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Abstract

For a graph G = (V,E) and a vertex v ∈ V , let T (v) be a local trace at
v, i.e. T (v) is an Eulerian subgraph of G such that every walk W (v), with
start vertex v can be extended to an Eulerian tour in T (v).

We prove that every maximum edge-disjoint cycle packing Z∗ of G in-
duces a maximum trace T (v) at v for every v ∈ V . Moreover, if G is Eulerian
then sufficient conditions are given that guarantee that the sets of cycles in-
ducing maximum local traces of G also induce a maximum cycle packing of
G.

Keywords: edge-disjoint cycle packing, local traces, extremal problems in
graph theory.
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1. Introduction

We consider a finite and undirected graph G with vertex set V (G) and edge set
E(G) that contains no loops. For a finite sequence vi1 , e1, vi2 , e2, . . . , er−1, vir of
vertices vij and pairwise distinct edges ej = (vij , vij+1

) of G, the subgraph W of
G with vertices V (W ) = {vi1 , vi2 , . . . , vir} and edges E(W ) = {e1, e2, . . . , er−1}
is called a walk with start vertex vi1 and end vertex vir . If W is closed (i.e,
vi1 = vir) we call it a circuit in G. A path is a walk in which all vertices v have
degree dW (v) ≤ 2. A closed path will be called a cycle. A connected graph in
which all vertices v have even degree is called Eulerian. For an Eulerian graph
G, a circuit W with E(W ) = E(G) is called an Eulerian tour.
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For 1 ≤ i ≤ k, let Gi ⊂ G be subgraphs of G. We say that G is induced by

{G1, G2, . . . , Gk} if V (G) = V (G1) ∪ V (G2) ∪ · · · ∪ V (Gk) and E(G) = E(G1) ∪
E(G2)∪· · ·∪E(Gk). Two subgraphs G′ = (V ′, E′), G′′ = (V ′′, E′′) of G are called
edge-disjoint if E′ ∩ E′′ = ∅. For E′ ⊆ E we define G \ E′ = (V,E \ E′). For
V ′ ⊂ V we define G \ V ′ = G|V \V ′ , where V (G|V \V ′) = V \ V ′ and E(G|V \V ′) =
{e ∈ E(G)| both endvertices of e belong to V }.

A packing Z(G) = {G1, . . . , Gq} of G is a collection of subgraphs Gi of G
(i = 1, . . . , q) such that all Gi are mutually edge-disjoint and G is induced by
{G1, . . . , Gq}. If exactly s of the Gi are cycles, Z(G) is called a cycle packing
of cardinality s. The family of cycle-packings of G is denoted by C(G). If the
cardinality of a cycle packing Z(G) is maximum, it is called a maximum cycle

packing. Its cardinality is denoted by ν(G). If no confusion is possible we will
write Z instead of Z(G) and C instead of Cs(G), respectively.

Packing edge-disjoint cycles in graphs is a classical graph-theoretical problem.
There is a large amount of literature concerning conditions that are sufficient for
the existence of some number of disjoint cycles which may satisfy some further
restrictions. A selection of related references is given in [8]. The algorithmic
problems concerning edge-disjoint cycle packings are typically hard (e.g. see
[4, 5, 10]). There are papers in which practical applications of such packings are
mentioned [1, 3, 6, 9].

Starting point of the paper is the attempt to obtain a maximum cycle packing
of a graph G by the determination of such packings for specific subgraphs of G.
In [8] such an approach was studied when the subgraphs were induced by vertex
cuts.

In the present paper we study the behaviour of such packings if G is Eulerian
and the subgraphs are (local) traces.

In Section 2, local traces are introduced and relations between local traces
and maximum cycle packings are given. It turns out in Section 3 that under
special conditions a maximum cycle packing can be constructed from maximum
cycle packings of maximum local traces.

In Section 4, a mini-max theorem gives a condition whether given maximum
local traces are induced by a maximum cycle packing Z∗ of G. For this the
square-length of the cycles is essential.

2. Relation Between Maximum Cycles Packings and Local Traces

In this section we will show, how to built up maximum cycle packings iteratively
from maximum cycle packings of special subgraphs, if G is Eulerian. This sub-
graphs will be (local) traces. For special cases Theorem 10 guarantees that the
so constructed cycle packing is maximum.
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Let G = (V,E) be an Eulerian graph. A vertex v ∈ V is called proper, if every
walk W , starting at v can be extended to an Euler-tour in H. An Eulerian graph
that contains a proper vertex is called a trace. Traces were first considered by
Ore in [11] and [2]. Such type of graphs can be characterized in the following
way.

