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Abstract

For a graph G with a given subgraph H, the backbone coloring is defined
as the mapping c : V (G) → N+ such that |c(u)− c(v)| ≥ 2 for each edge
{u, v} ∈ E(H) and |c(u)− c(v)| ≥ 1 for each edge {u, v} ∈ E(G). The
backbone chromatic number BBC(G,H) is the smallest integer k such that
there exists a backbone coloring with maxv∈V (G) c(v) = k.

In this paper, we present the algorithm for the backbone coloring of split
graphs with matching backbone.
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1. Preliminaries

The backbone coloring problem, introduced by Broersma in [4], is an example of
the general framework of graph coloring problems. It is strongly related to the
frequency assignment problem: given transmitters (represented by the vertices
of a graph) and their adjacency (vertices are adjacent if transmitters are close
enough or strong enough), assign the frequency bands so that corresponding
transmitters keep interferences at a defined level, minimizing total frequency
span. Furthermore, we distinguish certain substructure of the network (called
the backbone) crucial for the communication and put additional restrictions on
the assignment. Possible applications of backbone coloring are described e.g. in
[4].

In this paper, we consider simple undirected graphs, i.e. graphs without loops
or multiple edges, and digraphs, i.e. graphs with directed edges. For a graph or
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digraph G, let V (G) and E(G) denote its vertex set and edge set, respectively,
with cardinalities |V (G)| = n and |E(G)| = m. Graph G is a tree if and only if
it is simple, connected and m = n − 1. Graph G is unicyclic if and only if it is
simple, connected and m = n. Graph is a matching if and only if it is simple and
every its vertex is adjacent to at most one edge. We call the matching perfect

if and only if every vertex is adjacent to exactly one edge. The size of a largest
possible clique (complete subgraph Kk) in an undirected graph G is called the
clique number of G and denoted by ω(G).

The coloring of a graph (or a digraph) G is defined as a function c : V (G)→
N+ such that |c(u)− c(v)| ≥ 1 for each edge {u, v} ∈ E(G) (or (u, v) ∈ E(G) in
case of digraphs). The backbone coloring of a graph (or a digraph) G and the given
subgraph (subdigraph)H (called the backbone) ofG, is a function c : V (G)→ N+,
such that it is a coloring of G and the inequality |c(u)− c(v)| ≥ 2 holds for each
edge {u, v} ∈ E(H). The minimum number k for which there exists a coloring of
G with maxv∈V (G) c(v) = k is called the chromatic number χ(G) of G. Similarly,
the backbone chromatic number BBC(G,H) is the smallest integer k such that
there exists a backbone coloring of G with backbone H and maxv∈V (G) c(v) =
k. The backbone coloring c is optimal if maxv∈V (G) c(v) = BBC(G,H). We
straightforwardly obtain from these definitions that for every directed graph G
with backbone H and its respective underlying undirected graphs, G′ and H ′,
the equation BBC(G,H) = BBC(G′, H ′) holds. Throughout this paper, we
assume that the subgraph (subdigraph) H is spanning, i.e., V (G) = V (H), and
for notational simplicity we use the abbreviation ,,(G,H)” instead of ,,graph G
with backbone H”.

In this paper we focus on split graphs introduced by Hammer and Földes in
[1]. A split graph is a simple graph whose vertex set can be partitioned into two
sets: those of a clique C and an independent set I. Split graphs are perfect, thus
satisfying the equation χ(G) = ω(G). In this paper we consider split graphs with
χ(G) ≥ 3, as other split graphs are empty or bipartite and thus easily colorable
[3].

The remainder of the paper is organized as follows: we begin our considera-
tions with an algorithm that produces the value of BBC(Kn, G), where Kn is a
complete graph of order n and G is a tree or unicyclic graph. Next, we study the
backbone coloring of split graphs with perfect matching backbones and |C| = |I|.
Finally, we obtain a polynomial algorithm that computes BBC(G,M) for any
split graph G and any matching backbone M .

