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Abstract

The Erdős-Faber-Lovász conjecture is the statement that every graph
that is the union of n cliques of size n intersecting pairwise in at most
one vertex has chromatic number n. Kahn and Seymour proved a frac-
tional version of this conjecture, where the chromatic number is replaced by
the fractional chromatic number. In this note we investigate similar frac-
tional relaxations of the Erdős-Faber-Lovász conjecture, involving variations
of the fractional chromatic number. We exhibit some relaxations that can
be proved in the spirit of the Kahn-Seymour result, and others that are
equivalent to the original conjecture.
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1. Introduction

The Erdős-Faber-Lovász conjecture is the following statement.

Conjecture 1. If a graph G is the union of n cliques of size n such that any two

of these n cliques intersect in at most one vertex, then χ(G) = n.

For an integer n, let EFLn denote the class of graphs that are constructed as
the union of n cliques of size n such that any two of these n cliques intersect in
at most one vertex. Then EFLn contains finitely many isomorphism classes of
graphs, and Conjecture 1 is equivalent to the statement that

max {χ(G) : G ∈ EFLn} = n
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for all n. Linear bounds of the type

max {χ(G) : G ∈ EFLn} ≤ cn

are known; in particular,

lim
n→∞

max {χ(G) : G ∈ EFLn} /n = 1

(see [3]). In another direction, relaxations of the chromatic number have been
considered. The fact that the clique number ω(G) of a graph G in EFLn is n
is not obvious, it is a consequence of the theorem of de Bruijn and Erdős [1]
on clique decompositions of complete graphs. A strengthening of this result was
proved by Kahn and Seymour using the fractional chromatic number.

Theorem 2 [4]. For every graph G in EFLn, χf(G) = n.

The definition of the fractional chromatic number χf will be given in the next
section, along with that of other relevant fractional parameters. We will then
examine fractional relaxations of the Erdős-Faber-Lovász conjecture. We exhibit
some that are provable in the spirit of the proof of Theorem 2, and others that
are equivalent to the original conjecture. We will conclude with open problems.

2. Fractional Cover Parameters

Let F be a class of graphs, closed under isomorphism. For a graph G, let F(G)
be the set of induced subgraphs of G belonging to F. A fractional F-cover of G
is a function f : F(G) → [0, 1] such that

∑

u∈V (H) f(H) ≥ 1 for all u ∈ V (G),
and its weight is w(f) =

∑

H∈F(G) f(H). The fractional F-cover number of G,
denoted F-coverf(G) is the minimum possible weight of a fractional F-cover of G.
Thus F-coverf(G) is finite if and only if every vertex of G is in some member of
F(G), and F-coverf(G) = 1 if and only if G itself is in F. By linear programming
duality, F-coverf(G) is the maximum possible value of

∑

u∈V (G) g(u), where g :
V (G) → [0, 1] is a function that satisfies

∑

u∈V (H) g(u) ≤ 1 for all H ∈ F(G) (we
will call such a function a fractional F-clique). By complementary slackness, if
f is a minimum fractional F-cover and g a maximum fractional F-clique, then
∑

u∈V (H) f(H)=1 whenever g(u)>0, and
∑

u∈V (H) g(u)=1 whenever f(H)>0.
The fractional chromatic number of a graph G is the parameter χf(G) =

I-coverf(G), where I(G) is the family of independent sets of G. The reader is
referred to [5] for a thorough exposition of the fractional chromatic number and
relevant aspects of linear programming. We will consider fractional coverings
using the following classes of graphs:

• Ck: the class of k-colourable graphs,
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• Kk: the class of graphs which do not contain a clique of size k + 1.

In particular, I(G)=C1(G)=K1(G), hence χf(G)=C1-coverf(G)=K1-coverf(G).
Since Ck ⊆ Ck+1, the sequence (Ck-coverf(G))

k≥1 is non-increasing, and reaches
1 when k = χ(G). Thus we have k · Ck-coverf(G) = k if and only if G is k-
colourable. Moreover, since every graph H in Ck admits a natural covering by
(k − 1)-colourable subgraphs H1, . . . , Hk containing every vertex exactly k − 1
times, we have k−1

k
· Ck−1-coverf(G) ≤ Ck-coverf(G). Thus for any graph G we

have

χf(G) = 1 · C1-coverf(G) ≤ 2 · C2-coverf(G) ≤ · · ·

≤ χ(G) · Cχ(G)-coverf(G) = χ(G).