Proposition 1. Let G = (V,E) be an Eulerian graph. Let v ∈ V . The following

statements are equivalent:

i. v is proper.

ii. If C is an arbitrary cycle in G, then v ∈ V (C).

iii. The number k of components of G \ {v} is determined by k = dG(v)− γ(G),
where γ(G) denotes the cyclomatic number of G.

Proof. See [11].

If v is a proper vertex of degree dG(v), then G is induced by r = d(v)
2 edge-

disjoint cycles {C1, . . . , Cr},where all Ci are passing v. Any two of these cycles
Ci, Cj , i 6= j have at most one other vertex in common, and there exists at most
one further proper vertex w 6= v in V . This is the case if and only if d(v) = d(w)
(see [2]).

The following simple characterization relates traces to cycle packings. In [12]
it is proved

Proposition 2. If G = (V,E) is Eulerian and dG(v) = ∆ = max{dG(u)|u ∈ V },
then ν(G) = 1

2∆ = 1
2dG(v) if and only if G is a trace with proper vertex v.

Proof. Note that ν(G) ≥ 1
2∆ holds since G is Eulerian.

“⇒”: Let ν(G) = 1
2∆ = 1

2dG(v). Assume that there is a cycle C ⊆ G with v /∈
V (C). Obviously, each of the components G′

1, G
′
2, . . . , G

′
k of G\E(C) is Eulerian.

Let G′
i be that component that contains v. Then d|G′

i
(v) = d(v) = ∆. But then,

ν(G) ≥ 1 +
∑k

j=1 ν(G
′
j) > ν(G′

i) ≥ 1
2dG′

i
(v) = 1

2dG(v) = 1
2∆, contradicting

ν(G) = 1
2∆. Therefore, each cycle C ⊂ G passes v, hence by Proposition 1, v is

a proper vertex.

“⇐”: Let v be a proper vertex of G. If Z∗ = {C1, C2, . . . , Cν(G)} is a
maximum cycle packing of G, then all cycles in Z∗ have to pass v, i.e, dG(v) =
2ν(G) ≥ ∆. Since dG(v) ≤ ∆, ν(G) = 1

2∆ = 1
2dG(v) follows.

Remark 3. i. For a graph G, let γ(G) denote the cyclomatic number of G.
If G is a trace with proper vertex v, then the graph G \ {v} consists of
k = dG(v)−γ(G) ≥ 1 components {B1, B

′
k, . . . , B

′
k} that are all trees. Let Bi

be such a component and Wi := {w ∈ B′
i|dBi

(w) is odd }, ri := #Wi. Then
the graph Gi = (V (Gi), E(Gi)) with V (Gi) = V (Bi) ∪ {v} and E(Gi) =
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E(Bi) ∪ {(w, v)|w ∈ Wi} is also a trace with proper vertex v. Obviously,
ν(Gi) =

1
2ri and ν(G) =

∑k
i=1 ν(Gi).

ii. If G is 2-connected and k′ := γ(G) − ν(G), then there is a finite set P(k′)
of graphs (depending only on k′ not on G) such that G arises by applying
a simple extension rule to a graph in P(k′) (see [7]). If G is a trace, then
this situation is even simpler: since for each of the subgraphs Gi it holds
γ(Gi)− ν(Gi) =

1
2ri − 1 = γ(Kri

2 )− ν(Kri
2 ) and all edges E(Gi) belong to a

maximum cycle packing of Gi, Gi arises by an extension of Kri
2 . Here Kri

2

is the multi-graph consisting of two vertices and ri parallel edges.

Now, we will transfer the concept of a trace to an arbitrary graph G = (V,E).

For v ∈ V , an Eulerian subgraph T (v) = (V (T (v)), E(T (v))) 6= ∅ of G is
called a local trace (at v), if v ∈ V (T (v)) and v is proper with respect to T (v).
The number |E(T (v))| is called the size of the trace (at v).