2. Backbone Coloring of Complete Graphs with Tree or

Unicyclic Backbones

Lemma 1. Let G be a graph of order n and G′ be a graph obtained from G by

attaching a pendant vertex. If BBC(Kn, G) = n, then BBC(Kn+1, G
′) = n+ 1.
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Proof. Let c be the optimal coloring of (Kn, G) and v be the vertex added to
graph G to obtain G′. Since v is a pendant vertex, it has only one adjacent vertex
u ∈ V (G′).

If c(u) ≤ n−1, then we extend c by assigning c(v)← n+1. The color assigned
to v does not appear elsewhere in the coloring and c(v)− c(u) > n+ 1− n = 1,
therefore |c(v) − c(u)| ≥ 2 and extended c is a feasible backbone coloring of
(Kn+1, G

′).

Otherwise, c(u) ≥ n. Since BBC(Kn, G) = n, we know that c(u) = n. By
assumption, since the mapping c is injective in {1, 2, . . . , n}, there exists a vertex
w ∈ V (G) such that c(w) = n− 1. Let us define a function c′ : V (G′)→ N+:

c′(x) =























n− 1 if x = v,

n if x = w,

n+ 1 if x = u,

c(x) if x ∈ V (G)− {u, v, w}.

It is easy to see that the mapping c′ is injective. By definition, |c′(v)− c′(u)| = 2,
c′(u)− c′(x) > c(u)− c(x) ≥ 2 for every edge {u, x} ∈ E(G′) and c′(w)− c′(x) >
c(u) − c(x) ≥ 2 for every edge {u,w} ∈ E(G′). Finally, it suffices to note that
|c′(x) − c′(y)| = |c(x) − c(y)| ≥ 2 for every other edge {x, y} ∈ E(G′). Since
the inequality |c′(x) − c′(y)| ≥ 2 holds for every edge {x, y} ∈ E(G′) and c′ is
injective, c′ is a backbone coloring of (Kn+1, G

′).

Lemma 2. For any n≥5, if Cn is a Hamiltonian cycle in Kn, then BBC(Kn, Cn)
= n.

Proof. If n is even, we color vertices on cycle sequentially with 1, 3, 5, . . . , n −
1, 2, 4, . . . , n. If n is odd, we use colors 1, 3, 5, . . . , n, 2, 4, . . . , n−1. In any case, the
mapping is injective and for every edge of the cycle the color difference between
endpoints is at least 2, so BBC(Kn, Cn) ≤ n. But on the other hand, for any
graph G, BBC(Kn, G) ≥ χ(Kn) = n, which completes the proof.

AHamiltonian path is a path in a graph that visits each vertex exactly once. If a
graph G contains a Hamiltonian path, then we call G a semihamiltonian graph.
Graph Ḡ is a complement of a graph G if and only if V (G) = V (Ḡ) and for every
pair of vertices u, v ∈ V (G) it holds uv ∈ E(Ḡ) if and only if uv /∈ E(G).

It can be shown that coloring of (Kn, G) using colors {1, 2, . . . , n} is equiva-
lent to the semihamiltonicity of the complement of a graph G. Indeed, suppose
we have an optimal coloring of (Kn, G) with colors {1, 2, . . . , n}, then the vertex
with color 1 is not connected in G to the vertex with color 2 (as it would violate
the backbone condition), the vertex with color 2 is not connected to the vertex
with color 3 and so on—therefore these vertices are connected in Ḡ. However, if
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we know that the graph Ḡ is semihamiltonian, then by assigning to the vertices
along the Hamiltonian path colors 1, 2, 3, . . . we obtain the solution for (Kn, G),
as every two vertices received distinct colors and every two vertices which received
consecutive colors are adjacent in Ḡ, therefore cannot be adjacent in G.

The problem of semihamiltonicity of a graph G is shown in [5] to be NP-
complete in general case, but it can be solved in polynomial time for sparse
graphs, therefore:

Theorem 3. For every connected graph G of order n ≥ 5 and with m ≤ n edges,

BBC(Kn, G) =

{

n+ 1 if G contains a spanning star as a subgraph,

n otherwise.

