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Abstract

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree
T in G is a rainbow tree if no two edges of T receive the same color. For
a vertex subset S ⊆ V (G), a tree that connects S in G is called an S-tree.
The minimum number of colors that are needed in an edge-coloring of G
such that there is a rainbow S-tree for each k-subset S of V (G) is called the
k-rainbow index of G, denoted by rxk(G). In this paper, we first determine
the graphs of size m whose 3-rainbow index equals m, m − 1, m − 2 or 2.
We also obtain the exact values of rx3(G) when G is a regular multipartite
complete graph or a wheel. Finally, we give a sharp upper bound for rx3(G)
when G is 2-connected and 2-edge connected. Graphs G for which rx3(G)
attains this upper bound are determined.
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1. Introduction

We follow the terminology and notation of Bondy and Murty [1]. Let G be a
nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N,
where adjacent edges may be colored the same. A path of G is a rainbow path if
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no two edges of the path are colored the same. The graph G is rainbow connected

if for every two vertices u and v of G, there is a rainbow path connecting u and v.
The minimum number of colors for which there is an edge-coloring of G such that
G is rainbow connected is called the rainbow connection number of G, denoted
by rc(G). Results on the rainbow connections can be found in [2, 3, 5, 6, 7].

These concepts were introduced by Chartrand et al. in [3]. In [4], they
generalized the concept of rainbow path to rainbow tree. A tree T in G is a
rainbow tree if no two edges of T receive the same color. For S ⊆ V (G), a
rainbow S-tree is a rainbow tree that connects the vertices of S. Given a fixed
integer k with 2 ≤ k ≤ n, the edge-coloring c of G is called a k-rainbow coloring
if for every k-subset S of V (G), there exists a rainbow S-tree. In this case, G is
called k-rainbow connected. The minimum number of colors that are needed in
a k-rainbow coloring of G is called the k-rainbow index of G, denoted by rxk(G).
Clearly, when k = 2, rx2(G) is the rainbow connection number rc(G) of G. For
every connected graph G of order n, it is easy to see that rx2(G) ≤ rx3(G) ≤
· · · ≤ rxn(G).

The Steiner distance d(S) of a subset S of vertices in G is the minimum size
of a tree in G that connects S. Such a tree is called a Steiner S-tree or simply a
Steiner tree. The k-Steiner diameter, sdiamk(G), of G is the maximum Steiner
distance of S among all k-subsets S of G. Then there is a simple upper bound
and a lower bound for rxk(G).

Observation 1.1 [4]. For every connected graph G of order n ≥ 3 and each

integer k, with 3 ≤ k ≤ n, k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

It was shown in [4] that trees are contained in a class of graphs whose k-rainbow
index attains the upper bound.

Proposition 1.2 [4]. Let T be a tree of order n ≥ 3. For each integer k, with
3 ≤ k ≤ n, rxk(T ) = n− 1.

The authors of [4] also gave the following observation.

Observation 1.3 [4]. Let G be a connected graph of order n containing two

bridges e and f . For each integer k with 2 ≤ k ≤ n, every k-rainbow coloring of

G must assign distinct colors to e and f .

For k = 2, rx2(G) = rc(G), this case has been studied extensively, see [6, 7]. But
for k ≥ 3, very few results has been obtained. In this paper, we focus on k = 3.
By Observation 1.1, we have rx3(G) ≥ 2. On the other hand, if G is a nontrivial
connected graph of size m, then the coloring that assigns distinct colors to the
edges of G is a 3-rainbow coloring, hence rx3(G) ≤ m. So we want to determine
the graphs whose 3-rainbow index equals the values m, m − 1, m − 2 and 2,
respectively. The following results are needed.
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Lemma 1.4 [4]. For 3 ≤ n ≤ 5, rx3(Kn) = 2.

Lemma 1.5 [4]. Let G be a connected graph of order n ≥ 6. For each integer k
with 3 ≤ k ≤ n, rxk(G) ≥ 3.

Theorem 1.6 [4]. For each integer k and n with 3 ≤ k ≤ n,

rxk(Cn) =

{

n− 2, if k = 3 and n ≥ 4,
n− 1, if k = n = 3 or 4 ≤ k ≤ n.

Theorem 1.7 [4]. If G is a unicyclic graph of order n ≥ 3 and girth g ≥ 3, then

rxk(G) =

{

n− 2, if k = 3 and g ≥ 4,
n− 1, if g = 3 or 4 ≤ k ≤ n.

The following observation is easy to verify.

Observation 1.8. Let G be a connected graph and H be a connected spanning

subgraph of G. Then rx3(G) ≤ rx3(H).

In Section 2, we determine the graphs whose 3-rainbow index equals the values
m, m − 1, m − 2 or 2. In Section 3, we determine the 3-rainbow index for the
complete bipartite graphs Kr,r and complete t-partite graphs Kt×r as well as the
wheel Wn. Finally, we give a sharp upper bound of rx3(G) for 2-connected graphs
and 2-edge connected graphs. Moreover, graphs whose 3-rainbow index attains
the upper bound are characterized.

