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Abstract

A k-tree is a tree with maximum degree at most k. In this paper, we give a
degree sum condition for a graph to have a spanning k-tree in which specified
vertices have degree less than k. We denote by σk(G) the minimum value of
the degree sum of k independent vertices in a graph G. Let k ≥ 3 and s ≥ 0
be integers, and suppose G is a connected graph and σk(G) ≥ |V (G)|+s−1.
Then for any s specified vertices, G contains a spanning k-tree in which every
specified vertex has degree less than k. The degree condition is sharp.
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1. Introduction

All graphs considered in this paper are simple and finite. Let G be a graph with
the vertex set V (G) and the edge set E(G). For a vertex x of G, we denote by
degG(x) the degree of x in G and by NG(x) the set of vertices adjacent to x in
G. We denote NG[x] = NG(x) ∪ {x}, and Vi(G) denotes the set of vertices of G
which have degree i in G. For a subset S of V (G), NG(S) =

⋃

x∈S NG(x). α(G)
denotes the independence number of G and we define

σk(G) = min
{

∑

v∈S
degG(xi) : S is an independent set of G with |S| = k

}

for 1 ≤ k ≤ α(G), and σk(G) = ∞ if α(G) < k.
The following is a well-known theorem on Hamiltonian cycles and paths by

Ore.
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Theorem 1 (Ore [6, 7]). Let s be an integer with 0 ≤ s ≤ 2. Suppose G is a

graph with |V (G)| ≥ 3 and σ2(G) ≥ |V (G)|+ s− 1. Then the following hold:

(1) if s = 0, then G has a Hamiltonian path,

(2) if s = 1, then G has a Hamiltonian cycle, and

(3) if s = 2, then G has a Hamiltonian path connecting any two vertices of G.

We can consider a Hamiltonian path as a spanning tree with maximum degree 2.
For an integer k ≥ 2, a tree T is called a k-tree if degT (x) ≤ k for any x ∈ V (T ).
As we mention above, a spanning 2-tree is a Hamiltonian path.

In 1975, Win gave a degree sum condition which ensures the existence of a
spanning k-tree.

Theorem 2 (Win [8]). Let k ≥ 2 be an integer and G be a connected graph. If

σk(G) ≥ |V (G)| − 1, then G has a spanning k-tree.

Note that Theorem 2 implies Theorem 1 (1) for k = 2.

In this paper, we consider a spanning k-tree with extra degree constraints
imposed on a set of vertices. Matsuda and Matsumura considered the case that
every specified vertex has degree one. They proved the following theorem.

Theorem 3 (Matsuda and Matsumura [3]). Let k and s be integers with k ≥ 2
and 0 ≤ s ≤ k. Suppose a graph G is (s + 1)-connected and satisfies σk(G) ≥
|V (G)| + (k − 1)s − 1. Then for any s distinct vertices of G, G has a spanning

k-tree such that each of s specified vertices has degree one.

This is not only a generalization of Theorem 2, but also implies Theorem 1 (3)
for k = s = 2.

Hereafter, we consider a spanning k-tree in which every specified vertex has
degree less than k. Our main result is the following.

Theorem 4. Let k ≥ 3 and s ≥ 0 be integers, and G be a connected graph. If

σk(G) ≥ |V (G)|+ s− 1, then for any s distinct vertices of G, G has a spanning

k-tree such that each specified vertex has degree less than k.

We note that this is also a generalization of Theorem 2 for k ≥ 3. For k = 2,
we have to restrict ourselves to 0 ≤ s ≤ k = 2 because a spanning 2-tree has
just two vertices of degree one. Then we can easily derive the same conclusion
by Theorem 1.