Proof. First, we note that any connected graph with m ≤ n edges is either a
tree or an unicyclic graph.

If G contains a spanning star as a subgraph, then it does not exists any
backbone coloring function for (Kn, G) to {1, 2, . . . , n}, because color of the root
of the star must differ from colors of all leaves by at least 2. But since m ≤ n
and the spanning star has exactly n − 1 edges, G has at most one edge outside
the spanning star. Therefore we may assign color n + 1 to the root of the star
and (if m = n) assign colors 1 and n − 1 ≥ 4 to the endpoints of the edge not
included in the spanning star. Finally, we assign all unused colors less than n to
all uncolored vertices and obtain the backbone coloring c of (Kn, G).

If G is a tree non-isomorphic to a spanning star, it has an induced path P4

as a subgraph. But BBC(K4, P4) = 4 and we may color G starting from the
optimal coloring of P4 and color the rest of the vertices using DFS ordering from
an arbitrary vertex of P4 and applying Lemma 1 to each step.

4 1

5

3

2
(a) Bull graph

1

3

5

4 2

(b) Paw graph

1

5

2

4

3

(c) Banner graph

Figure 1. Minimum optimally labeled supergraphs of C3 and C4.

In all other cases, G is unicyclic. If it contains a cycle Ck of length k ≥ 5, then
BBC(Kk, Ck) = k due to Lemma 2. Otherwise, there is either C3 or C4 subgraph
of G. But then we attach pendant vertices to this cycle until we obtain subgraph
C ′ of G on 5 vertices (all possibilities are presented in Figure 1). It turns out that
in each case BBC(K5, C

′) = 5. Finally, as in previous case, we extend the partial
coloring to the whole graph G using DFS ordering from an arbitrary vertex of
the colored part of the graph and applying Lemma 1.
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The proof of Theorem 3 yields an algorithm for backbone coloring of (Kn, G). All
operations: checking the existence of a spanning star, finding a cycle in a graph
and ordering the vertices using e.g. DFS from one of the previously colored
vertices can be implemented in O(m + n) time and labeling each vertex can be
implemented in O(1). Therefore, since m ≤ n, this algorithm runs in O(m+n) =
O(n) time.

We can extend Theorem 3 to forests by using the following lemma.

Lemma 4. Let G1 (of order n1) and G2 (of order n2) be graphs non-isomorphic

both to C3, and let c1 and c2 be the optimal backbone colorings of (Kn1
, G1) and

(Kn2
, G2), respectively. If BBC(Kn1

, G1) ≤ n1+1 and BBC(Kn2
, G2) ≤ n2+1,

then BBC(Kn1+n2
, G1 ∪G2) ≤ n1 + n2.

Proof. Since we have n1 ≤ BBC(Kn1
, G1) ≤ n1+1 and n2 ≤ BBC(Kn2

, G2) ≤
n2 + 1, we split the proof into the following possible cases:

Case 1. [BBC(Kn1
, G1) = n1 and BBC(Kn2

, G2) = n2]. In this case we
define c(v) = c1(v) if v ∈ V (G1) and c(v) = c2(v) + n1 if v ∈ V (G2). The
coloring function c is injective, for every {u, v} ∈ E(G1) ∪ E(G2) the inequality
|c(u)− c(v)| ≥ 2 holds and BBC(Kn1+n2

, G1 ∪G2) ≤ n1 + n2.

Case 2. [BBC(Kn1
, G1) = n1 + 1 and BBC(Kn2

, G2) = n2.] In this case
there exists color k, 2 ≤ k ≤ n1, such that for each vertex v ∈ V (G1), c1(v) 6= k.
Let us define:

c(v) =











c1(v) if v ∈ V (G1) and c1(v) < k,

k + c2(v)− 1 if v ∈ V (G2),

n2 + c1(v)− 1 if v ∈ V (G1) and c1(v) > k.