2. Graphs with rx3(G) = m,m− 1,m− 2 or 2

At first, we consider the graphs with rx3(G) = 2. From Lemma 1.5, if rx3(G) = 2,
then the order n of G satisfies 3 ≤ n ≤ 5.

Theorem 2.1. Let G be a connected graph of order n. Then rx3(G) = 2 if and

only if G = K5 or G is a 2-connected graph of order 4 or G is of order 3.

Proof. If n = 3, then it is easy to see that rx3(G) = 2.
If n = 4, assume that G is not 2-connected, then there is a cut vertex v. It is

easy to see that a tree connecting the vertices of G−v has size 3, thus rx3(G) ≥ 3,
a contradiction.

If n = 5, then let V (G) = {v1, v2, v3, v4, v5}. Assume that rx3(G) = 2 but
G is not K5. Let c : E(G) → {1, 2} be a rainbow coloring of G. Since every
three vertices belong to a rainbow path of length 2, there is no monochromatic
triangle. Now we show that the maximum degree ∆(G) is 4. If ∆(G) is 2, then G
is a cycle or a path, and it is easy to check that rx3(G) is 3 or 4, a contradiction.
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Assume that ∆(G) is 3. Let deg(v1) = 3 and N(v1) = {v2, v3, v4}. Then at least
two edges incident to v1 have the same color, say c(v1v2) = c(v1v3) = 1. Consider
{v1, v2, v5}, {v1, v3, v5}, this forces c(v2v5) = c(v3v5) = 2. Consider {v1, v2, v3},
it implies that c(v2v3) = 2, but now {v2, v3, v5} forms a monochromatic triangle,
a contradiction. Thus ∆(G) = 4. Suppose deg(v1) = 4. If there are three
edges incident to v1 colored the same, say c(v1v2) = c(v1v3) = c(v1v4) = 1, then
consider the three vertices v2, v3 and v4. Since these three vertices must belong
to a rainbow path of length 2, without loss of generality, assume that c(v2v3) = 1
and c(v3v4) = 2. However then {v1, v2, v3} is a monochromatic triangle, which is
impossible. Therefore only two edges incident to v1 are assigned the same color.
Since G is not K5, G is a spanning subgraph of K5 − e. Since deg(v1) = 4, we
may assume that G is a spanning subgraph of K5 − v3v4. Let G′ = K5 − v3v4.
Consider {v1, v3, v4}, it implies v1v3 and v1v4 must have different colors, without
loss of generality, assume that c(v1v3) = 1 and c(v1v4) = 2. By symmetry,
suppose c(v1v2) = 1 and c(v1v5) = 2. Then c(v2v3) = 2, c(v4v5) = 1. Consider
{v2, v3, v4}, {v3, v4, v5}, {v2, v3, v5}, then c(v2v4) = 1, c(v3v5) = 2, c(v2v5) = 1,
but now {v2, v4, v5} forms a monochromatic triangle, which is impossible. Hence,
rx3(G) ≥ rx3(G

′) ≥ 3, contradicting the assumption.

Theorem 2.2. Let G be a connected graph of size m ≥ 3. Then

(1) rx3(G) = m if and only if G is a tree.

(2) rx3(G) = m− 1 if and only if G is a unicyclic graph with girth 3.

(3) rx3(G) = m− 2 if and only if G is a unicyclic graph with girth at least 4.

Proof. (1) By Proposition 1.2, if G is a tree, then rx3(G) = n − 1 = m. Con-
versely, if rx3(G) = m but G is not a tree, then m ≥ n. By Observation 1.1,
rx3(G) ≤ n− 1 ≤ m− 1, a contradiction.

(2) If G is a unicyclic graph with girth 3, then by Theorem 1.7, rx3(G) =
n − 1 = m − 1. Conversely, if rx3(G) = m − 1, then by (1), G must contain
cycles. If G contains at least two cycles, then m ≥ n + 1. By Observation 1.1,
rx3(G) ≤ n− 1 ≤ m− 2, a contradiction. Thus, G contains exactly one cycle. If
the cycle of G is of length at least 4, then by Theorem 1.7, rx3(G) = n−2 = m−2,
a contradiction. Thus, the cycle of G is of length 3, the result holds.