Consider a complete bipartite graph G with parts X and Y such that |X| = s
and |Y | = (k − 2)s + 2 and let S = X. Then σk(G) = |V (G)| + s − 2. Suppose
G has a spanning k-tree T with degT (v) < k for every v ∈ S. Then |V (G)| − 1 =
|E(T )| ≤ (k− 1)s < |V (G)| − 1, a contradiction. Hence G has no such a tree and
the degree sum condition in Theorem 4 is sharp.
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An outdirected tree ~T is a rooted tree in which all the edges are directed away from
the root. Let V (~T ) and A(~T ) be the vertex set and the arc set of ~T , respectively.
For a subset S of V (~T ), we denote by N+

T (S) the set of vertices w of V (~T ) for

which there is an arc uw ∈ A(~T ) for some u ∈ S. For a tree T and u, v ∈ V (T ),
let PT (u, v) be the unique path in T connecting u and v.

2. Proof of Theorem 4

If s = 0, we have nothing to prove since G has a spanning k-tree by Theorem 2.
So we may assume that s ≥ 1. Let S be the set of s specified vertices.

By Theorem 2, G has a spanning k-tree. Choose a spanning k-tree T of G
such that |Vk(T )∩S| is as small as possible. If Vk(T )∩S = ∅, then T is a desired
tree. Hence we may assume that Vk(T )∩ S is not empty and let v be a vertex of
S which have degree k in T .

Let T1, . . . , Tk be the connected components of T − {v}. For each 1 ≤ i ≤ k,
let ti be the vertex of Ti which is adjacent to v in T and let ui be a vertex of Ti

with degT (ui) = 1.
If ui and uj are adjacent in G for some 1 ≤ i < j ≤ k, then T ′ = T+uiuj−vti

is a spanning k-tree of G with |Vk(T
′)∩S| < |Vk(T )∩S|, a contradiction. Hence

{u1, . . . , uk} is an independent set of G.
Let W1 =

⋃k
i=2NG(ui) ∩ V (T1).

Claim 1. t1 is not contained in W1.

Proof. If t1 is contained in W1, then t1 is adjacent to ui for some 2 ≤ i ≤ k. If
we take T ′=T − vt1 + t1ui, then |Vk(T

′) ∩ S| < |Vk(T ) ∩ S|, a contradiction. �

Claim 2. For each w ∈ W1, the following statements hold.

(1) Either degT (w) = k, or w ∈ S and degT (w) = k − 1.

(2) NG[u1] ∩ (NT (w) \ V (PT (w, u1))) = ∅.

Proof. (1) Suppose degT (w) < k for some w ∈ W1. Since w is adjacent to
ui for some 2 ≤ i ≤ k, T ′ = T − t1v + uiw is also a spanning k-tree with
degT ′(v) = k − 1. If w /∈ S, then |V (T ′) ∩ S| < |V (T ) ∩ S|, a contradiction. If
w ∈ S and degT (w) ≤ k−2, then also |V (T ′)∩S| < |V (T )∩S|. This contradicts
the choice of T .

(2) Suppose there exists z ∈ NT (w) \ V (PT (w, u1)) which is adjacent to
u1 in G for some w ∈ W1. Since w is adjacent to ui in G for some 2 ≤ i ≤ k,
T ′ = T −wz−vt1+u1z+wui is a spanning k-tree with |Vk(T

′)∩S| < |Vk(T )∩S|.
This contradicts the choice of T . �

Let W1,a = {w ∈ W1 : w /∈ S} and W1,b = {w ∈ W1 : w ∈ S}.
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Claim 3. |NT (W1) \NG[u1]| ≥ (k − 1)|W1,a|+ (k − 2)|W1,b|.

Proof. Wemay assume thatW1 is not empty since otherwise the above inequality
obviously holds. Furthermore, since t1 does not belong to W1 by Claim 1, v is
not contained in NT (W1).