A local trace T (v) is called saturated (at v), if there is no Eulerian subgraph
H ⊂ G such that T (v) ( H and v is proper with respect to H. It is called
maximum, if T (v) is induced by k(v) edge-disjoint cycles {C1, C2, . . . , Ck(v)} ⊂ G
and k(v) is maximum.

G

u

v

w

s

T (u)

T (v)

T (w)

T (s)

Figure 1. G together with maximum traces T (u) (green colored edges), T (v) (red),
T (w) = T (s) (blue).

Being a trace T (v) at v is a local property of the graph G. Obviously, each single
cycle C ∈ G that passes v is a local trace at v. In general, local traces are not
uniquely determined, even maximum local traces are not.

For Eulerian graphs we have
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Lemma 4. Let G = (V,E) be Eulerian and Z∗ a maximum cycle packing of G.

For v ∈ V , let Z∗(v) := {Ci ∈ Z∗|v ∈ V (Ci)}. Then Z∗(v) induces a maximum

trace T (v) at v.

Proof. Let T (v) be the subgraph of G induced by the dG(v)
2 cycles of Z∗(v).

Obviously, T (v) is Eulerian, v ∈ V (T (v)) and dT (v) ≥ dT (u) for all u ∈ T (v).
Because Z∗ is maximum, Z∗(v) is also a maximum cycle packing of T (v), i.e,

ν(T (v)) = dG(v)
2 = dT (v)

2 . Then, by Proposition 2, v is a proper vertex of T (v),
i.e, T (v) is a maximum trace.

Note, that the fact that G is Eulerian is crucial, i.e, in a general situation a
maximum cycle packing must not induce a maximum trace at v, even it must not
induce a saturated trace

3. Getting Maximum Packings of G from Cycle Packings of

Maximum Traces

An immediate question that arises is under which conditions the inverse of Lemma
4 is true. In this section such a condition is given, that allows a construction of a
maximum cycle packing Z∗ of G. The construction will use local traces of special
subgraphs of G.

First, we give construction scheme to obtain a local trace at v from an arbi-
trary set C(v) of edge-disjoint cycles that all pass v.

Lemma 5. Let G = (V,G), v ∈ V . For r ≥ 1 let C(v) = {C1, C2, . . . , Cr},
be a set of edge-disjoint cycles in G that all pass v. Then there is a trace T (v),
induced by r cycles {C̄1, C̄2, . . . , C̄r} such that E(T (v)) ⊂ E(C(v)).

Proof. Let G′ be the graph induced by C(v). If all cycles in G′ pass v, then by
Proposition 1 T (v) := G′ is a trace.

Assume that G′ contains a cycle C, that does not pass v. The cycle C
consists of segments (S1, S2, . . . , St), where a segment Si is a sequence of edges
such that Si belongs to one of the cycles Cj . We can assume that the segments
are organized in such a way that different subsequent segments Si, Si+1 (modulo
t) belong to different cycles. Note, that it may happen, that two different, non-
adjacent segments share the same cycle. Let ui and wi be the starting vertex
and end-vertex, respectively, of Si. Now, consider any of the points ui = wi−1.
Such a point is the endpoint of two edge-disjoint paths, namely WCk

(v, ui) and
WCk′

(wi−1, v) for some k 6= k′. There are exactly two edges ei(1) and ei(2) that
are incident with ui such ei(1) ∈ WCk

(v, ui) and ei(2) ∈ WC′

k
(v, ui). Now, r new

edge-disjoint cycles {C ′
1, C

′
2, . . . , C

′
r} are generated in G′ as follows:
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i. If V (Ck) ∩ V (C) = ∅, set C ′
k = Ck.

ii. If V (Ck)∩V (C) 6= ∅, then a new circuit C ′
k is constructed as follows: Start

from v along the path WCk
(v1, ui) (we can assume that ui is the first vertex

on WCk
(v1, ui) in C). Then ui is reached on the edge ei(1) ∈ WCk

(v, ui).
Instead of following segment Si ∈ C we follow along ei(2) ∈ WCk′

(v, ui). If
we reach v on WCk′

(v1, ui) without visiting another uj ∈ C, the new cycle
C ′
k is defined by C ′

k = WCk
(v1, ui) ∪WCk′

(v1, ui).