(3) If G is a unicyclic graph with girth at least 4, then by Theorem 1.7,
rx3(G) = n − 2 = m − 2. Conversely, if rx3(G) = m − 2 and m ≥ n + 2, then
by Observation 1.1, rx3(G) ≤ n− 1 ≤ m− 3, a contradiction. Thus, m ≤ n+ 1.
If m = n, then G is a unicyclic graph. By Theorem 1.7, the girth of G is at
least 4. If m = n + 1, and there are two edge-disjoint cycles C1 and C2 of
lengths, respectively g1 and g2 such that g1 ≥ g2, then if g1 ≥ 4, we assign g1 − 2
colors to C1, g2 − 1 new colors to C2 and assign new distinct colors to all the
remaining edges, which make G 3-rainbow connected, hence rx3(G) ≤ m − 3, a
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contradiction. Therefore g1 = g2 = 3. In this case, we assign to each cycle three
colors 1, 2, 3, and assign new colors to all the remaining edges. It follows that,
then G is 3-rainbow connected, thus rx3(G) ≤ m− 3. If these two cycles are not
edge-disjoint, we can also use m − 3 colors to make G 3-rainbow connected, a
contradiction.

3. The 3-rainbow Index of Some Special Graphs

In this section, we determine the 3-rainbow index of some special graphs. First,
we consider the regular complete bipartite graphs Kr,r. It is easy to see that when
r = 2, rx3(K2,2) = 2 and, logically, we can define rx3(K1,1) = 0.

Theorem 3.1. For each integer r with r ≥ 3, rx3(Kr,r) = 3.

Proof. Let U and W be the partite sets of Kr,r, where |U | = |W | = r. Suppose
that U = {u1, . . . , ur} and W = {w1, . . . , wr}. If S ⊆ U and |S| = 3, then every
S-tree has size at least 3; hence rx3(Kr,r) ≥ 3.

Next we show that rx3(Kr,r) ≤ 3. We define a coloring c : E(Kr,r) → {1, 2, 3}
as follows.

c(uiwj) =







1, if 1 ≤ i = j ≤ r,
2, if 1 ≤ i < j ≤ r,
3, if 1 ≤ j < i ≤ r.

Now we show that c is a 3-rainbow coloring of Kr,r. Let S be a set of three
vertices of Kr,r. We consider two cases.

Case 1. The vertices of S belong to the same partite set of Kr,r. Without loss
of generality, let S = {ui, uj , uk}, where i < j < k. Then T = {uiwj , ujwj , ukwj}
is a rainbow S-tree.

Case 2. The vertices of S belong to different partite sets of Kr,r. Without
loss of generality, let S = {ui, uj , wk}, where i < j.

Subcase 2.1. Let k < i < j. Then T = {uiwk, uiwj , ujwj} is a rainbow S-tree.

Subcase 2.2. Let i ≤ k ≤ j. Then T = {uiwk, ujwk} is a rainbow S-tree.

Subcase 2.3. Let i < j < k. Then T = {uiwi, ujwi, ujwk} is a rainbow S-tree.

With the aid of Theorem 3.1, we are now able to determine the 3-rainbow index
of complete t-partite graph Kt×r. Note that we always have t ≥ 3. When r = 1,
rx3(Kt×1) = rx3(Kt), which was given in [4].

Theorem 3.2. Let Kt×r be a complete t-partite graph, where r ≥ 2 and t ≥ 3.
Then rx3(Kt×r) = 3.



86 L. Chen, X.L. Li, K. Yang and Y. Zhao

Proof. Let U1, U2, . . . , Ut be the t partite sets of Kt×r, where |Ui| = r. Suppose
that Ui = {ui1, . . . , uir}. If S ⊆ Ui and |S| = 3, then every S-tree has size at
least 3, hence rx3(Kr,r) ≥ 3.

Next we show that rx3(Kt×r) ≤ 3. We define a coloring c: E(Kt×r) →
{1, 2, 3} as follows.

c(uaiubj) =







1, if 1 ≤ i = j ≤ r,
2, if 1 ≤ i < j ≤ r,
3, if 1 ≤ j < i ≤ r,

where 1 ≤ a < b ≤ t.

We now show that c is a 3-rainbow coloring of Kt×r. Let S be a set of three
vertices of Kt×r.

Case 1. The vertices of S belong to the same partite set. Without loss of
generality, let S = {ua1, ua2, ua3}. Then T = {ua1ub2, ua2ub2, ua3ub2} is a rainbow
S-tree.

Case 2. Two vertices of S belong to the same partite set. Without loss of
generality, let S = {uai, uaj , ubk}. If k < i < j, then T = {uaiubk, uaiubj , uajubj}
is a rainbow S-tree. If i ≤ k ≤ j, then T = {uaiubk, uajubk} is a rainbow S-tree.
If i < j < k, then T = {uaiubi, uajubi, uajubk} is a rainbow S-tree.

Case 3. Each vertex of S belongs to a different partite set. Let S =
{uai, ubj , uck}, a < b < c.

Subcase 3.1. Assume that i = j = k. Without loss of generality, let S =
{ua1, ub1, uc1}. Then T = {ua1ub1, ua1ub2, ub2uc1} is a rainbow S-tree.

