_{s} \in V(C)$. Without loss of generality, assume that $y_{s}=x_{0}$. We prove that y_{0} dominates some vertex of $V(C)$ by induction on the length s of P. It clearly holds for $s=1$. Thus, we assume that $s \geq 2$. Note that $y_{1} \cdots y_{s}$ is a path of length $s-1$. By the induction hypothesis, we know that there exists a vertex $x_{i} \in V(C)$ such that $y_{1} \rightarrow x_{i}$. Then $y_{0} y_{1} C\left[x_{i}, x_{i-1}\right]$ is a path of length k, which implies that $y_{0} \rightarrow x_{i-1}$.

The following theorem is our main result.
Theorem 5. Let D be a strong k-transitive digraph with $k \geq 4$. Then D has a ($k-1$)-kernel if and only if it is not isomorphic to a k-cycle.

Proof. The necessity is obvious. Now we show the sufficiency. Since every strong digraph contains a cycle, we consider the following four cases.

Case 1. D contains a cycle of length at least $k+1$. By Theorem $2, D$ is either a complete digraph, a complete bipartite digraph or an extended d-cycle where $d=(n, k-1) \geq 2$. By the definition of k-kernels, a t-kernel consisting of a single vertex must be a k-kernel where $k \geq t$. Clearly, if D is a complete digraph or a complete bipartite digraph, then every vertex in $V(D)$ is a 3-kernel.

Hence, D has a $(k-1)$-kernel. Now assume that D is an extended d-cycle, denote $D=C\left[E_{1}, \ldots, E_{d}\right]$, where C is a cycle of length d and every E_{i} is an independent set. Note that $2 \leq d \leq k-1$. It is easy to check that if $d=k-1$, then every E_{i} is a $(k-1)$-kernel of D; if $2 \leq d<k-1$, then every vertex in $V(D)$ is a ($k-1$)-kernel.

Case 2. D contains a cycle C of length k. Let $C=x_{0} x_{1} \cdots x_{k-1} x_{0}$. If $V(D) \backslash V(C) \neq \emptyset$, then Theorem 3 implies that D is a complete digraph. Recall that every complete digraph has a 2 -kernel consisting of a single vertex. Hence, D has a $(k-1)$-kernel. If $V(D) \backslash V(C)=\emptyset$, then since D is not isomorphic to a k-cycle, C contains a chord $x_{i} x_{j}$, where the length of $C\left[x_{i}, x_{j}\right]$ is more than or equal to 2 . For any $x_{l} \in V(C)$, if $l \neq j+1$, then $C\left[x_{l}, x_{j}\right]$ is a path of length at most $k-2$; if $l=j+1$, then $C\left[x_{j+1}, x_{i}\right] x_{j}$ is a path of length at most $k-2$. This shows $d\left(x_{l}, x_{j}\right) \leq k-2$ and so x_{j} is a $(k-1)$-kernel.

Case 3. D contains a cycle C of length $k-1$. Let $C=x_{0} x_{1} \cdots x_{k-2} x_{0}$. In this case, subscripts are taken modulo $k-1$. If $V(D) \backslash V(C)=\emptyset$, then every vertex of D is a $(k-1)$-kernel. Now assume that $V(D) \backslash V(C) \neq \emptyset$. By Lemma 4, for any $x \in V(D) \backslash V(C),(x, V(C)) \neq \emptyset$ and $(V(C), x) \neq \emptyset$. Define $S_{i}=\left\{y \in V(D) \backslash V(C): y \rightarrow x_{i}\right\}$, for every $i \in\{0,1, \ldots, k-2\}$. Clearly $\bigcup_{i=0}^{k-2} S_{i}=V(D) \backslash V(C)$.

Suppose that C is an induced cycle. We first claim that if there exist $x \in$ $V(D) \backslash V(C)$ and $x_{i}, x_{j} \in V(C)$ such that $x_{i} \rightarrow x \rightarrow x_{j}$, where $i=j$ or $C\left[x_{i}, x_{j}\right]$ is a path of length at least three, then x_{j} is a $(k-1)$-kernel. Assume, without loss of generality, that $i=0$. Then $j=0$ or $3 \leq j \leq k-2$. It is obvious that for any $y \in V(D)-S_{j+1}, d\left(y, x_{j}\right) \leq k-2$. Let $z \in S_{j+1}$ be a vertex different from x. If $j=0$, then $z C\left[x_{1}, x_{0}\right] x$ is a path of length k, which implies that $z \rightarrow x$ and so $d\left(z, x_{0}\right)=2 \leq k-2$ as $k \geq 4$. Hence, x_{0} is a $(k-1)$-kernel. Now assume that $3 \leq j \leq k-2$. Then $z C\left[x_{j+1}, x_{0}\right] x x_{j}$ is a path of length at most $k-2$. Hence, x_{j} is a $(k-1)$-kernel and the claim holds.