If we reach another vertex, say uj ∈ V (C), when passing along WCk′
(v, ui)

from ui we will reach uj on some edge ej(1) before arriving at v, we leave
uj on edge ej(2) ∈ WCk′′

(v, ui), and so on. A new circuit C ′
k is constructed

if v is reached for the first time. As a circuit passing v, C ′
k contains a cycle

that passes v, here also denoted by C ′
k.

It is obvious that in this way a set of r cycles C(v)′ = {C ′
1, C

′
2, . . . , C

′
r} is deter-

mined such that they only use edges in E(C(v)). They are mutually edge-disjoint,
all pass v, but none of them will use any edge in C. Hence, E(C(v)′) ⊂ E(C(v)).
Now, we consider the graph G′′ induced by C(v)′. If it contains a cycle C ′, that
does not pass v, we proceed in the same manner. After a finite number of steps a
set C̄(v) = {C̄1, C̄2, . . . , C̄r} of edge-disjoint cycles is all passing v, is constructed,
such that in the induced graph Ḡ every cycle passes v. Hence T (v) := Ḡ is a
trace. Obviously, E(T (v)) ⊂ E(C(v)).

The next lemma gives a relation between maximum and saturated traces.

Lemma 6. Let G = (V,E) and T (v) 6= ∅ be a maximum trace at v. Then T (v)
is saturated.

Proof. Assume, that this is not the case. Then there is an Eulerian graphH ⊂ G
such that T (v) ( H and v is proper with respect to H.

Let T (v) be induced by {C1, . . . , Ck∗} and H be induced by {C ′
1, . . . , Ck̄∗},

respectively. Note, that k∗ = k̄∗ ≤ ⌊d(v)2 ⌋, otherwise T (v) would not be maximal.
Let Ē = {e|e is incident with v} ∩ E(T (v)). Without loss of generality, we can
assume that the representations of T and H, respectively, have no common cycle
C. Otherwise, if there is such a cycle C, then we consider T (v) \ C and H \ C,
respectively.

We will show that H must contain a cycle C̃ that does not pass v, which is
impossible. For this, take a cycle Ci1 and the two edges ei1 , ei2 ∈ E(Ci1) ∩ Ē.
Since Ē ⊂ E(H), there is a cycle C ′

j1
with ei2 ∈ E(C ′

j1
). The cycle C ′

j1
also

contains an edge ei3 ∈ Ē. The edge ei3 is then again contained in a cycle Ci2 ,
which also contains an edge ei4 ∈ Ē and so on. In such a way, we get a sequence
Ci1 , C

′
j1
, Ci2 , C

′
j2
, . . . of cycles that alternately belong to the representations of
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T (v) and H, respectively. Within this sequence, there must be one cycle C ′
jk

that
contains the edge ei1 .

Now, let P (v) be a path along Ci1 starting at v and using the edge ei2 . Let
wj1 be the last vertex in P (v) that belongs to Ci1 ∩C ′

j1
. Such a vertex must exist

and, obviously, wj1 6= v. We now construct the cycle C̃: starting from wj1 we
pass along the cycle C ′

j1
until to the first vertex wi2 6= v in Ci2 . From there we

pass along Ci2 until to the first vertex wj2 6= v in C ′
j2

and so on. We proceed
until we reach the vertex wjk 6= v in C ′

jk
. From there we pass along C ′

jk
until we

reach wi1 6= v in Ci1 . From there it is possible to pass along Ci1 to the vertex
wj1 , not using v. In such a way we have constructed a cycle C̃ ⊂ H that does
not pass through v, contradicting that v is proper with respect to H.

Note that the converse is not true in general, even if G is Eulerian. In the
following figure a saturated trace T (w) is drawn which is not maximum.

T (w)

Figure 2. Saturated local trace T (w) (red) in G that is not maximum.

Using a similar construction scheme as in Lemma 5 we now can give a charac-
terization for a a maximum trace to be unique. For v ∈ V , let C(v) the family of
sets of edge-disjoint cycles that induce a maximum trace T (v) at v.

Lemma 7. Let G = (V,E) be Eulerian, v ∈ V and T (v) 6= ∅ be a maximum

trace at v. Then the following is equivalent:

i. T (v) is unique.

ii. For all C(v) ∈ C(v) it holds: a cycle in G \ {v} and a cycle in C(v) has no

common edge.