Subcase 3.2. Suppose that i = j 6= k. Without loss of generality, let S =
{ua1, ub1, uc2}. Clearly, T = {ua1ub1, ub1uc2} is a rainbow S-tree.

Subcase 3.3. Let i 6= j 6= k. Without loss of generality, let S = {ua1, ub2, uc3}.
Then T = {ua1uc1, uc1ub2, ub2uc3} is a rainbow S-tree.

Another well-known class of graphs are wheels. For n ≥ 3, the wheel Wn

is a graph constructed by joining a vertex v to every vertex of a cycle Cn :
v1, v2, . . . , vn, vn+1 = v1. Given an edge-coloring c of Wn, for two adjacent ver-
tices vi and vi+1, we define an edge-coloring of the graph by identifying vi and
vi+1 to a new vertex v′ as follows: set c(vv′) = c(vvi+1), c(vi−1v

′) = c(vi−1vi),
c(v′vi+2) = c(vi+1vi+2), and keep the coloring for the remaining edges. We call
this coloring the identified-coloring at vi and vi+1. Next we determine the 3-
rainbow index of wheels.
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Theorem 3.3. For n ≥ 3, the 3-rainbow index of the wheel Wn is

rx3(Wn) =















2, if n = 3,
3, if 4 ≤ n ≤ 6,
4, if 7 ≤ n ≤ 16,
5, if n ≥ 17.

Proof. Suppose that Wn consists of a cycle Cn : v1, v2, . . . , vn, vn+1 = v1 and
another vertex v joined to every vertex of Cn.

Since W3 = K4, it follows by Lemma 1.4 that rx3(W3) = 2.
If n = 6, then let S = {v1, v2, v4}. Since every S-tree has size at least 3,

rx3(W6) ≥ 3. Next we show that rx3(W6) ≤ 3 by providing a 3-rainbow coloring
of W6 as follows:

c(e) =







1, if e ∈ {vv1, vv4, v2v3, v5v6},
2, if e ∈ {vv2, vv5, v3v4, v1v6},
3, if e ∈ {vv3, vv6, v4v5, v1v2}.

If n = 5, then |V (W5)| = 6 and, by Lemma 1.5, rx3(W5) ≥ 3. Then we show
that rx3(W5) ≤ 3. We provide a 3-rainbow coloring of W5 obtained from the
3-rainbow coloring of W6 by the identified-coloring at v5 and v6.

If n = 4, then by Theorem 2.1, rx3(W4) ≥ 3. Then we show that rx3(W4) ≤
3. We provide a 3-rainbow coloring of W4 obtained from the 3-rainbow coloring
of W6 by the identified-coloring at v5 and v6, v4 and v5, respectively.

Claim 1. If 7 ≤ n ≤ 16, then rx3(Wn) = 4.

First we show that rx3(W7) ≥ 4. Assume, to the contrary, that rx3(W7) ≤ 3. Let
c : E(W7) → {1, 2, 3} be a 3-rainbow coloring of W7. Since deg(v) = 7 > 2 × 3,
there exists A ⊆ V (Cn) such that |A| = 3 and all edges in {uv : u ∈ A} are
colored the same. Thus, there must exist at least two vertices vi, vj ∈ A such
that degC7

(vi, vj) ≥ 2 and a vertex vk ∈ C7 such that vk /∈ {vi−1, vi+1, vj−1, vj−1}.
Let S = {vi, vj , vk}. Note that the only S-tree of size 3 is T = vvi∪vvj ∪vvk, but
c(vvi) = c(vvj), it follows that there is no rainbow S-tree, which is a contradiction.
Similarly, we have rx3(Wn) ≥ 4 for all n ≥ 8.

Second, we show that rx3(W16) ≤ 4, which we establish by defining a 4-
rainbow coloring c of W16 as shown in Figure 1. It is easy to check that c is a
4-rainbow coloring of W16. Therefore, rx3(W16) = 4.

When 13 ≤ n ≤ 15, we obtain a 4-rainbow coloring of W15, W14, W13 from
the 4-rainbow coloring c of W16 by consecutively using the identified-colorings at
v1 and v16, v12 and v13, v8 and v9.

When n = 12, we define a 4-rainbow coloring of W12 as shown in Figure 1.
When 7 ≤ n ≤ 11, we obtain a 4-rainbow coloring of W11, W10, W9, W8,

W7 from the 4-rainbow coloring c of W12 by consecutively using the identified-
colorings at v1 and v2, v4 and v5, v7 and v8, v10 and v11, v11 and v12.
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Figure 1. 3-rainbow coloring of W16 and W12.

Claim 2. If n ≥ 17, then rx3(Wn) = 5.