All backbone constraints of G1 and G2 are preserved, therefore it suffices to
show that c is an injective function. If u ∈ V1, v ∈ V2 and c1(u) < k, then
c(u) = c1(u) < k < k + c2(v) − 1 = c(v). If u ∈ V1, v ∈ V2 and c1(u) > k,
then c(u) = n2 + c1(u) − 1 ≥ n2 + k > c2(v) − 1 + k = c(v). Otherwise,
u, v ∈ V1 or u, v ∈ V2. Clearly c(u) 6= c(v) also holds, hence c is a backbone
coloring function using exactly n1 + n2 = n colors. The same argument applies
to the case BBC(Kn1

, G1) = n1 and BBC(Kn2
, G2) = n2 + 1. In both cases,

BBC(Kn1+n2
, G1 ∪G2) ≤ n1 + n2.

Case 3. [BBC(Kn1
, G1) = n1 + 1 and BBC(Kn2

, G2) = n2 + 1.] We know
that there exist colors k1 and k2, 2 ≤ k1 ≤ n1, 2 ≤ k2 ≤ n2, such that for each
vertex v ∈ V (G1), c1(v) 6= k1 and for each vertex v ∈ V (G2), c2(v) 6= k2. Let us
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define:

c(v) =























c1(v) if v ∈ V (G1) and c1(v) < k1,

k1 + c2(v)− 1 if v ∈ V (G2) and c2(v) < k2,

k2 + c1(v)− 2 if v ∈ V (G1) and c1(v) > k1,

n1 + c2(v)− 1 if v ∈ V (G2) and c2(v) > k2.

As in the previous case, all backbone constraints of G1 and G2 are preserved,
therefore it suffices to show that c is an injective function. If u ∈ V1, v ∈ V2 and
c1(u) < k1, then c(u) = c1(u) < k1 < k1 + c2(v) − 1 ≤ c(v). If u ∈ V1, v ∈ V2

and c1(u) > k1, then we have either c2(v) < k2, hence c(u) = k2 + c1(u) − 2 >
k2 + k1 − 2 ≥ k1 + c2(v)− 1 = c(v), or c2(v) > k2, thus c(u) = k2 + c1(u)− 2 ≤
k2 + n1 − 1 < n1 + c2(v)− 1 = c(v).

Finally, the remaining cases are u, v ∈ V1 or u, v ∈ V2. Clearly, c(u) 6= c(v)
also holds, so c is a backbone coloring function using exactly n1 + n2 colors.
Therefore BBC(Kn1+n2

, G1 ∪G2) ≤ n1 + n2.

Theorem 5. Let G be a graph of order n ≥ 5. If for each connected component

G′ of G the inequality |E(G′)| ≤ |V (G′)| holds, then

BBC(Kn, G) =

{

n+ 1 if G contains a spanning star as a subgraph,

n otherwise.

Proof. If G is connected, the formula is straightforward from Theorem 3. Oth-
erwise, we color separately all non-C3 connected components of G using Theo-
rem 3 and we proceed by induction using Lemma 4. Therefore, for all discon-
nected graphs G of order n without connected components C3 we proved that
BBC(Kn, G) = n.

If G contains t ≥ 2 connected components C3, then we number all triangles
with 1, 2, . . . , t and construct the backbone coloring c by assigning to the i-th C3

colors {i, i+ t, i+2t}. Such a coloring can be merged with any number of non-C3

connected components of G using Lemma 4.
To complete the proof it suffices to show the solution for G with exactly one

triangle. Then, we obtain the optimal backbone coloring c of (Kn−3, G \ C3)
(nonempty, since n ≥ 5) by combining Theorem 3 and Lemma 4. If there exists
a color k, 2 ≤ k ≤ n− 3, such that for each vertex v ∈ V (G \C3), c(v) 6= k, then
we define a new backbone coloring c′ as the assignment of colors {1, k + 1, n} to
C3 and c′(v) = c(v) + 1 for all other vertices of the graph. Clearly, all colors are
distinct and for any backbone edge c′ guarantees a sufficient span, based on the
fact that c does.