Proof. “i. ⇒ ii. ”: Let T (v) be uniquely induced by the edge-disjoint cycles
C(v) = {C1, C2, . . . , Cr} ∈ C(v). Assume there is a cycle C ⊂ G \ {v}, such
that E(C) ∩ E(C(v)) 6= ∅. Then C contains segments (S0, S1, S2, . . . , St), where
a segment Si is a sequence of edges such that Si belongs to one of the cycles Cj

or Si does not belong to T (v). At least one such segment, say S0, cannot belong
to T (v) since otherwise T (v) would not be a trace. S0 is now used to construct
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a set C ′(v) ∈ C(v) that induces a maximum trace, different from T (v). This will
give the contradiction.

Let u and u′ be the endpoints of S0 in C. Then there are Ci and Cj such

that Ci = W
(i)
1 (v, u) ∪W

(i)
2 (u, v) and Cj = W

(j)
1 (v, u′) ∪W

(j)
2 (u′, v).

If Ci = Cj then W
(i)
1 (u, u′) ⊂ W

(i)
1 (v, u′). Then set

C̃i = Ci \W
(i)
1 (u, u′) ∪ S0.

The cycles {C1, C2, . . . , Cr} \ Ci ∪ C̃i then induce a maximum trace at v not

containing W
(i)
1 (u, u′).

For the case that Ci 6= Cj , we distinguish two situations.

Case a. There is a vertex w different from v such that w ∈ V (Ci) ∩ V (Cj).
Note that at most one such vertex can exist. If w ∈ {u, u′}, say w = u′, then set

C̃i = Ci \W
(i)
1 (u, u′) ∪ S0.

Again, the cycles {C1, C2, . . . , Cr} \ Ci ∪ C̃i then induce a maximum trace at v

not containing W
(i)
1 (u, u′).

If w /∈ {u, u′}, then assume w ∈ W
(i)
1 (v, u) and w ∈ W

(j)
1 (v, u′). Now, set

C̃i := W
(i)
1 (v, w) ∪W

(j)
1 (v, w)C̃j := W

(i)
2 (v, u) ∪ S0 ∪W

(j)
2 (v, u′).

Then the cycles {C1, C2, . . . , Cr} \ {Ci, Cj} ∪ {C̃i, C̃j} induce a maximum trace

at v not containing W
(i)
1 (w, u) and W

(j)
1 (w, u′).

Case b. The only common vertex of Ci and Cj is v. In this case we use a

similar construction as in Lemma 5. We start from v along the path W
(i)
1 (v, u).

Then u is reached on the edge ei(1) ∈ W
(i)
1 (v, u). Instead of following W

(2)
i (v, u)

we follow along S0 ∈ C until reaching u′ and follow the path W
(2)
j (v, u′).

If we reach v on W
(2)
j (v, u′) without visiting another u′′ ∈ C, then the new

cycle C̃i is defined by C̃j := W
(i)
2 (v, u) ∪ S0 ∪W

(j)
2 (v, u′).

If we reach another vertex, say u′′ ∈ V (C), when passing along W
(2)
j (v, u′),

then from u′ we will reach u′′ using a segment Sk before arriving at v; we then

leave u′′ on the segment Sk+1 using W
(1)
s (v, u′′), and so on.

In such a way r circuits {C̃1, C̃2, . . . , C̃r} are constructed (all passing v), that

do not contain W
(2)
i (v, u) and W

(2)
j (v, u′).

“ii. ⇒ i.”: First note that the components B1, B2, . . . , Bs of G \ {v} are
uniquely determined and that a subset of cycles in C(v) ∈ C(v) induce a maximum
trace Ti(v) for the (Eulerian) graph Gi induced by Bi ∪ {v}. And vice versa.
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Let T (v) and T ′(v) be two maximum traces at v. Let C(v), C ′(v) ∈ C be the sets
of cycles that induce T (v) and T ′(v), respectively.

If G \ {v} contains no cycle, then non of the Bi contain a cycle, i.e, Bi is a
tree for all i. The subgraphs Ti(v), T

′
i (v) ⊂ Gi are two maximum traces for Gi

that, by Lemma 6, are saturated. But v is a proper vertex with respect to the
graphs Gi. Hence Gi = Ti(v) = T ′

i (v), i.e, T (v) = T ′(v).
If G\{v} contains a cycle C, then by assumption, E(C)∩E(C(v)) = E(C)∩

E(C ′(v)) = ∅. We then consider the Eulerian graph G′ = G\E(C). For G′, T (v)
and T ′(v) are maximum traces at v and we can perform the same considerations
as before. In the case that G′ \ {v} contains no cycle, we again get T (v) = T ′(v),
otherwise we remove the cycle from G′. Proceeding in this way we will terminate
with a Eulerian graph Ḡ in which T (v) and T ′(v) are maximum traces at v and
Ḡ \ {v} contains no cycle, concluding then T (v) = T ′(v).