First we show that rx3(W17) ≥ 5. Assume, to the contrary, that rx3(W17) ≤ 4.
Let c : E(W17) → {1, 2, 3, 4} be a 4-rainbow coloring of W17. Since deg(v) = 17 >
4× 4, there exists A ⊆ V (Cn) such that |A| = 5 and all edges in {uv : u ∈ A} are
colored the same, say 1. Suppose that A = {vi1 , vi2 , vi3 , vi4 , vi5}, where i1 ≤ i2 ≤
i3 ≤ i4 ≤ i5. There exists k such that degC17

(vik , vik+1
) ≥ 3, where 1 ≤ k ≤ 4.

Let S = {vik , vik+1
, vik+3

}. Since dC17
(vik , vik+3

) ≥ 2 and dC17
(vik+1

, vik+3
) ≥ 2,

the only possible S-tree is the path P = vik+1
vik+2

vik+3
vik+4

vik+5
, where addition

is performed modulo 5. Thus color 1 must appear in P and every edge of the
path must have a distinct color. By symmetry, we consider two cases. First,
let c(vik+1

vik+2
) = 1. Suppose c(vik+2

vik+3
) = 2, c(vik+3

vik+4
) = 3. There exists a

vertex v0, where c(vv0) = 2 or 3, such that d(v0, A) ≥ 3. It is easy to see that there
is no rainbow {v0, vik+2

, vik+4
}-tree. In the remaining case, if c(vik+2

vik+3
) = 1,

then we can also find such a vertex v0 such that there exists no {v0, vik+2
, vik+3

}-
tree, which is a contradiction.

To show that rx3(Wn) ≤ 5 for n ≥ 17, we define a 5-rainbow coloring of Wn

as follows:

c(e) =

{

j, if e = vvi and i ≡ j(mod 5), 1 ≤ j ≤ 5,
i+ 3, if e = vivi+1.

It is easy to see that c is a 5-rainbow coloring of Wn. Therefore, rx3(Wn) = 5 for
n ≥ 17.

4. The 3-rainbow Index of 2-connected and 2-edge-connected

Graphs

In this section, we give a sharp upper bound of the 3-rainbow index for 2-
connected and 2-edge-connected graphs. We start with some lemmas that will
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be used in the sequel.

Lemma 4.1. Let G be a connected graph and {V1, V2, . . . , Vk} be a partition of

V (G). If each Vi induces a connected subgraph Hi of G, then rx3(G) ≤ k − 1 +
∑k

i=1 rx3(Hi).

Proof. Let G′ be a graph obtained from G by contracting each Hi to a single
vertex. Then G′ is a graph of order k, so rx3(G

′) ≤ k− 1. Take an edge-coloring
of G′ with k − 1 colors such that G′ is 3-rainbow connected. Now go back to
G, and color each edge connecting vertices in distinct Hi with the color of the
corresponding edge in G′. For each i = 1, 2, . . . , k, we use rx3(Hi) new colors to
assign the edges of Hi such that Hi is 3-rainbow connected. The resulting edge-
coloring makesG 3-rainbow connected. Therefore, rx3(G) ≤ k−1+

∑k
i=1 rx3(Hi).

To subdivide an edge e is to delete e, add a new vertex x, and join x to the ends
of e. Any graph derived from a graph G by a sequence of edge subdivisions is
called a subdivision of G. Given a rainbow coloring of G, if we subdivide an
edge e = uv of G by xu and xv, then we can assign xu the same color as e and
assign xv a new color, which also make the subdivision of G 3-rainbow connected.
Hence, the following lemma holds.

Lemma 4.2. Let G be a connected graph, and H be a subdivision of G. Then

rx3(H) ≤ rx3(G) + |V (H)| − |V (G)|.

The Θ-graph is a graph G consisting of three internally disjoint paths with com-
mon end vertices and of lengths a, b, and c, respectively, such that a ≤ b ≤ c.
Clearly, a+ b+ c = n+ 1 where n is the order of G.

Lemma 4.3. Let G be a Θ-graph of order n. If n ≥ 7, then rx3(G) ≤ n− 3.

Proof. Let the three internally disjoint paths be P1, P2, P3 with the common
end vertices u and v, and the lengths of P1, P2, P3 are a, b, c, respectively, where
a ≤ b ≤ c.

Case 1. b ≥ 3. Then c ≥ b ≥ 3, a ≥ 1. First, we consider the graph Θ1 with
a = 1, b = 3 and c = 3. We color uP1v with color 3, uP2v with colors 2, 3, 1,
and uP3v with colors 1, 3, 2. The resulting coloring makes Θ1 rainbow connected.
Thus, rx3(Θ1) ≤ 3 = |V (Θ1)| − 3. For a general Θ-graph G with b ≥ 3 and
n ≥ 7, we first observe that it is a subdivision of Θ1. Hence by Lemma 4.2,
rx3(G) ≤ rx3(Θ1) + |V (G)| − |V (Θ1)| ≤ |V (G)| − 3.