For any $x \in S_{i}$, by Lemma 4 , there exists $x_{l} \in V(C)$ such that $x_{l} \rightarrow x$. If $l \in\{0,1, \ldots, k-2\} \backslash\{i-1, i-2\}$, then by the above claim, D has a $(k-1)$ kernel. If $l=i-1$, then $x_{i-1} x C\left[x_{i}, x_{i-1}\right]$ is a cycle of length k. By Case $2, D$ has a $(k-1)$-kernel. Hence, we may assume $l=i-2$. Indeed, we may assume that for any vertex $z \in V(D) \backslash V(C)$, there exists $i \in\{0,1, \ldots, k-2\}$ such that $x_{i-1} \rightarrow z \rightarrow x_{i+1}$ and z has no other neighbor on C.

Now we show that D is an extended $(k-1)$-cycle. Let $E_{i}=\{x \in V(D) \backslash$ $\left.V(C): x_{i-1} \rightarrow x \rightarrow x_{i+1}\right\}$, for every $i \in\{0,1, \ldots, k-2\}$. Clearly, $\bigcup_{i=0}^{k-2} E_{i}=$ $V(D) \backslash V(C)$. We first prove that every vertex of E_{i} dominates every vertex of E_{i+1}. For any $x \in E_{i}$ and $y \in E_{i+1}$, we have $x C\left[x_{i+1}, x_{i}\right] y$ is a path of length k. Hence $x \rightarrow y$. Let $x, x^{\prime} \in V(D) \backslash V(C)$ such that $x^{\prime} \rightarrow x$. Then there exist $i, j \in\{0,1, \ldots, k-2\}$ such that $x_{j-1} \rightarrow x \rightarrow x_{j+1}$ and $x_{i-1} \rightarrow x^{\prime} \rightarrow x_{i+1}$. Then $x^{\prime} x C\left[x_{j+1}, x_{j}\right]$ is a path of length k, which implies that $x^{\prime} \rightarrow x_{j}$. Hence, we have
$j=i+1$. It follows that $D=C\left[E_{0}, E_{1}, \ldots, E_{k-2}\right]$. It is easy to check that every $E_{i}, i \in\{0,1, \ldots, k-2\}$ is a $(k-1)$-kernel.

Suppose that C is not an induced cycle. Then there exists a chord $x_{j} x_{i}$ in C. Now we will show that x_{i} is a $(k-1)$-kernel. It is obvious that for any $y \in V(D)-S_{i+1}, d\left(y, x_{i}\right) \leq k-2$. Let $z \in S_{i+1}$. Note that $z C\left[x_{i+1}, x_{j}\right] x_{i}$ is a path of length at most $k-2$. Hence, $d\left(z, x_{i}\right) \leq k-2$ and x_{i} is a $(k-1)$-kernel.

Case 4. There exists no cycle of length more than or equal to $k-1$ in D. Let x be a vertex of maximum out-degree in D. If $d^{+}(x)=1$, then the out-degree of every vertex in D is one. Since D is strong and there exists no cycle of length more than or equal to $k-1, D$ is a cycle of length at most $k-2$. Hence, every vertex of D is a $(k-1)$-kernel. Now assume that $d^{+}(x) \geq 2$. If x is a $(k-1)$-kernel, then we are done; if not, there exists $z \in V(D) \backslash\{x\}$ such that $d(z, x) \geq k-1$. Combining this with Lemma 1, we have $d(z, x)=k-1$. Denote $W_{s}=\{y: d(y, x)=s\}$, for $s \in\{0,1, \ldots, k-1\}$. Observe that $\left(W_{j}, W_{1} \cup \cdots \cup W_{i}\right)=\emptyset$ when $j \geq i+2$.
Claim 1. $N^{+}(x) \subseteq W_{1} \cup \cdots \cup W_{k-3}$.
Proof. Since D has no loops, $N^{+}(x) \cap W_{0}=\emptyset$. By the definition of W_{s}, every vertex of W_{s} can reach x in s steps. If $N^{+}(x) \cap\left(W_{k-1} \cup W_{k-2}\right) \neq \emptyset$, say $v \in N^{+}(x) \cap\left(W_{k-1} \cup W_{k-2}\right)$, then let P be the shortest path from v to x. Then $P v$ is a cycle of length k or $k-1$, a contradiction to the hypothesis of Case 4. Hence, $N^{+}(x) \subseteq W_{1} \cup \cdots \cup W_{k-3}$.
Claim 2. Every vertex of $N^{+}(x)$ is contained in the shortest path from any vertex of W_{k-1} to x.
Proof. Let $z^{\prime} \in W_{k-1}$ and P^{\prime} be a shortest path from z^{\prime} to x. If there exists $v \in N^{+}(x)$ such that $v \notin V\left(P^{\prime}\right)$, then $P^{\prime} v$ is a path of length k, which implies that $z^{\prime} \rightarrow v$, a contradiction to $v \in W_{1} \cup \cdots \cup W_{k-3}$ and $\left(W_{k-1}, W_{1} \cup \cdots \cup W_{k-3}\right)=\emptyset$. Hence, $v \in V\left(P^{\prime}\right)$ and furthermore $N^{+}(x) \subseteq V\left(P^{\prime}\right)$. The proof of the claim is complete.