By Lemma 7 we have proved

Proposition 8. Let G = (V,E) be Eulerian. If there is v ∈ V such that the

maximum local trace T (v) 6= ∅ is unique, then

ν(G) =
dG(v)

2
+ ν(G \ {v})

and

Z∗(G) = C(v) ∪ Z∗(G \ {v}).

In the following section, we will give a more general sufficient condition that
makes the cycle packings C(v) corresponding to maximum traces T (v), v ∈ V ,
to build up a maximum cycle packing in G.

4. A Mini-max Theorem

We start with the observation that there are Eulerian graphs G with correspond-
ing cycle packing Z1 = {C1, C2, . . . , Cs} of cardinality s < ν(G) such that G is
induced by Z1 and for every v ∈ V the subgraph T (v) of G, induced by the cycles
in Z1(v), is a maximum trace.

It follows there are cases that maximum traces of G can be induced by cycle
packings of G that are not maximum. In Figure 3 such an example is illustrated.

The question arises what are conditions that guarantee that a set {T (v)|v ∈
V } of maximum local traces of G is induced by a maximum cycle packing Z∗ of
G.

We now investigate such a situation more generally. For 1 ≤ s ≤ ν(G), we
consider the family of cycle packings C∗

s ⊂ Cs of G. A packing Z belongs to C∗
s

if it is a cycle packing of cardinality s and for all v ∈ V the subgraph T (v) of G
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G

ZZ
1 2

Figure 3. |Z1| = 5, F (Z1) = 66 whereas |Z2| = 6 = ν(G), F (Z2) = 54.

induced by the cycles in Z(v) is a maximum trace at v. A first (simple) condition
can be derived as an immediate consequence of Lemma 7.

Corollary 9. Let Z ∈ C∗
s and let (v0, v1, . . . , vk) be a sequence of vertices in G.

With G0 := G denote by Gi+1 := Gi \ E(Z(vi)), i = 0, 1, . . . , k, the sequence of

subgraphs of G recursively induced by maximum traces TGi
(vi) at vi in Gi. If

maximum traces TGi
(vi) ⊂ Gi are unique (with respect to Gi) and Gk+1 = ∅,

then s = ν(G), i.e, Z is maximum.

For a more general condition we first prove a theorem, which is true not only for
Eulerian graphs.

For this let G be a graph with ν(G) ≥ 1. For 0 ≤ s ≤ ν(G), let Cs(G) be the

set of cycle packings of cardinality s. Then C(G) =
⋃ν(G)

s Cs(G) describes the set
of all cycle-packings of G. Note, that C0(G) = ∅ if and only if G is a cycle. If this
is not the case, then Cs(G) 6= ∅ implies Cs−1(G) 6= ∅, s ≥ 1. For s ≥ 1 a packing
Z = {C1, C2, . . . , Cs, G̃s} ∈ Cs(G) consists of s cycles Ci and a “reminder” G̃s.
Let li = |E(Ci)|. For Z ∈ Cs, s ≥ 1, define

L̄(Z) =
∑s

i=1
l2i + |E(G̃s)|

2.

For Z ∈ C0, set L̄(Z) := |E(G)|2. We get

Theorem 10. Let ν(G) ≥ 1. Every cycle packing Z∗ that minimizes L̄ on C(G)
is maximum, i.e, Z∗ ∈ Cν(G).

Proof. Obviously, the theorem is true if G is a cycle. Therefore, assume G is
not a cycle. For s ∈ {0, 1, 2, . . . , ν(G)} let m̄s(G) := min{L̄(Z|Z ∈ Cs(G)}. We
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will show that
m̄s−1(G) > m̄s(G), s = 1, 2, . . . , ν(G).

To prove the inequality we will use the induction on r ≤ ν(G). Obviously,
m̄0(G) = |E(G)|2.