For every integer k, Ck ⊆ Kk, hence for every graph G we have

k · Ck-coverf(G) ≥ k ·Kk-coverf(G).

However the sequence {k ·Kk-coverf(G)}1≤k≤ω(G) is not necessarily increasing.

3. Fractional Relaxations of the Erdős-Faber-Lovász Conjecture

Let G be a graph in EFLn. We will consider the hypotheses k ·Ck-coverf(G) = n,
and k · Kk-coverf(G) = n for k ∈ {1, . . . , n}. Conjecture 1 implies that all of
these should be true. Theorem 2 states that for k = 1, both these hypotheses are
indeed true. At the other extreme, we have n·Kn-coverf(G) = n as an application
of the de Bruijn-Erdős theorem, while the hypothesis n ·Cn-coverf(G) = n implies
χ(G) = n. For k = n− 1 we get the following results.

Theorem 3. Let G be a graph in EFLn. Then (n− 1) ·Kn−1-coverf(G) = n.

Theorem 4. Let G be a graph in EFLn. If (n − 1) · Cn−1-coverf(G) = n, then
χ(G) = n.

The proof of both these results relies on the following.

Lemma 5. Let G be a graph containing an n-clique K, k ≤ n an integer such

that k · Kk-coverf(G) = n and f : Kk(G) → [0, 1] a minimum-weight fractional

Kk-cover of G. Then every H ∈ Kk(G) such that f(H) > 0 intersects K in

exactly k elements.

Proof. Consider the bipartite graph B with parts A1 = V (K) and A2 = {H ∈
Kk(G) : f(H) > 0}, and with edges [x,H] such that x ∈ H. We weigh the edges
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of B by putting w([x,H]) = f(H). Evaluating the total weight w(E(B)) of E(B)
in two ways we get

w(E(B)) =
∑

x∈A1

∑

V (H)∋x
f(H) ≥

∑

x∈V (K)
1 = n,

and

w(E(B))=
∑

H∈A2

∑

[x,H]∈E(B)
w(H)≤

∑

H∈A2

k ·w(H)=k ·Kk-coverf(G)=n.

Therefore all inequalities are tight. In particular, for every H ∈ A2,

∑

[x,H]∈E(B)
w(H) = k · w(H),

hence H intersect K in exactly k elements.

Proof of Theorem 3. Let f : K1(G) → [0, 1] be a minimum-weight fractional
K1-cover. By Theorem 2, K1-coverf(G) = n. Therefore by Lemma 5 every
I ∈ K1(G) such that f(I) > 0 intersects every n-clique of G. We then have
H = G− I ∈ Kn−1(G). We define f ′ : Kn−1(G) → [0, 1] by

f ′(H) =

{

1
n−1f(G−H) if G−H ∈ K1(G),

0 otherwise.

Every vertex x of G is in an n-clique K of G, hence

∑

V (H)∋x
f ′(H) =

∑

y∈V (K)\{x}

∑

I∋y

1

n− 1
f(I) ≥

∑

y∈V (K)\{x}

1

n− 1
·1 = 1.

Therefore f ′ is a fractional Kn−1-cover of G and

(n− 1) ·
∑

H∈Kn−1(G)
f ′(H) = (n− 1) ·

∑

I∈K1(G)

1

n− 1
f(I) = n.

Thus (n− 1) ·Kn−1-coverf(G) = n.