We consider T1 as an outdirected tree with the root u1. For any w0 ∈ W1

and z ∈ N+
T1
(w0), z /∈ NG[u1] holds by Claim 2 (2). This implies that N+

T1
(w0) ⊆

NT (W1) \NG[u1] for every w0 ∈ W1. Moreover, for any two distinct vertices w1

and w2 of W1, N
+
T1
(w1) and N+

T1
(w2) are disjoint. Consequently,

|NT (W1) \NG[u1]| ≥
∣

∣

∣
N+

T1
(W1)

∣

∣

∣
=

∑

w∈W1

∣

∣

∣
N+

T1
(w)

∣

∣

∣

= (k − 1)|W1,a|+ (k − 2)|W1,b|.

�

Claim 4.
∑k

i=1 |V (T1) ∩NG(ui)| ≤ |V (T1)| − 1 + |W1,b|.

Proof. By Claim 3, we obtain

|V (T1) ∩NG(u1)| ≤ |V (T1)| − 1− |NT (W1) \NG[u1]|

≤ |V (T1)| − 1− (k − 1)|W1,a| − (k − 2)|W1,b|.

By the definition of W1, we have
∑k

i=2 |V (T1) ∩NG(ui)| ≤ (k − 1)|W1|. Then

∑k

i=1
|V (T1) ∩NG(ui)| ≤ |V (T1)| − 1 + |W1,b|.

�

Similarly, for each Tj we can define Wj ,Wj,a,Wj,b for 2 ≤ j ≤ k. As Claim 4 we
have

∑k

i=1
|V (Tj) ∩NG(ui)| ≤ |V (Tj)| − 1 + |Wj,b|.

Since degG(ui) ≤ |{v}|+
∑k

j=1 |V (Tj) ∩NG(ui)| and
∑k

j=1 |Wj,b| ≤ s− 1,

∑k

i=1
dG(ui) ≤ k +

∑k

i=1

∑k

j=1
|V (Tj) ∩NG(ui)|

≤ k +
∑k

j=1
(|V (Tj)| − 1 + |Wj,b|)

≤ k + |V (G)| − 1− k + s− 1

= |V (G)|+ s− 2,

a contradiction. This completes the proof of Theorem 4.
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3. Remarks

For a graph G, let f be a mapping from V (G) to positive integers and let f−1(a) =
{x ∈ V (G) : f(x) = a} for a positive integer a. We call a tree T to be a f -tree
if degT (v) ≤ f(v) for every vertex v of T . The following sufficient conditions are
already known for a graph to have a spanning f -tree.

Theorem 5 (Ellingham et al. [1]). Let G be a connected graph and let f be a

mapping from V (G) to positive integers. If w(G− S) ≤
∑

x∈S(f(x)− 2) + 2, for
all S ⊂ V (G), then G has a spanning f -tree, where w(G−S) denotes the number

of components of G− S.

Theorem 6 (Enomoto and Ozeki [2]). Let G be an n-connected graph and f be

a mapping from V (G) to positive integers. Suppose |f−1(1)| + |f−1(2)| ≤ n + 1
and

α(G) ≤ min
R

{

∑

x∈R
(f(x)− 1) : R ⊂ V (G), |R| = n

}

+ 1.

Then G has a spanning f -tree.

The above theorems are generalizations of the following classical results on span-
ning k-trees.

Theorem 7 (Win [9]). Let k ≥ 3 be an integer and G be a connected graph. If

w(G− S) ≤ (k − 2)|S|+ 2, for all S ⊂ V (G), then G has a spanning k-tree.

Theorem 8 (Neumann-Lara and Rivera-Campo [5]). Let k ≥ 2 and n ≥ 2 be

integers and G be an n-connected graph. If α(G) ≤ (k − 1)n + 1, then G has a

spanning k-tree.

It is natural to consider a degree sum condition for a spanning f -tree. We pose
the following conjecture.

Conjecture 9. Let G be an n-connected graph, f be a mapping from V (G) to

positive integers and let k = max{f(x) : x ∈ V (G)}. Suppose |f−1(1)| ≤ n and

σk(G) ≥ |V (G)|+
∑

x∈V (G)
(k − f(x)) + 1.

Then G has a spanning f -tree.

We note that Theorems 3 and 4 partially confirm this conjecture.
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