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Abstract

A graph is uniquely Hamiltonian if it contains exactly one Hamiltonian
cycle. In this note, we prove that claw-free graphs with minimum degree at
least 3 are not uniquely Hamiltonian. We also show that this is best possible
by exhibiting uniquely Hamiltonian claw-free graphs with minimum degree
2 and arbitrary maximum degree. Finally, we show that a construction due
to Entringer and Swart can be modified to construct triangle-free uniquely
Hamiltonian graphs with minimum degree 3.
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1. INTRODUCTION

All graphs in this note will be finite, undirected, and simple. A Hamiltonian
cycle of a graph G is a cycle whose vertex set is precisely V(G). A graph is
uniquely Hamiltonian if it contains exactly one Hamiltonian cycle. A classic
result of Smith [12] states in any 3-regular graph there are an even number of
Hamiltonian cycles through any given edge; it follows that no 3-regular graph
is uniquely Hamiltonian. Thomason [9] showed that Smith’s Theorem can be
extended to any graph whose vertices all have odd degree, by way of a clever
“lollipop argument”.
Smith’s Theorem inspired the following conjecture:

Conjecture 1.1 (Shechan [8]). There is no uniquely Hamiltonian 4-regular graph.
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Recall that Petersen’s 2-Factor Theorem states that every (2r)-regular graph
can be decomposed into r edge-disjoint 2-factors [7]. Hence, if Conjecture 1.1
is true, then there is no uniquely Hamiltonian d-regular graph when d > 3.
Thomassen [11] used the Local Lemma to show that there is no uniquely Hamil-
tonian d-regular graph for d > 72. The result was subsequently improved by
Haxell, the author, and Verstraete to d > 22 and d > 14 if G has sufficiently high
girth [6].

One natural strengthening of the problem is to consider uniquely Hamiltonian
graphs having fixed minimum degree. Entringer and Swart [4] gave infinitely
many examples of uniquely Hamiltonian graphs with minimum degree 3. Very
recently, Fleischner [5] gave an infinite family of uniquely Hamiltonian graphs
having minimum degree 4. The cases of higher constant minimum degree remain
open. However, it was been shown by Bondy and Jackson [3] that there exists
an absolute constant ¢ for which no n-vertex graph with § > clogy n is uniquely
Hamiltonian. The best result to date on the matter is a bound of § > clogy n + 2
where ¢ ~ 1.71 [1].

Thomassen [10] posed the following related conjecture:

Conjecture 1.2 (Thomassen [10]). Every Hamiltonian graph G with §(G) > 3
has an edge e € E(G) such that both G — e and G /e are Hamiltonian.

If G is a graph containing two Hamiltonian cycles, then any edge contained
in one cycle but not the other satisfies the statement of the conjecture. It was
also shown by Bielak [2] that Conjecture 1.2 holds if G is also assumed to be
claw-free (that is, G does not contain K 3 as an induced subgraph). Little else
is known about Conjecture 1.2.

In this paper, we extend Bielak’s result to show that claw-free graphs with 6 >
3 are not uniquely Hamiltonian. We also exhibit claw-free uniquely Hamiltonian
graphs with 6 = 2 and A arbitrarily large. Finally, we show there exist triangle-
free uniquely Hamiltonian graphs with § = 3.

2. CrLAw-FREE GRAPHS

Bielak’s proof of Conjecture 1.2 for claw-free graphs can be easily modified to
prove the following:

Theorem 2.1. If G is a claw-free graph with 6(G) > 3, then G is not uniquely
Hamiltonian.

Proof. If G has no Hamiltonian cycle, then we are done. Let C be a Hamiltonian
cycle, and consider the vertices of C' in some order as they appear along C'. For
a vertex x € V(G), denote by x~ and =™ the vertices preceding and following z,
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respectively. We also define 7™ and 2" to be the vertices at distance n from z
along C with respect to the ordering of V(C).