Case 2. a = 1, b = 2. Then since a+ b+ c = n+ 1 ≥ 8, c ≥ 5. Consider the
graph Θ2 with a = 1, b = 2 and c = 5. We rainbow color uP1v with color 4, uP2v
with colors 1, 3, and uP3v with colors 2, 3, 4, 2, 1. Thus, rx3(Θ2) ≤ 4 = |V (Θ2)|−
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3. Consider now a general Θ-graph G with a = 1, b = 2, c ≥ 5. Clearly, it is a
subdivision of Θ2, hence by Lemma 4.2, rx3(G) ≤ rx3(Θ2)+ |V (G)| − |V (Θ2)| ≤
|V (G)| − 3.

Case 3. a = 2, b = 2, Then since a+ b+ c = n+ 1 ≥ 8, c ≥ 4. Consider the
graph Θ3 with a = 2, b = 2 and c = 3. We rainbow color uP1v with colors 3, 2,
uP2v with colors 2, 1, and uP3v with colors 1, 2, 3. Thus, rx3(Θ3) ≤ 3 = |V (Θ3)|−
3. Consider now a general Θ-graph G with a = 2, b = 2, c ≥ 4. It is a subdivision
of Θ3, hence by Lemma 4.2, rx3(G) ≤ rx3(Θ3) + |V (G)| − |V (Θ3)| ≤ |V (G)| − 3.

Every Θ-graph with n ≥ 7 is one of the above cases, therefore rx3(G) ≤ n−3.

A 3-sun is a graph G which is defined from C6 = v1, v2, . . . , v6, v7 = v1 by adding
three edges v2v4, v2v6 and v4v6.

Lemma 4.4. Let G be a 2-connected graph of order 6. If G is a spanning subgraph

of a 3-sun, then rx3(G) = 4. Otherwise, rx3(G) = 3.

Proof. Since G is a 2-connected graph of order 6, G is a graph with a cycle
C6 = v1, v2, . . . , v6, v7 = v1 and some additional edges.

If G is a subgraph of a 3-sun, then every tree connecting the three vertices
{v1, v3, v5} must have size at least 4, which implies that rx3(G) ≥ 4. On the
other hand, rx3(G) ≤ rx3(C6) ≤ 4. Therefore, rx3(G) = 4.

If there is an edge between the two antipodal vertices of C6, then by Lemma 4.3,
rx3(G) = 3.

IfG contains the edges v1v3 and v2v6, then it contains Θ3, defined in Lemma 4.3,
as a spanning subgraph, thus rx3(G) = 3.

If G contains the edges v1v5 and v2v4, we give a rainbow 3-coloring c of G:
c(v1v2) = c(v4v5) = 1, c(v2v3) = c(v2v4) = c(v1v5) = c(v5v6) = 2, c(v3v4) =
c(v1v6) = 3.

Let H be a subgraph of a graph G. An ear of H in G is a nontrivial path in
G whose ends are in H but whose internal vertices are not. A nested sequence
of graphs is a sequence {G0, G1, . . . , Gk} of graphs such that Gi ⊂ Gi+1, for
0 ≤ i < k. An ear decomposition of a 2-connected graph G is a nested sequence
{G0, G1, . . . , Gk} of 2-connected subgraphs of G such that: (1) G0 is a cycle; (2)
Gi = Gi−1 ∪ Pi, where Pi is an ear of Gi−1 in G, for 1 ≤ i ≤ k; (3) Gk = G. We
call an ear decomposition nonincreasing if ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pk), where
ℓ(Pi) denotes the length of Pi.

Theorem 4.5. Let G be a 2-connected graph of order n ≥ 4. Then rx3(G) ≤
n − 2, with equality if and only if G = Cn or G is a spanning subgraph of 3-sun
or G is a spanning subgraph of K5 − e or G is a spanning subgraph of K4.



The 3-rainbow Index of a Graph 91

Proof. Since G is 2-connected, G contains a cycle. Let C be the longest cycle of
G. Then |V (C)| ≥ 4, rx3(C) ≤ |V (C)|−2. Let H1 = C, H2, H3, . . . , Hn−|V (C)|+1

be subgraphs of G, each is a single vertex. Then by Lemma 4.1, rx3(G) ≤
n− |V (C)|+ rx3(H1) ≤ n− 2.

If G = C, then by Theorem 1.6, rx3(G) = n− 2.

If G 6= C, then G contains a nonincreasing ear decomposition {G0, G1, . . . ,
Gk}. LetH1 = C∪P1. ThenH1 is a Θ-graph. We chooseH2, H3, . . . , Hn−|V (H1)|+1

as subgraphs of G with a single vertex each. By Lemma 4.1, rx3(G) ≤ n −
|V (H1)|+ rx3(H1).

If |V (H1)| ≥ 7, then by Lemma 4.3, rx3(H1) ≤ |V (H1)| − 3, hence rx3(G) ≤
n− 3.

If |V (H1)| = 6, we consider three cases.

