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Abstract

A double-star is a tree with exactly two vertices of degree greater than 1.
If T is a double-star where the two vertices of degree greater than one have
degrees k1+1 and k2+1, then T is denoted by Sk1,k2

. In this note, we show
that every double-star with n edges decomposes every 2n-regular graph. We
also show that the double-star Sk,k−1 decomposes every 2k-regular graph
that contains a perfect matching.
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1. Introduction

By a decomposition of a graph G we mean a sequenceH1, H2, . . . , Hk of subgraphs
whose edge sets partition the edge set of G. If each subgraph Hi is isomorphic
to a fixed graph H, then the decomposition is an H-decomposition of G and we
say H decomposes G. A large amount of research has been done on the topic of
graph decompositions over the last five decades (see [1] and [2] for recent surveys).
Much investigation has been motivated by the following conjecture of Ringel [10].
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Conjecture 1. Every tree T with n edges decomposes the complete graph K2n+1.

A broadening of Ringel’s conjecture is due to Graham and Häggkvist (see [5]).

Conjecture 2. Every tree T with n edges decomposes every 2n-regular graph G.

Despite persistent attacks over the last 40 years, Ringel’s conjecture and varia-
tions thereof, such as the Graceful Tree Conjecture (see [4]), still stand today.
Much less work has been done on the Graham and Häggkvist conjecture however.

Results confirming Conjecture 2, in certain cases, can be found in Snevily’s
Ph.D. thesis [11]. For example, Snevily shows that every tree T with n edges
decomposes every 2n-regular graph G provided that the girth of G is larger than
the diameter of T . He also shows that every tree with n edges decomposes
the cartesian product of any n cycles. Other results on decompositions of the
cartesian product of graphs into trees can be found in a recent paper by Jao,
Kostochka, and West [8].

The graph K1,k is known as a k-star and is often denoted by Sk. A double-

star is a tree with exactly two vertices of degree greater than 1. The two vertices
of degree greater than 1 are called the centers of the double-star and the edge
joining them is called the central-edge. If T is a double-star where the two centers
have degrees k1 + 1 and k2 + 1, then T is denoted by Sk1,k2 . Note that Sk1,k2

has k1 + k2 + 1 edges and is isomorphic to Sk2,k1 . The double-star Sk,k is called
symmetric.

Conjecture 2 is simple to verify when T is a star. We will verify it when T is
a double-star. We will also show that Sk,k−1 decomposes every 2k-regular graph
that contains a perfect matching.

2. Main Results

We give some additional definitions before proceeding with our main results. An
orientation of a graph G is an assignment of directions to the edges of G. An
Eulerian orientation of G is an orientation where the indegree at each vertex is
equal to the outdegree. It is simple to see that a graph with all even degrees has
an Eulerian orientation.

Theorem 3. Every double-star with n edges decomposes every 2n-regular graph.

Proof. Let H be the double-star Sk1,k2 with center vertices a and b, where the
degree of a is k1 + 1 and the degree of b is k2 + 1. Let G be a 2n-regular graph
where n = k1 + k2 + 1. We will show that H decomposes G.

Orient the edges of H so that each leaf has indegree 1. Orient the edge {a, b}
from a to b. Let F be a 2-factor in G. Then F has an Eulerian orientation. Since
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G−E(F ) is (2n−2)-regular, it has an Eulerian orientation. Consider any cycle C
in F , and let DC denote the digraph in G consisting of all arcs with tail in V (C).
Thus every vertex in DC will have outdegree (in DC) either k1 + k2 + 1 or 0.
Because {E(DC) : C is a cycle in F} partitions E(G), the proof will be complete
if we can show that each such subgraph DC has an H-decomposition.

Let the cycle C have length p and consist of alternating vertices and arcs
labeled v0, e1, v1, e2, . . . , vp−1, ep, vp = v0.

For the first copy H1 of H in the decomposition, we use e1 as the central arc,
and identify v0 with a and v1 with b. Choose k2 arcs with tail at v1; label as X
the set of endvertices of these k2 arcs. The remaining k1 arcs with tail at v0 in
H1 in this construction will be determined at the end.

We construct the remaining copies H2, H3, . . . , Hp sequentially. After Hi−1

is determined we construct Hi as follows. The central arc of Hi is ei, with vi−1

identified with a from H, and vi identified with b. The remaining arcs with tail
at vi−1 are all such arcs of DC −C that were not chosen to be in Hi−1. From the
remaining k1 + k2 arcs with tail at vi, we choose k2 arcs so that:

i) no arc is chosen that is adjacent with an arc chosen at this step to have tail
vi−1 (avoid an immediate triangle), and

ii) we include in the pool all arcs with head a vertex in X.

The selection process above can always be implemented because in Hi−1 we chose
all possible arcs with tail at vi−1 and head at a vertex inX, so no such arc appears
in Hi.

It remains only to complete the construction of H1. After Hp has been
constructed, k1 arcs with tail at v0 have yet to be assigned; we include these arcs
in H1. Because of the pattern noted above, none of these arcs has as a head a
vertex in X. Thus H1 also has no triangles and is therefore isomorphic to H.

