Discussiones Mathematicae Graph Theory 35 (2015) 191–196 doi:10.7151/dmgt.1778

Note

ON A SPANNING k-TREE IN WHICH SPECIFIED VERTICES HAVE DEGREE LESS THAN k

HAJIME MATSUMURA

College of Education Ibaraki University Ibaraki 310-8512, Japan

e-mail: hajime-m@mx.ibaraki.ac.jp

Abstract

A *k*-tree is a tree with maximum degree at most k. In this paper, we give a degree sum condition for a graph to have a spanning *k*-tree in which specified vertices have degree less than k. We denote by $\sigma_k(G)$ the minimum value of the degree sum of k independent vertices in a graph G. Let $k \geq 3$ and $s \geq 0$ be integers, and suppose G is a connected graph and $\sigma_k(G) \geq |V(G)| + s - 1$. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree less than k. The degree condition is sharp.

Keywords: spanning tree, degree bounded tree, degree sum condition.

2010 Mathematics Subject Classification: 05C05, 05C35.

1. INTRODUCTION

All graphs considered in this paper are simple and finite. Let G be a graph with the vertex set V(G) and the edge set E(G). For a vertex x of G, we denote by $\deg_G(x)$ the degree of x in G and by $N_G(x)$ the set of vertices adjacent to x in G. We denote $N_G[x] = N_G(x) \cup \{x\}$, and $V_i(G)$ denotes the set of vertices of G which have degree i in G. For a subset S of V(G), $N_G(S) = \bigcup_{x \in S} N_G(x)$. $\alpha(G)$ denotes the independence number of G and we define

$$\sigma_k(G) = \min\left\{\sum_{v \in S} \deg_G(x_i) : S \text{ is an independent set of } G \text{ with } |S| = k\right\}$$

for $1 \le k \le \alpha(G)$, and $\sigma_k(G) = \infty$ if $\alpha(G) < k$.

The following is a well-known theorem on Hamiltonian cycles and paths by Ore.

Theorem 1 (Ore [6, 7]). Let s be an integer with $0 \le s \le 2$. Suppose G is a graph with $|V(G)| \ge 3$ and $\sigma_2(G) \ge |V(G)| + s - 1$. Then the following hold: (1) if s = 0, then G has a Hamiltonian path,

(2) if s = 1, then G has a Hamiltonian cycle, and

(3) if s = 2, then G has a Hamiltonian path connecting any two vertices of G.

We can consider a Hamiltonian path as a spanning tree with maximum degree 2. For an integer $k \ge 2$, a tree T is called a k-tree if $\deg_T(x) \le k$ for any $x \in V(T)$. As we mention above, a spanning 2-tree is a Hamiltonian path.

In 1975, Win gave a degree sum condition which ensures the existence of a spanning k-tree.

Theorem 2 (Win [8]). Let $k \ge 2$ be an integer and G be a connected graph. If $\sigma_k(G) \ge |V(G)| - 1$, then G has a spanning k-tree.

Note that Theorem 2 implies Theorem 1 (1) for k = 2.

In this paper, we consider a spanning k-tree with extra degree constraints imposed on a set of vertices. Matsuda and Matsumura considered the case that every specified vertex has degree one. They proved the following theorem.

Theorem 3 (Matsuda and Matsumura [3]). Let k and s be integers with $k \ge 2$ and $0 \le s \le k$. Suppose a graph G is (s + 1)-connected and satisfies $\sigma_k(G) \ge |V(G)| + (k-1)s - 1$. Then for any s distinct vertices of G, G has a spanning k-tree such that each of s specified vertices has degree one.

This is not only a generalization of Theorem 2, but also implies Theorem 1 (3) for k = s = 2.

Hereafter, we consider a spanning k-tree in which every specified vertex has degree less than k. Our main result is the following.

Theorem 4. Let $k \geq 3$ and $s \geq 0$ be integers, and G be a connected graph. If $\sigma_k(G) \geq |V(G)| + s - 1$, then for any s distinct vertices of G, G has a spanning k-tree such that each specified vertex has degree less than k.

We note that this is also a generalization of Theorem 2 for $k \ge 3$. For k = 2, we have to restrict ourselves to $0 \le s \le k = 2$ because a spanning 2-tree has just two vertices of degree one. Then we can easily derive the same conclusion by Theorem 1.

Consider a complete bipartite graph G with parts X and Y such that |X| = sand |Y| = (k-2)s + 2 and let S = X. Then $\sigma_k(G) = |V(G)| + s - 2$. Suppose G has a spanning k-tree T with $\deg_T(v) < k$ for every $v \in S$. Then |V(G)| - 1 = $|E(T)| \le (k-1)s < |V(G)| - 1$, a contradiction. Hence G has no such a tree and the degree sum condition in Theorem 4 is sharp. On a Spanning k-tree in which Specified Vertices Have Degree ...193

An outdirected tree \vec{T} is a rooted tree in which all the edges are directed away from the root. Let $V(\vec{T})$ and $A(\vec{T})$ be the vertex set and the arc set of \vec{T} , respectively. For a subset S of $V(\vec{T})$, we denote by $N_T^+(S)$ the set of vertices w of $V(\vec{T})$ for which there is an arc $uw \in A(\vec{T})$ for some $u \in S$. For a tree T and $u, v \in V(T)$, let $P_T(u, v)$ be the unique path in T connecting u and v.