Otherwise, BBC(Kn−3, G \ C3) = n − 3. In this case, we assign the colors
{1, 3, n} to C3. We set c′(v) = 2 for each vertex v with c(v) = 1 and c′(v) =
c(v)+2 for all other vertices v(for which 2 ≤ c(v) ≤ n−3). Clearly, the resulting
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coloring is injective and uses only only colors from the set {1, 2, . . . , n}. Moreover,
the backbone conditions for C3 and G \ C3 remain satisfied, therefore c′(v) is a
backbone coloring.

3. Backbone Coloring of Split Graphs with Matching Backbones

Before we present the results in this section, we introduce useful concepts of
conflict digraph, quasiforest and underlying undirected graph.

Digraph G′ is a conflict digraph of (G,M) if and only if the following condi-
tions are satisfied:

1. V (G′) = {w1, w2, . . . , wk} (where k = ω(G)),

2. E(G′) = {(wi, wj) : {ui, vj} /∈ E(G), 1 ≤ i, j ≤ k}.

Note that G′ contains no loops since {ui, vi} ∈ E(M) ⊂ E(G). Each edge of the
conflict digraph represents the following condition: if c(vj) = c(ui) in a backbone
coloring of (G,M) using k colors, then |c(vi)− c(vj)| ≥ 2.

Digraph G is a quasiforest if and only if every its vertex is incident to exactly
one outgoing edge. For every digraphG we define a (simple) underlying undirected
graph obtained by replacing all directed edges of G with undirected edges. If G′

is an underlying undirected graph of a quasiforest G, then it follows that G is a
union of trees and unicyclic graphs.

From now on, we assume that G is a split graph with vertex set partitioned
into a maximal clique C (of size k = χ(G) = ω(G)) and an independent set I.
We begin with a simple observation: if a split graph G with the given matching
backbone M satisfies the equality BBC(G,M) = k, then for each vertex u ∈ I
there exists exactly one vertex v ∈ C such that c(u) = c(v).

Theorem 6 [2]. Every complete graph of order n ≥ 3 with a matching backbone

can be colored using n colors.

Theorem 7. For every split graph G with the given matching backbone M there

exists a backbone (k + 1)–coloring and it can be computed in polynomial time.

Proof. If k = 2 then G is bipartite and if we color the bipartition using 1 and 3
we obtain a backbone (k + 1)–coloring. Therefore, the case k ≥ 3 remains.

If there is an edge uv ∈ E(M) such that u, v ∈ C, we assign c(u) = k,
c(v) = k−2. Next, we use Theorem 6 to color the complete graph with matching
backbone, induced by C \ {u, v}, using colors 1, 2, . . . , k − 3, k − 1. Finally, we
assign to all vertices from I color k + 1 (not used in the clique). All backbone
conditions between the clique and the independent set are satisfied since for any
xy ∈ E(M) with x ∈ I, y ∈ C we have c(x)− c(y) ≥ k + 1− k + 1 = 2.
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Otherwise, we pick an arbitrary edge uv ∈ E(M) (we know that u ∈ I, v ∈ C)
and any vertex w ∈ C such that uw /∈ E(G). The rest of the proof is similar
as before: we assign c(u) = c(w) = k − 2, c(v) = k, all vertices from C \ {v, w}
get (different) colors 1, 2, . . . , k − 3, k − 1 and all vertices from I \ {u} get color
k + 1 (not used in the clique). All backbone conditions between the clique and
the independent set are satisfied since for any xy ∈ E(M) with x ∈ I \{u}, y ∈ C
we have c(x)−c(y) ≥ k+1−k+1 = 2 and for uv ∈ E(M) clearly c(u)−c(v) = 2.

3.1. Basic case: |C| = |I| and perfect matching backbone

In this section we restrict our considerations only to the split graphs with match-
ing backbones which satisfy the following requirements: |C| = |I| = k and back-
bone matching M is perfect. It follows that every vertex in I is adjacent to
exactly one other vertex in the backbone (and its neighbor is in C). But since
|C| = |I|, there can be no backbone edges in the clique.