Let r = 1, C1(G) 6= ∅. Let Z1 ∈ C1(G), i.e, Z1 = {C1, G̃1} and l1 = |E(C1)|.
Since G is not a cycle, l1 < |E(G)| and we immediately get L̄(Z1) := l21 +

(|E(G)|− l1)
2 = 2l21 + |E(G)|2− 2l21|E(G)| < |E(G)|2, i.e, m̄0(G) > m̄1(G). Now,

let r ≥ 1 such that Cr(G) 6= ∅ and let us assume that for all graphs G such that
ν(G) ≤ r and all r′ ≤ r the relations m̄r′−1(G) > m̄r′(G) hold.

Let G be a graph such that Cr+1(G) 6= ∅. Hence Cr(G) 6= ∅. Since Cr(G) 6= ∅
there exists Zr(G) ∈ Cr(G) such that L̄(Zr(G)) = m̄r(G). Take the cycle C1 ∈
Zr(G) of length l1 and consider the graph G \ C1.

Obviously, Z := (Zr(G) \ {C1}) ∈ Cr−1(G \C1). Moreover, L̄(Z) = m̄r(G)−
l21. But also L̄(Z) = min{L̄(Zr−1)(G\C1))|Zr−1 ∈ Cr−1(G\C1)} must hold, oth-
erwise Zr(G) would not be a minimizer in Cr(G), i.e, m̄r−1((G\C1)) = m̄r(G)−l21.
Using the assumption, we then get L̄(Z) = m̄r−1(G \ C1) > m̄r(G \ C1) and, by
this, m̄r(G) = m̄r−1(G \ C1) + l21 > m̄r(G \ C1) + l21 ≥ m̄r+1(G).

Remark 11. By a similar proof it can be shown that also for

M̄s(G) := max{L̄(Z)|Z ∈ Cs(G)}, s ≥ 1; M̄0(G) := |E(G)|2

the strict inequalities

M̄s−1(G) > M̄s(G) s = 1, 2, . . . , ν(G)

hold. The proof is just the same but instead of taking out a cycle C1 ∈ Z̄r(G)
one takes it out from Z̄r+1(G).

Theorem 10 now will be used to get a condition that a cycle packing Z inducing
maximum traces in Eulerian G is maximum.

Let C∗ =
⋃ν(G)

s=1 C∗
s . By F (Z) =

∑
v∈V |E(T (v)| denote the total size of the

local traces.

Theorem 12. Let G be Eulerian. Every cycle packing Z∗ that minimizes F on

C∗ is a maximum cycle packing of G, i.e, Z∗ ∈ C∗
ν(G).

Proof. We first observe that for all v ∈ V and for all Ci ∈ Z = {C1, C2, . . . , Cs} ⊂
C∗
s the following is true: v ∈ V (Ci) if and only if Ci ∈ Z(v).

Therefore, we get F (Z) =
∑

v∈V |E(T (v)| =
∑

v∈V

∑
Ci∈Z(v) |E(Ci)| =∑

Ci∈Z

∑
v∈V (Ci)

|E(Ci)| =
∑

Ci∈Z
|V (Ci)||E(Ci)| =

∑s
i=1 |E(Ci)|

2.
Let Z∗ be a minimizer of F in C∗

ν(G), i.e, F (Z∗) = m̄ν(G). Assume that there

is Z̄∗ ∈ C∗
s , such that F (Z̄∗) = F (Z∗), but s < ν(G). We then get F (Z̄∗) ≥

min{L̄(Z ′|Z ′ ∈ Cs} = m̄s > m̄ν(G) = F (Z∗), a contradiction.
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Research Proceedings, Klatte, Lüthi and Schmedders (Ed(s)), (Heidelberg, New
York, Dordrecht, London, Springer, 2011) 53–58.

Received 29 December 2013
Accepted 10 March 2014

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/j.tcs.2011.03.034
http://dx.doi.org/10.1007/BF02564555
http://dx.doi.org/10.1137/S0097539793250627
http://dx.doi.org/10.1137/S089548019731994X
http://dx.doi.org/10.1016/S0196-6774\(03\)00052-X
http://dx.doi.org/10.1016/j.disc.2009.07.017
http://dx.doi.org/10.1016/j.disc.2010.03.009
http://dx.doi.org/10.1007/BF01188586
http://www.tcpdf.org