Case 1. |V (C)| = 6. Then ℓ(P1) = 1. Hence ℓ(P1) = ℓ(P2) = · · · = ℓ(Pk) = 1,
G is a graph of order 6. By Lemma 4.4, rx3(G) = 4 if and only if G is a spanning
subgraph of a 3-sun.

Case 2. |V (C)| = 5. Then ℓ(P1) = 2. Let u and v be the end vertices of P1.
If dC(u, v) = 1, then we can find a cycle larger than C, contradicting the choice
of C. Otherwise, dC(u, v) = 2 and is the graph Θ3 defined in Lemma 4.3. Then
rx3(H1) = rx3(Θ3) ≤ 3 = |V (H1)| − 3, thus rx3(G) ≤ n− 3.

Case 3. |V (C)| = 4. Then ℓ(P1) = 3. Let u and v be the end vertices of P1.
Either dC(u, v) = 1 or dC(u, v) = 2, thus we can always find a cycle larger than
C, a contradiction.

If |V (H1)| = 5, there are two cases to be considered. If |V (C)| = 5, then
ℓ(P1) = 1, hence G is a graph of order 5. By Theorem 2.1, rx3(G) = 3 = n − 2
except for K5, whose 3-rainbow index is 2. If |V (C)| = 4, then ℓ(P1) = 2. Let
u and v be the end vertices of P1. Note that dC(u, v) = 2. If ℓ(P2) = 1, then
G is a graph of order 5. If ℓ(P2) ≥ 2, then let u′ and v′ be the end vertices of
P2. It holds {u′, v′} = {u, v}, otherwise, we can find a cycle larger than C. Let
H ′

1 = H1 ∪ P2. Then H ′
1 is a graph consisting of 4 internally disjoint paths of

length 2 with common vertices u and v. We color the edges of the four paths with
colors 12, 21, 31, 13, the resulting coloring makes H ′

1 rainbow connected, thus,
rx3(H

′
1) ≤ 3 = |V (H ′

1)|−3. LetH ′
2, H

′
3, . . . , H

′
n−|V (H′

1
)|+1 be subgraphs of G, each

is a single vertex. Then by Lemma 4.1, rx3(G) ≤ n−|V (H ′
1)|+ rx3(H

′
1) ≤ n−3.

If |V (H1)| = 4, then |V (C)| = 4, ℓ(P1) = 1, G is a graph of order 4, by
Theorem 2.1, rx3(G) = 2 = n− 2.

Therefore, rx3(G) = n−2 if and only if G = Cn or G is a spanning subgraph
of 3-sun or G is a spanning subgraph of K5 − e or G is a spanning subgraph of
K4.

Now we turn to 2-edge-connected graphs. We say that an ear is closed if its
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endvertices are identical, otherwise, it is open. An open or closed ear is called
a handle. For a 2-edge-connected graph G, there is a handle-decomposition,
that is a sequence {G0, G1, . . . , Gk} of graphs such that: (1) G0 is a cycle; (2)
Gi = Gi−1 ∪ Pi, where Pi is a handle of Gi−1 in G, for 1 ≤ i ≤ k; (3) Gk = G.
Similar to Theorem 3.2, we give an upper bound of 2-edge-connected graphs.

F1 F2 F4F3 F5

1
2

3 1
2
3

v1 v6

v5v4v3

v2 v1v2

v3 v4 v5

v6
v1

v2 v3

v4

v5

v6

v7
1
1

2
2

3
5 54 4

Figure 2. Graphs with rx3(G) = n− 2.
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Figure 3. Graphs with rx3(G) ≤ n− 3.

Theorem 4.6. Let G be a 2-edge-connected graph of order n ≥ 4. Then rx3(G) ≤
n − 2, with equality if and only if G is a graph attaining the upper bound in

Theorem 4.5 or a graph presented in Figure 2.

Proof. Let C be the largest cycle of G. If |V (C)| ≥ 4, then rx3(C) ≤ |V (C)|−2.
Otherwise, all cycles of G are of length 3. Since n ≥ 4, there are at least two
triangles C1 and C2 with a common vertex v. Let F1 = C1∪C2, we rainbow color
F1 with three colors, see the graph F1 in Figure 2, thus rx3(F1) ≤ 3 = |V (F1)|−2.
Let H1 = C or F1, H2, H3, . . . , Hn−|V (H1)|+1 be subgraphs of G with a single
vertex each. Then by Lemma 4.1, rx3(G) ≤ n− |V (H1)|+ rx3(H1) ≤ n− 2.

Now we determine the graphs that obtain the upper bound n− 2.
If G = C, then by Theorem 1.6, rx3(G) = n− 2.
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If G 6= C, then G contains a handle-decomposition {G0, G1, . . . , Gk}. Let H1 ⊆
G, H2, H3, . . . , Hn−|V (H1)|+1 be subgraphs of G with a single vertex each. Then by
Lemma 4.1, if we show that rx3(H1) ≤ |V (H1)|−3, then we have rx3(G) ≤ n−3.