Let us denote the vertices of C as v1, v2, . . . , vk and the vertices of I as
u1, u2, . . . , uk such that E(M) = {{ui, vi} : 1 ≤ i ≤ k}.

The following theorem establishes the relation between backbone coloring of
(G,M), conflict digraphs, quasiforests and backbone coloring of complete graphs
with sparse backbones.

Theorem 8. BBC(G,M) = BBC(Kk, F
′) for the underlying undirected graph

F ′ of some spanning quasiforest subdigraph F of the conflict digraph D of G.

Proof. Suppose c is an optimal backbone coloring function for (G,M). Then
let E(F ) = {(wi, wj) : c(ui) = c(vj)}. Of course, F is a spanning quasiforest
subdigraph of D since every ui get the same color as exactly one vertex from C.
The function f(wi) = c(vi) for wi ∈ V (F ′) is a backbone coloring of (Kk, F

′)
since:
• f(wi) 6= f(wj) for each i 6= j, because C is a clique and c(vi) 6= c(vj),
• |f(wi)− f(wj)| = |c(vi)− c(vj)| = |c(vi)− c(ui)| ≥ 2 for each {wi, wj} ∈
E(F ′).

The proof in the other direction is straightforward: given conflict graph D, quasi-
forest F and optimal backbone coloring f of (Kk, F

′), let s(w) be the end vertex
of an edge of the quasiforest F , which starts in w. Then, we assign c(vi) = f(wi)
for vi ∈ C and c(ui) = f(s(wi)) for ui ∈ I.

Theorem 9. Let k ≥ 5, F be a spanning quasiforest subdigraph of conflict

digraph D of G, and let F ′ be the underlying undirected graph of F . Then,

BBC(Kk, F
′) = k unless F ′ contains a spanning star as a subgraph.

Proof. The underlying graph of a quasiforest is a collection of vertex-disjoint
trees and unicyclic graphs so the proof follows directly from Theorem 3.
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Unfortunately, the number of spanning quasiforests can be exponential in the size
of D. But if k ≥ 5 we can check whether a suitable quasiforest exists starting
from an arbitrary one using Algorithm 1. By an 3-allowed edge we denote an
edge (wi, wj) ∈ E(D) \ E(F ), which—substituted for the edge outgoing from
wi in F—turns C3-free underlying undirected graph of a quasiforest into the
one with an induced C3 as a subgraph. Similarly, an 4-allowed edge is an edge
(wi, wj) ∈ E(D)\E(F ), which—substituted for the edge outgoing from wi in F—
turns (P4, bull, paw, banner)-free underlying undirected graph of a quasiforest
into the one with an induced P4 or one of the graphs in Figure 1 as a subgraph.

The underlying undirected graph of a quasiforest on n ≥ 5 vertices is a
collection of vertex-disjoint trees and unicyclic graphs, therefore:
• it is isomorphic to a star if and only if it is connected and it does not contain
C3 or P4 as an induced subgraph,
• it is isomorphic to a star with an additional edge if and only if it is connected
and it contains C3, but not P4 or one of the graphs in Figure 1 as an induced
subgraph.

Algorithm 1 The optimal coloring algorithm for the basic case (G,M)

1: Create conflict digraph D and empty F on vertices w1, w2, . . . , wk

2: if k < 5 then

3: return the best coloring of (G,M) using Theorem 8 for all quasiforests
4: for all wi, 1 ≤ i ≤ k do

5: if outdeg(wi) > 0 then

6: Add an arbitrary outgoing edge of wi to F
7: if F ′ is isomorphic to a star then
8: if exists (3 or 4)-allowed edge (wi, wj) ∈ E(D) \ E(F ) then
9: Substitute in F edge outgoing from wi with (wi, wj)

10: else

11: return (k + 1)-coloring of (G,M) using Theorem 7
12: if F ′ is isomorphic to a star with an additional edge then