We begin with the simple observation that if a,b € V(G) are vertices that are
not joined by an edge of C and ab™,a*bh € E(G), then G has a Hamiltonian cycle
distinct from C, namely C — {aa™,b7b} + {ab™,atb}. We call such a structure
a “cycle exchange”; we may assume from this point forward that G has no cycle
exchange. In particular, if v;, vi41, vit2,vi43 are such that Uj— = vj41 for each
7 =0,1,2, then either v;v;12 or v;4+1v;13 is a non-edge.

Let v be a vertex such that v" v ¢ E(G). Let u be a neighbour of v distinct
from v~ and v*. Since {u,v™,v,v"} may not induce a claw, u must be adjacent
to at least one of v~ and v*. Without loss of generality, say uv™ € E(G). We now
consider u and its neighbours {v™,u~,u"}. Since G is claw-free, one of vtu™,
u~ut or u” vt is an edge of G. In the first case, G would have a cycle exchange.
In the second case, C' — u~uu™ +u~u" + vuv™ — vvt is a second Hamiltonian
cycle of G. We thus proceed assuming that u~ vt € E(G). We now consider
vt and its neighbours {u~,v,v"2}. As before, if vu~ or vv2 € E(G), then G
has a second Hamiltonian cycle, so we proceed assuming that u~v*? € E(G).
By iteratively applying this argument, we see that E(G) must contain the edges
vu,wot, vtuT, umvt2 v2u 2, ... with the sequence ending when the final edge
added has endpoints which lie at distance 2 from one another along C'.

Now, consider the vertex u and its neighbours {v,u~,u"}. Again, if vu™ or
u~ut € E(G), then G contains a second Hamiltonian cycle. We thus assume
that vut € F(G). A symmetric argument to the one above shows that F(G)
contains the edges vut, utv™, v~ ut?, ut2v 2, ... with the sequence again ending
when the final edge added has endpoints which lie at distance 2 from one another

along C.
v72 wT v vt ot
TR T VR TR Vi

Figure 1. The structure of G.
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Let F = {...,v 2™ u"2v™ v~ u", utv,vu, vot  vtu=, u v ™2 v 202, ..}
be the set of edges added above. Let x,y be the two vertices not incident to any
edge of F. Since 0(G) > 3, x has at least one neighbour yet to be determined. If
xy € E(GQ), it is easy to see that G contains a Hamiltonian cycle consisting of the
edges of F' together with some cycle edge incident to each of z and y. To finish
the proof, we relabel the vertices of V(G) \ {z,y} for ease of notation. Noting
that the edges of F' form a Hamiltonian path of G — {x, y}, we label the vertices,
in order along this path, a1, by, ag, ba, ... so that a;x € E(C).

a a2 as a4

b1 ba b3 s

Figure 2. The structure of G, with relabelled vertices.

There are two remaining cases to consider, namely za; € E(G) for some j
or zb, € E(G) for some k. If za; € E(G), then C —ajas---a; — xbiby---bj_1 +
zaj + arbiagby - - -bj_1 is a Hamiltonian cycle of G. If zb, € E(G), then C —
aias -+ ap — xbibg - - - by + xbp + a1brasbs - - - by_1ay is a Hamiltonian cycle of G.
Having exhausted all cases, we conclude that G is not uniquely Hamiltonian. m

We now show that the minimum degree requirement cannot be removed from
the statement of Theorem 2.1. While cycles would suffice to show this, we present
a graph in Figure 3 that is claw-free, uniquely Hamiltonian, has minimum degree
2, and arbitrarily high maximum degree.