If |V (C)| ≥ 4 and P1 is an open ear, we come back to Theorem 4.5. If
|V (C)| = 3 and P1 is an open ear, then a cycle is of length larger than C, a
contradiction.

If |V (C)| ≥ 4 and P1 is a closed ear, then G1 is a union of two cycles C1 = C
and C2 = P1. If both of the cycles are of length at least 4, we rainbow color each
cycle Ci with |V (Ci)| − 2 colors, which makes G1 3-rainbow connected. So we
assume that C2 is of length 3. If C1 is of length 5, we rainbow color G1 by 4
colors, see Figure 3(1). If C1 is of length greater than 5, then it is the subdivision
of the graph in the case of |V (C1)| = 5. For all the above three cases, we have
rx3(G1) ≤ |V (G1)| − 3. Let H1 = G1, it follows that rx3(G) ≤ n− 3.

So it remains the case that |V (C1)| = 4, |V (C2)| = 3, we denote this graph
by F2, see Figure 2. Then F2 is a subdivision of F1, so rx3(F2) ≤ 4. On the
other hand, consider S = {v2, v5, v6}. Every S-tree has size at least 4, hence
rx3(F2) = 4 = |V (F2)| − 2. Observe that P2 is a closed ear of length at most
4, then G2 = F2 ∪ P2. If ℓ(P2) = 4, then G2 contains two cycles of length 4.
If ℓ(P2) = 3, we rainbow colors G2 with |V (G2)| − 3 colors, see Figure 3(2–5).
For the above two cases, rx3(G2) ≤ |V (G2)| − 3. Let H1 = G2, it implies that
rx3(G) ≤ n − 3. If ℓ(P2) = 1, then P2 must be an edge joining the vertices
of C1, there are two graphs, denoted by F3 and F4. Similarly to F2, we have
rx3(F3) = |V (F3)| − 2. For F4, rx3(F4) ≤ rx3(F2) ≤ 4. On the other hand,
suppose rx3(F4) ≤ 3. Consider {v1, v3, v5}, {v1, v3, v6}. We have that c(v4v6) =
c(v4v5), which implies that there is no rainbow {v1, v5, v6}-tree or {v3, v5, v6}-tree,
a contradiction. Hence rx3(F4) = 4 = |V (F4)| − 2. Observe that P3 is of length
1, G3 = F3 ∪P3 or F4 ∪P3, we can rainbow color G3 by 3 colors, see Figure 3(6).
Let H1 = G3. Then rx3(G) ≤ n− 3.

If |V (C)| = 3 and P1 is a closed ear, then ℓ(P1) = 3. Thus G1 = F1, and it
is easy to get rx3(G1) = |V (G1)| − 2. If P2 exists, then it must be a closed ear of
length 3, and there are two cases for the graph G2. If G2 is as in Figure 3(7), then
rx3(G2) ≤ |V (G2)|−3, let H1 = G2, thus rx3(G) ≤ n−3. If G2 is the graph F5 in
Figure 2, then we prove that its 3-rainbow index is |V (G2)| − 2. Using the graph
F5 in Figure 2, we have that rx3(G2) ≤ 5. If rx3(G2) ≤ 4, then let c : E(G) →
{1, 2, 3, 4} be the 4-rainbow coloring of G2. Consider {v1, v4, v6} and {v1, v4, v7},
we have c(v1v3) 6= c(v5v6), c(v1v3) 6= c(v5v7). If c(v5v6) = c(v5v7), then suppose
that c(v5v6) = 1, c(v1v3) = 2. Consider {v1, v6, v7}, we may assume c(v3v5) = 3,
c(v6v7) = 4. Consider {v2, v6, v7}, {v1, v2, v6}, {v1, v2, v4}, {v1, v4, v6}, we have
c(v2v3) = 2, c(v1v2) = 4, c(v3v4) ∈ {1, 4}, c(v4v5) ∈ {1, 4}, but then there is no
rainbow tree connecting {v4, v6, v7}. If c(v5v6) 6= c(v5v7), then c(v1v3) 6= c(v2v3).
Let c(v1v3) = 1, c(v2v3) = 2, c(v5v6) = 3, c(v5v6) = 4. Consider {v1, v4, v6},
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then the colors 2 and 4 must appear in the triangle v3v4v5. Consider {v2, v4, v7},
then the colors 1 and 3 must appear in the triangle v3v4v5, which is impossible. So
we consider P3 and, if it exists, then it must be a close ear. There are two cases,
no matter which case occurs, we can give a rainbow coloring with |V (G3)| − 3
colors, see Figure 3(8–9). Let H1 = G3. Then rx3(G) ≤ n− 3.

Combining all the above cases, rx3(G) = n − 2 if and only if G is a graph
attaining the upper bound in Theorem 4.5 or a graph in Figure 2.
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