13: if exists 4-allowed edge (wi, wj) ∈ E(D) \ E(F ) then
14: Substitute in F edge outgoing from wi with (wi, wj)
15: else

16: return (k + 1)-coloring of (G,M) using Theorem 7
17: Color F ′ with k colors using Theorem 5
18: return k-coloring of (G,M) using coloring of F ′ and Theorem 8

Theorem 10. If k < 5, Algorithm 1 returns the optimal coloring of (G,M). In

all other cases, if there exists an underlying undirected graph F ′ of any spanning

quasiforest subdigraph F of a conflict graph of order k that BBC(G,M) = k, then
Algorithm 1 returns a backbone k-coloring of (G,M). Otherwise, BBC(G,M) =
k + 1 and Algorithm 1 returns a backbone (k + 1)-coloring of (G,M).
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Proof. If k < 5, there are O(1) of quasiforests so we can generate, color them
optimally and find the one with the lowest BBC(Kk, F

′) all in O(1) time.

If the algorithm returns a backbone k-coloring, the final F ′ is not isomorphic
to a star or a star with an additional edge (due to the allowed edge definitions).
Therefore it does not contains a spanning star as a subgraph so BBC(Kk, F

′) = k
from Theorem 5 and the algorithm returns optimal backbone coloring.

If the algorithm returns backbone (k+1)-coloring of (G,M), both the initial
and final F ′ are isomorphic to a star or a star with an additional edge.

If the quasiforest is isomorphic to a star, it has three distinguishable types of
vertices: A—the root of the star (with ingoing edges from all other vertices and
one outgoing edge), B—the non-root vertex with one ingoing edge from the root
(and one outgoing edge to the root) and L—all other vertices (no ingoing edges,
just one outgoing edge to the root). All edges from B ∪L to A and from A to B
are already included in the quasiforest F . All other edges of E(D) \ E(F ) may
change the quasiforest in a following way (shown in Figure 2).

A

L L L B

(a) Original quasitree

A

L L L B

(b) B → L

A

L L L B

(c) L → B

A

L L L B

(d) L → L

Figure 2. (3 or 4)-allowed edge possibilities for a star.

If there exists an edge from A to L, then an underlying undirected graph of a
quasiforest obtained by removing an edge from A to B and replacing it by an
edge from A to L is still isomorphic to a star, so the edge is not a (3 or 4)-allowed
edge (by definition).

If there exists an edge from L to B, then an underlying undirected graph
of a quasiforest obtained by removing an edge from L to A and replacing it by
an edge from L to B is isomorphic to a star with an additional edge—so it is a
3-allowed edge (an example is presented in second picture in Figure 2).

For any other edge, a quasiforest obtained by replacing respective outgoing
edge from F with a new edge has an induced a P4 path so it is 4-allowed edge—the
only two possible cases are presented in third and fourth picture in Figure 2.

If we cannot find a (3 or 4)-allowed edge while the quasiforest is isomorphic
to a star, all edges from E(D) \ E(F ) are restricted to edges from A to L. But
then the underlying undirected graph of any quasiforest F is isomorphic to a star
and, due to Theorem 5, no (Kk, F

′) (and its respective (G,M)) admits backbone
coloring with colors no greater than k.
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If the quasiforest is isomorphic to a star with an additional edge, we distinguish
four types of vertices: A—the root of the star (with ingoing edges from all but one
other vertices and one outgoing edge), B—the non-root vertex with one ingoing
edge from the root and outgoing edge to a non-root vertex, C—the non-root
vertex with one ingoing edge from a non-root vertex and outgoing edge to the
root, and L—all other vertices (no ingoing edges, just one outgoing edge to the
root). All edges from C ∪ L to A, from A to B and from B to C are already
included in the quasiforest F . All other edges of E(D) \ E(F ) may change the
quasiforest in a following way (shown in Figure 3).

A

L L C B

(a) Original quasitree

A

L L C B

(b) A → C

A

L L C B

(c) A → L

A

L L C B

(d) C → B

A

L L C B

(e) C → L

A

L L C B

(f) L → B

A

L L C B

(g) L → C

A

L L C B

(h) L → L

Figure 3. 4-allowed edge possibilities for a star with an additional edge.