2. Proof of Theorem 4

If s = 0, we have nothing to prove since G has a spanning k-tree by Theorem 2. So we may assume that $s \ge 1$. Let S be the set of s specified vertices.

By Theorem 2, G has a spanning k-tree. Choose a spanning k-tree T of G such that $|V_k(T) \cap S|$ is as small as possible. If $V_k(T) \cap S = \emptyset$, then T is a desired tree. Hence we may assume that $V_k(T) \cap S$ is not empty and let v be a vertex of S which have degree k in T.

Let T_1, \ldots, T_k be the connected components of $T - \{v\}$. For each $1 \le i \le k$, let t_i be the vertex of T_i which is adjacent to v in T and let u_i be a vertex of T_i with $\deg_T(u_i) = 1$.

If u_i and u_j are adjacent in G for some $1 \le i < j \le k$, then $T' = T + u_i u_j - vt_i$ is a spanning k-tree of G with $|V_k(T') \cap S| < |V_k(T) \cap S|$, a contradiction. Hence $\{u_1, \ldots, u_k\}$ is an independent set of G.

Let $W_1 = \bigcup_{i=2}^k N_G(u_i) \cap V(T_1).$

Claim 1. t_1 is not contained in W_1 .

Proof. If t_1 is contained in W_1 , then t_1 is adjacent to u_i for some $2 \le i \le k$. If we take $T' = T - vt_1 + t_1u_i$, then $|V_k(T') \cap S| < |V_k(T) \cap S|$, a contradiction. \Box

Claim 2. For each $w \in W_1$, the following statements hold. (1) Either $\deg_T(w) = k$, or $w \in S$ and $\deg_T(w) = k - 1$. (2) $N_G[u_1] \cap (N_T(w) \setminus V(P_T(w, u_1))) = \emptyset$.

Proof. (1) Suppose $\deg_T(w) < k$ for some $w \in W_1$. Since w is adjacent to u_i for some $2 \leq i \leq k$, $T' = T - t_1v + u_iw$ is also a spanning k-tree with $\deg_{T'}(v) = k - 1$. If $w \notin S$, then $|V(T') \cap S| < |V(T) \cap S|$, a contradiction. If $w \in S$ and $\deg_T(w) \leq k - 2$, then also $|V(T') \cap S| < |V(T) \cap S|$. This contradicts the choice of T.

(2) Suppose there exists $z \in N_T(w) \setminus V(P_T(w, u_1))$ which is adjacent to u_1 in G for some $w \in W_1$. Since w is adjacent to u_i in G for some $2 \leq i \leq k$, $T' = T - wz - vt_1 + u_1z + wu_i$ is a spanning k-tree with $|V_k(T') \cap S| < |V_k(T) \cap S|$. This contradicts the choice of T.

Let $W_{1,a} = \{ w \in W_1 : w \notin S \}$ and $W_{1,b} = \{ w \in W_1 : w \in S \}.$

Claim 3. $|N_T(W_1) \setminus N_G[u_1]| \ge (k-1)|W_{1,a}| + (k-2)|W_{1,b}|.$

Proof. We may assume that W_1 is not empty since otherwise the above inequality obviously holds. Furthermore, since t_1 does not belong to W_1 by Claim 1, v is not contained in $N_T(W_1)$.

We consider T_1 as an outdirected tree with the root u_1 . For any $w_0 \in W_1$ and $z \in N_{T_1}^+(w_0), z \notin N_G[u_1]$ holds by Claim 2 (2). This implies that $N_{T_1}^+(w_0) \subseteq$ $N_T(W_1) \setminus N_G[u_1]$ for every $w_0 \in W_1$. Moreover, for any two distinct vertices w_1 and w_2 of $W_1, N_{T_1}^+(w_1)$ and $N_{T_1}^+(w_2)$ are disjoint. Consequently,

$$|N_T(W_1) \setminus N_G[u_1]| \ge |N_{T_1}^+(W_1)| = \sum_{w \in W_1} |N_{T_1}^+(w)|$$

= $(k-1)|W_{1,a}| + (k-2)|W_{1,b}|.$

Claim 4. $\sum_{i=1}^{k} |V(T_1) \cap N_G(u_i)| \le |V(T_1)| - 1 + |W_{1,b}|.$

Proof. By Claim 3, we obtain

$$|V(T_1) \cap N_G(u_1)| \leq |V(T_1)| - 1 - |N_T(W_1) \setminus N_G[u_1]| \\\leq |V(T_1)| - 1 - (k-1)|W_{1,a}| - (k-2)|W_{1,b}|.$$