By Claim $2,\left|N^{+}(x) \cap W_{s}\right| \leq 1$, for every $s \in\{1,2, \ldots, k-3\}$. Let $r=$ $\min \left\{j: W_{j} \cap N^{+}(x) \neq \emptyset\right\}$. Denote $N^{+}(x) \cap W_{r}=\{w\}$. Now we show that w is a $(k-1)$-kernel. For any $u \in W_{k-1}$, by Claim 2, we can conclude that $d(u, w) \leq k-2$. For any $u \in W_{0} \cup W_{1} \cup \cdots \cup W_{k-3}$, since $d(u, x) \leq k-3$, we have $d(u, w) \leq k-2$. If $d(u, w) \leq k-2$ for any $u \in W_{k-2}$, then w is a ($k-1$)-kernel. Since $\operatorname{diam}(D) \leq k-1$, we assume that $d(u, w)=k-1$. Let $R=u_{k-2} u_{k-3} \cdots u_{1} u_{0}$ be a shortest path from u to x, where $u_{k-2}=u, u_{0}=x$ and $u_{j} \in W_{j}$ for $j=1,2, \ldots, k-3$, and let $Q=x_{k-1} x_{k-2} \cdots x_{0}$ be a shortest path from z to x, where $x_{k-1}=z, x_{0}=x$ and $x_{j} \in W_{j}$ for $j=1,2, \ldots, k-2$. By Claim 2 and the choice of r, we have $N^{+}(x) \subseteq\left\{x_{r}, \ldots, x_{k-3}\right\}$ and $w=x_{r}$. Again since $d^{+}(x) \geq 2$, there exists $x_{p} \in N^{+}(x) \cap\left\{x_{r+1}, \ldots, x_{k-3}\right\}$. It is obvious that $u \notin V(Q)$ and $w \notin V(R)$, otherwise $d(u, w) \leq k-2$, a contradiction. If there exists
a vertex $x_{i} \in\left\{x_{r+1}, \ldots, x_{k-3}\right\} \cap V(R)$, then $x_{i}=u_{i}$ and $R\left[u_{k-2}, u_{i}\right] P\left[x_{i-1}, x_{r}\right]$ is a path of length $k-2-r$. Recalling $1 \leq r \leq k-3$, we have $1 \leq k-2-r \leq k-3$. So, $R\left[u_{k-2}, u_{i}\right] P\left[x_{i-1}, x_{r}\right]$ is a path of length at most $k-3$, a contradiction to $d(u, w)=k-1$. Hence, $\left\{x_{r+1}, \ldots, x_{k-3}\right\} \cap V(R)=\emptyset$. Combining this with $x_{p} \in N^{+}(x) \cap\left\{x_{r+1}, \ldots, x_{k-3}\right\}$, we have $R x_{p} x_{p-1}$ is a path of length k. Hence, $u \rightarrow x_{p-1}$, a contradiction to $\left(W_{k-2}, W_{1} \cup \cdots \cup W_{k-4}\right)=\emptyset$, as $p-1 \leq k-4$. So, we have shown that w is a $(k-1)$-kernel.

For 3-transitive digraphs, Hernández-Cruz [5] proved the following theorem.
Theorem 6 [5]. Let D be a 3-transitive digraph. Then D has a 2-kernel if and only if it has no terminal strong component isomorphic to a 3-cycle.

In view of this result and Theorem 5, we propose the following conjecture.
Conjecture 7. Let D be a k-transitive digraph. Then D has a $(k-1)$-kernel if and only if it has no terminal strong component isomorphic to a k-cycle.

Acknowledgement

This work is supported by the National Natural Science Foundation for Young Scientists of China $(11201273)(61202017)(11401354)(11401353)$, the Natural Science Foundation for Young Scientists of Shanxi Province, China (2013021001-5) and Shanxi Scholarship Council of China (2013-017).

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[2] E. Boros and V. Gurvich, Perfect graphs, kernels, and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354. doi:10.1016/j.disc.2005.12.031
[3] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM300, Centre de Recherches Mathematiques, Universite de Montreal (1973).
[4] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[5] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219. doi:10.7151/dmgt. 1613
[6] C. Hernández-Cruz, 4-transitive digraphs I: the structure of strong transitive digraphs, Discuss. Math. Graph Theory 33 (2013) 247-260.
doi:10.7151/dmgt. 1645
[7] C. Hernández-Cruz and J.J. Montellano-Ballesteros, Some remarks on the structure of strong k-transitive digraphs, Discuss. Math. Graph Theory 34 (2014) 651-671. doi:10.7151/dmgt. 1765
[8] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of ($k+1$)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582-2591.
doi:10.1016/j.disc.2013.08.007
[9] M. Kwaśnik, On (k, l)-kernels on graphs and their products, Doctoral Dissertation, Technical University of Wrocław, Wrocław, 1980.

Received 7 January 2014
Revised 15 May 2014
Accepted 19 May 2014