The graph in Figure 3, which we call H, is obtained from the complete graph
K} and a cycle Cgp, for some fixed positive integer k. Let the vertices of K} be
V(Ky) = {v1,...,u} and the vertices of C3; be V(Cs) = {u1,...,usr}. The
graph H is defined as V(H) = V(K) UV (Cs;) and E(H) = E(Ky) U E(Cs) U
{viugi—2,viuzi—1 : 1 < i < k}. It is easy to check that H is claw-free, that
d(H) = 2, and that A(H) = k+ 1. The edges in bold in Figure 3 show that H is
Hamiltonian, and it is not hard to see that this is the only possible Hamiltonian
cycle in H.
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Figure 3. A uniquely Hamiltonian claw-free graph with arbitrarily
large maximum degree

Theorem 2.2. For any positive integer d, there exists a uniquely Hamiltonian
claw-free graph with mazimum degree at least d.

3. TRIANGLE-FREE GRAPHS

In this section, we show that there exist triangle-free, uniquely Hamiltonian
graphs having § = 3, and so any minimum degree result analogous to Theo-
rem 2.1 for triangle-free graphs would be for minimum degree at least 4. Since
the net (a triangle with a pendant edge on each vertex) and the bull (a trian-
gle with a pendant edge on each of two vertices) both rely on the presence of a
triangle, a similar statement holds for net-free and bull-free graphs as well.

We will make use of the following constructive result:

Theorem 3.1 (Entringer, Swart [4]). For every n = 2k, k > 11, there ezists a
uniquely Hamiltonian graph on n vertices with two vertices having degree 4 and
all others having degree 3.

Let G be a graph having Hamiltonian cycle C, and let uvw be a triangle
in G. We define a C-blowup of a triangle uwvw in G to be the graph obtained
by replacing the triangle uvw with the graph given in Figure 4. Note that the
replacement operation does depend on which edges of the triangle are in C. We
call the graph that replaces the triangle X.

The edges of C are indicated in bold in the figures on the left of Figure 4.
The bold edges in the corresponding copy of X show how C extends to a Hamil-
tonian cycle in the graph containing the C-blowup. Note that, in a general graph
containing a triangle wvw, it would be possible for a Hamiltonian cycle to use
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Figure 4. C-blowups of a triangle uvw.

none of the edges uv, vw, or uw. However, since we are only considering triangles
which contain at least one vertex of degree 3, this situation will not arise; the
only possibilities left are the two pictured in Figure 4.

Lemma 3.2. Let G be a graph with §(G) = 3 such that every triangle contains
a vertex of degree 3. Suppose that G contains a unique Hamiltonian cycle, C. If
G’ is the graph obtained by applying a C-blowup to each triangle of G, then G’ is
uniquely Hamiltonian. Furthermore, 6(G') = 6(G) = 3 and A(G') = A(G).

Proof. 1t is easy to see that, in C-blowup of a triangle uvw, the vertices u, v, w
maintain the same degree and all other vertices added to the graph have degree
3. Hence, we have §(G') = §(G) = 3 and A(G') = A(G).
By construction, G’ is Hamiltonian. Let C’ be a Hamiltonian cycle of G’,
and let u, v, w be vertices as in Figure 4. Clearly, C' must either:
1. contain a path that covers every vertex of X and has its ends in {u,v,w};
or
2. contain a path that covers every vertex of X except for one of {u,v, w} and
has its ends in {u,v, w}.
In either case, C' gives rise to a Hamiltonian cycle in G' by reversing the C-
blowup. Since G is uniquely Hamiltonian, this cycle must be precisely C. We
can easily check that, for each C-blowup shown in Figure 4, the edges of the
Hamiltonian cycle in the graph containing the blowup constitute the only way to
extend C to a Hamiltonian cycle. Hence G’ must be uniquely Hamiltonian. m

By applying Lemma 3.2, we obtain the following corollary to Theorem 3.1.

Corollary 3.3. There exist triangle-free uniquely Hamiltonian graphs with two
vertices having degree 4 and all others having degree 3.
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Thus, if one wishes to find uniquely Hamiltonian H-free graphs where H is

any graph containing a triangle (say, for instance, the bull or the net), then one
must begin with graphs having minimum degree at least 4.
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