By the definition of W_1 , we have $\sum_{i=2}^k |V(T_1) \cap N_G(u_i)| \le (k-1)|W_1|$. Then

$$\sum_{i=1}^{k} |V(T_1) \cap N_G(u_i)| \le |V(T_1)| - 1 + |W_{1,b}|.$$

Similarly, for each T_j we can define $W_j, W_{j,a}, W_{j,b}$ for $2 \le j \le k$. As Claim 4 we have

$$\sum_{i=1}^{k} |V(T_j) \cap N_G(u_i)| \le |V(T_j)| - 1 + |W_{j,b}|.$$

Since $\deg_G(u_i) \le |\{v\}| + \sum_{j=1}^k |V(T_j) \cap N_G(u_i)|$ and $\sum_{j=1}^k |W_{j,b}| \le s - 1$,

$$\sum_{i=1}^{k} d_{G}(u_{i}) \leq k + \sum_{i=1}^{k} \sum_{j=1}^{k} |V(T_{j}) \cap N_{G}(u_{i})|$$

$$\leq k + \sum_{j=1}^{k} (|V(T_{j})| - 1 + |W_{j,b}|)$$

$$\leq k + |V(G)| - 1 - k + s - 1$$

$$= |V(G)| + s - 2,$$

a contradiction. This completes the proof of Theorem 4.

194

On a Spanning k-tree in which Specified Vertices Have Degree ...195

3. Remarks

For a graph G, let f be a mapping from V(G) to positive integers and let $f^{-1}(a) = \{x \in V(G) : f(x) = a\}$ for a positive integer a. We call a tree T to be a f-tree if deg_T(v) $\leq f(v)$ for every vertex v of T. The following sufficient conditions are already known for a graph to have a spanning f-tree.

Theorem 5 (Ellingham et al. [1]). Let G be a connected graph and let f be a mapping from V(G) to positive integers. If $w(G-S) \leq \sum_{x \in S} (f(x)-2)+2$, for all $S \subset V(G)$, then G has a spanning f-tree, where w(G-S) denotes the number of components of G-S.

Theorem 6 (Enomoto and Ozeki [2]). Let G be an n-connected graph and f be a mapping from V(G) to positive integers. Suppose $|f^{-1}(1)| + |f^{-1}(2)| \le n + 1$ and

$$\alpha(G) \le \min_{R} \left\{ \sum_{x \in R} (f(x) - 1) : R \subset V(G), |R| = n \right\} + 1.$$

Then G has a spanning f-tree.

The above theorems are generalizations of the following classical results on spanning k-trees.

Theorem 7 (Win [9]). Let $k \ge 3$ be an integer and G be a connected graph. If $w(G-S) \le (k-2)|S|+2$, for all $S \subset V(G)$, then G has a spanning k-tree.

Theorem 8 (Neumann-Lara and Rivera-Campo [5]). Let $k \ge 2$ and $n \ge 2$ be integers and G be an n-connected graph. If $\alpha(G) \le (k-1)n+1$, then G has a spanning k-tree.

It is natural to consider a degree sum condition for a spanning f-tree. We pose the following conjecture.

Conjecture 9. Let G be an n-connected graph, f be a mapping from V(G) to positive integers and let $k = \max\{f(x) : x \in V(G)\}$. Suppose $|f^{-1}(1)| \le n$ and

$$\sigma_k(G) \ge |V(G)| + \sum_{x \in V(G)} (k - f(x)) + 1.$$

Then G has a spanning f-tree.

We note that Theorems 3 and 4 partially confirm this conjecture.

Acknowledgement

The author would like to thank Professor Mikio Kano for his valuable comments. The author also would like to thank two anonymous referees for their helpful comments and suggestions.

H. Matsumura

References

- M.N. Ellingham, Y. Nam and H.-J. Voss, *Connected* (g, f)-factors, J. Graph Theory 39 (2002) 62–75. doi:10.1002/jgt.10019
- H. Enomoto and K. Ozeki, The independence number condition for the existence of a spanning f-tree, J. Graph Theory 65 (2010) 173–184. doi:10.1002/jgt.20471
- H. Matsuda and H.Matsumura, On a k-tree containing specified leaves in a graph, Graphs Combin. 22 (2006) 371–381. doi:10.1007/s00373-006-0660-5
- H. Matsuda and H. Matsumura, Degree conditions and degree bounded trees, Discrete Math. 309 (2009) 3653–3658. doi:10.1016/j.disc.2007.12.099
- [5] V. Neumann-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, Combinatorica 11 (1991) 55-61. doi:10.1007/BF01375473
- [6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- [7] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21–27. doi:10.2307/2308928
- [8] S. Win, Existenz von ger
 üsten mit vorgeschriebenem maximalgrad in graphen, Abh. Math. Seminar Univ. Hamburg 43 (1975) 263-267. doi:10.1007/BF02995957
- S. Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs Combin. 5 (1989) 201–205. doi:10.1007/BF01788671

Received 16 October 2013 Revised 31 January 2014 Accepted 31 January 2014