If there exists an edge from B to L, then an underlying undirected graph of a
quasiforest obtained by removing an edge from B to C and replacing it by an
edge from B to L is isomorphic to a star with an additional edge, so the edge is
not a 4-allowed edge (by definition).

If there exists an edge from B to A, then an underlying undirected graph of
a quasiforest obtained by removing an edge from B to C and replacing it by an
edge from B to A is isomorphic to a star, so the edge is noa 4-allowed edge (by
definition).

For any other edge, a quasiforest obtained by replacing respective outgoing
edge from F with a new edge has an induced P4 path or one of the graphs listed
in Figure 1 (seven possible subcases are presented in Figure 3), therefore it is a
4-allowed edge.

If we cannot find a 4-allowed edge while the quasiforest is isomorphic to a
star with an additional edge, all edges from E(D) \E(F ) are restricted to edges
from B to A∪L. But then the underlying undirected graph of any quasiforest F
is isomorphic to a star or to a star with an additional edge and, due to Theorem
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5, no (Kk, F
′) (and its respective (G,M)) admits backbone coloring with colors

no greater than k.
In both cases, BBC(G,M) > k so the backbone (k + 1)-coloring of (G,M)

is guaranteed to be optimal.

Theorem 11. For every split graph G of order 2k with maximal clique C and

an independent set I both of size k and the given perfect matching backbone M
with no backbone edges in the clique, BBC(G,M) can be computed in polynomial

time.

Proof. This result directly follows from Theorem 10.
The Algorithm 1 can be divided into several stages with polynomial running

time of every stage:
• construction of the conflict graph requires checking all pairs {vi, uj} ∈
E(G), which can be done in O(k2) time,
• choosing the initial quasiforest F—O(k) operations,
• checking and updating F using Algorithm 1—O(k2) operations,
• coloring the original graph G using the coloring of F ′—O(k) operations.

3.2. Beyond the basic case

Now we can expand our analysis to the polynomial-time algorithm for arbitrary
split graphs with the given matching backbone.

Theorem 12. For every split graph G with the given matching backbone M ,

BBC(G,M) can be computed in polynomial time.

Proof. There are possible types of vertices, which do not appear in Theorem 11:
vertices not included in the backbone matching M and pairs of vertices from C
connected with a backbone edge.

Interestingly, it turns out that if G contains in I only vertices incident to a
backbone edge, we can also obtain the optimal solution by including all vertices
from C in the conflict graph, e.g., adding its respective vertices wi to the conflict
graph D. If vi is not incident to any edge of M , wi will have no outgoing edges in
D, but it will still receive unique color in the optimal coloring. If it is connected
with some vj in M , we can add new vertices wi, wj to the conflict graph with
two directed edges between them. Because outdeg(wi) = outdeg(wj) = 1, these
edges will be always included in F so they guarantee that |c(vi)− c(vj)| ≥ 2 and
that these colors are unique in the optimal coloring.

The rest of the proof is exactly the same as for the proof of Theorem 10
except that some original cases may be impossible, e.g. if G contains a backbone
edge with both endpoints in C, then the underlying undirected graph of any
quasiforest of a conflict graph cannot be isomorphic to a star.
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Therefore, the whole algorithm would first find the bipartition into a maximal
clique C and an independent set I. In the next step, it would find the vertices
from I non-incident to the backbone edges and remove them from the graph.
Then, we execute Algorithm 1 on the remaining part of (G,M); we obtain its
optimal backbone coloring. Finally, we would restore all unmatched vertices from
I and note that for each uncolored vertex u ∈ I there is a vertex v ∈ C such that
{u, v} /∈ E(G), otherwise u would be in C. Therefore we extend the coloring by
assigning to u the color c(v) of its respective non-adjacent vertex.

Since all steps can be implemented to run in polynomial time, the whole
algorithm is also polynomial-time.
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