Proof of Theorem 4. Suppose that (n − 1) · Cn−1-coverf(G) = n and let f :
Cn−1(G) → [0, 1] be a minimum fractional Cn−1-cover of G. We have (n − 1) ·
Kn−1-coverf(G) = n and f is also a minimum fractional Kn−1-cover of G. Let H
be an element of Cn−1(G) such that f(H) > 0. By Lemma 5, H intersects every
n-clique of G in exactly n− 1 elements. Since every edge of G is in an n-clique,
this implies that the complement I of H in G is an independent set. Therefore
we can properly n-colour G by properly (n− 1)-colouring H and using an extra
colour on I.



Fractional Aspects of the Erdős-Faber-Lovász Conjecture 201

4. Concluding Comments and Problems

Problem 6. Let G be a graph in EFLn, and k ≤ n. Is there a graph H ∈ Ck(G)
such that |V (H)| ≥ k

n
|V (G)|? Is there a graph H ∈ Kk(G) such that |V (H)| ≥

k
n
|V (G)|?

Define αk(G) = max{|V (H)| : H ∈ Ck(G)} and βk(G) = max{|V (H)| : H ∈
Kk(G)}. Then f : V (G) → [0, 1] defined by f(u) = 1

αk(G) for all u ∈ V (G) is a

fractional Ck-clique, hence Ck-coverf(G) ≥ |V (G)|
αk(G) , and similarly Kk-coverf(G) ≥

|V (G)|
βk(G) . For G ∈ EFLn, Conjecture 1 implies that χ(G) = k · Ck-coverf(G) =

k · Kk-coverf(G) = n, which implies that Problem 6 should have an affirmative
answer.

It would also be interesting to give an affirmative answer to Problem 6 by
constructive methods. In contrast, the proof of Theorem 2 in [4] is indirect. It
leads to a column-generation simplex program that finds an optimal fractional
colouring f : I(G) → [0, 1] of a graph G ∈ EFLn in exponential time. Therefore
the proof of Theorem 3, based on Theorem 2, is also nonconstructive.

The derivation of Theorem 3 from Theorem 2 also raises the following.

Problem 7. Is it true that for all n, all G ∈ EFLn and all k < n, we have
k ·Kk-coverf(G) = n if and only if (n− k) ·Kn−k-coverf(G) = n?

Suppose that k · Kk-coverf(G) = n, and let f : Kk(G) → [0, 1] be a minimum-
weight fractional Kk-cover of G. By Lemma 5, every H ∈ Kk(G) such that
f(H) > 0 intersects every n-clique of G in exactly k vertices. For k = 1, this
implies G−H ∈ Kn−1(G). However for larger values of k, G−H could contain an
(n− k + 1)-clique that does not extend to an n-clique in G. We will concentrate
on the case k = 2. Let K be an (n−1)-clique that does not extend to an n-clique
in G. Since G ∈ EFLn, K admits the edge-decomposition

{Ci ∩K : |Ci ∩K| ≥ 2},

where C1, . . . , Cn are the defining cliques of G. This decomposition is a “linear
space” in the sense of [2]; it has either n− 1 or n parts. It can be shown that if
these parts pairwise intersect, then G is n-colourable, hence 2 · K2-coverf(G) =
(n − 2) · Kn−2-coverf(G) = n. Therefore, G can witness a negative answer to
Problem 7 only if the parts Ci ∩K do not all pairwise intersect. The de Bruijn-
Erdős theorem then implies that there are exactly n parts, and the results in [2]
then imply that n = 6 or n = m2 + m + 1 for some m ≥ 2. Thus for k = 2,
Problem 7 has an affirmative answer for infinitely many values of n. Overall, the
results in [2] seem to make Problem 7 tractable.

We conclude with the following partition problem which would also follow
from Conjecture 1.
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Problem 8. Is it true that for all n, all G ∈ EFLn and all k < n, there exists
H ∈ Kk(G) such that G−H ∈ Kn−k(G)?
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ture, Combinatorica 12 (1992) 155–160.
doi:10.1007/BF01204719

[5] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York,
1997).

Received 22 May 2013
Revised 28 November 2013
Accepted 20 February 2014

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1016/0012-365X\(83\)90071-7
http://dx.doi.org/10.1016/0097-3165\(92\)90096-D
http://dx.doi.org/10.1007/BF01204719
http://www.tcpdf.org