In [5], Häggkvist states that he has proven (but has not published) a result
showing that every tree with n edges and diameter d decomposes every 2n-regular
graph of girth at least d. Since the girth of a graph with no multiple edges is at
least 3, Häggkvist’s unpublished result would cover the result in Theorem 3.

We turn our focus to decompositions of n-regular graphs into trees with n

edges. If G is n-regular and H is a tree with n edges, then H may or may not
decompose G. In fact, if n is even and G has odd order, then |E(G)| would not
be divisible by n and thus H could not decompose G. It is also easy to see that
Sn decomposes an n-regular graph G if and only if G is bipartite. Graham and
Häggkvist do in fact conjecture that every tree T with n edges decomposes every
n-regular bipartite graph G (see [5]). This conjecture was verified by Jacobson,
Truszczyński, and Tuza [6] for T for the cases when T is a double-star and for
when T = P5.
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In [9], Kotzig conjectured that the symmetric double-star Sk,k decomposes a
(2k + 1)-regular graph G if and only if G contains a perfect matching. Kotzig’s
conjecture was proved by Jaeger, Payan, and Kouider in [7].

Theorem 4. For k ≥ 1, let G be a (2k+1)-regular graph. Then Sk,k decomposes

G if and only if G contains a perfect matching.

It is simple to see why G must contain a perfect matching if Sk,k decomposes it.
If G has order 2m, then the number of Sk,k’s in the decomposition is m. Since no
two central edges in the decomposition can be adjacent, the central edges must
form a perfect matching.

Let G be a graph that contains a perfect matching M . A tent in G is a pair
{{v, x}, {v, y}} of adjacent edges such that {x, y} is an edge of M . The common
vertex v is called the top of the tent. Jaeger et al. [7] showed that if G is (2k+1)-
regular, then G−M has an Eulerian orientation so that every tent is a directed
path.

We use a slight variation of the approach of Jaeger et al. to show that if G is
a 2k-regular simple graph of even order and with a perfect matching, then Sk,k−1

decomposes G.

Lemma 5. If G is an Eulerian graph that contains a perfect matching M , then

G has an Eulerian orientation such that every tent is oriented into a directed

path.

Proof. We obtain the desired Eulerian orientation as follows. Begin a walk at
any vertex w, and start with any edge incident with w. At each step where there
is a choice of edges to continue the walk, if we are at vertex v which is incident
with tent edges {{v, x}, {v, y}}, we choose one of these edges if and only if the
other edge was the most recent edge in the walk. This process can only end at
start vertex w. Orient the edges of the walk according to the direction in which
they were traversed. Remove those edges from G, and iterate if any edges remain
in G. It is easy to see this process gives the desired orientation.

Theorem 6. For k ≥ 2, let G be a 2k-regular graph that contains a perfect

matching M . Then Sk,k−1 decomposes G.

Proof. By Lemma 5, G has an Eulerian orientation such that every tent is a
directed path. For x ∈ V (G), let Ix = {e1, e2, . . . , ek} be the k arcs with terminal
vertex x in the orientation of G and let Vx = {x1, x2, . . . , xk} be the set of initial
vertices of these arcs.

If e = {x, y} ∈ M , where e is oriented from x to y, then x ∈ Vy, e ∈ Iy, and
Vx ∩Vy = ∅ because each tent is oriented into a directed path. It follows that the
graph

Le = (Vx ∪ Vy ∪ {y}, Ix ∪ Iy)



On Decomposing Regular Graphs into Isomorphic Double-stars 77

Figure 1. A 4-regular graph without a perfect matching that is S2,1-decomposable.

Figure 2. A 4-regular graph without a perfect matching that is not S2,1-decomposable.

is isomorphic to Sk,k−1. Moreover, since each edge of G has exactly one termi-
nal vertex, which is on exactly one edge of M , {Le : e ∈ M} forms an Sk,k−1-
decomposition of G. This completes the proof.

If a 2k-regular graph does not contain a perfect matching, then it may or may not
be Sk,k−1-decomposable. In Figure 1, we show a 4-regular graph that does not
contain a perfect matching but is S2,1-decomposable. Figure 2 shows a 4-regular
graph G that does not contain a perfect matching and is not S2,1-decomposable.
This graph consists of four vertex-disjoint copies of K5−e with each of the degree
3 vertices in these copies joined to one of two additional vertices. Let J denote
one of the four copies of K5 − e in G. Since J contains 9 edges, three edges from
the complement of J are needed to get all the edges of J in an S2,1-decomposition
of G. Since a tree containing edges from more than one K5 − e in G must have
diameter at least 4 and there are only 8 edges in G that are not in a K5−e, there
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is no S2,1-decomposition of G.
For a graph G, let 2G denote the multigraph obtained from G by replacing

every edge in G with two parallel edges. In [3], we show that every double-star
with n edges decomposes 2G for every n-regular graph G. We also investigate
decompositions of 2n-regular multigraphs with edge multiplicity at most 2 into
double-stars with n edges.
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