Note

ON A SPANNING k-TREE IN WHICH SPECIFIED VERTICES HAVE DEGREE LESS THAN k

Hajime Matsumura
College of Education
Ibaraki University
Ibaraki 310-8512, Japan
e-mail: hajime-m@mx.ibaraki.ac.jp

Abstract

A k-tree is a tree with maximum degree at most k. In this paper, we give a degree sum condition for a graph to have a spanning k-tree in which specified vertices have degree less than k. We denote by $\sigma_{k}(G)$ the minimum value of the degree sum of k independent vertices in a graph G. Let $k \geq 3$ and $s \geq 0$ be integers, and suppose G is a connected graph and $\sigma_{k}(G) \geq|V(G)|+s-1$. Then for any s specified vertices, G contains a spanning k-tree in which every specified vertex has degree less than k. The degree condition is sharp.

Keywords: spanning tree, degree bounded tree, degree sum condition.
2010 Mathematics Subject Classification: 05C05, 05C35.

1. Introduction

All graphs considered in this paper are simple and finite. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. For a vertex x of G, we denote by $\operatorname{deg}_{G}(x)$ the degree of x in G and by $N_{G}(x)$ the set of vertices adjacent to x in G. We denote $N_{G}[x]=N_{G}(x) \cup\{x\}$, and $V_{i}(G)$ denotes the set of vertices of G which have degree i in G. For a subset S of $V(G), N_{G}(S)=\bigcup_{x \in S} N_{G}(x) . \alpha(G)$ denotes the independence number of G and we define

$$
\sigma_{k}(G)=\min \left\{\sum_{v \in S} \operatorname{deg}_{G}\left(x_{i}\right): S \text { is an independent set of } G \text { with }|S|=k\right\}
$$

for $1 \leq k \leq \alpha(G)$, and $\sigma_{k}(G)=\infty$ if $\alpha(G)<k$.
The following is a well-known theorem on Hamiltonian cycles and paths by Ore.

Theorem 1 (Ore [6, 7]). Let s be an integer with $0 \leq s \leq 2$. Suppose G is a graph with $|V(G)| \geq 3$ and $\sigma_{2}(G) \geq|V(G)|+s-1$. Then the following hold:
(1) if $s=0$, then G has a Hamiltonian path,
(2) if $s=1$, then G has a Hamiltonian cycle, and
(3) if $s=2$, then G has a Hamiltonian path connecting any two vertices of G.

We can consider a Hamiltonian path as a spanning tree with maximum degree 2 . For an integer $k \geq 2$, a tree T is called a k-tree if $\operatorname{deg}_{T}(x) \leq k$ for any $x \in V(T)$. As we mention above, a spanning 2-tree is a Hamiltonian path.

In 1975, Win gave a degree sum condition which ensures the existence of a spanning k-tree.

Theorem 2 (Win [8]). Let $k \geq 2$ be an integer and G be a connected graph. If $\sigma_{k}(G) \geq|V(G)|-1$, then G has a spanning k-tree.

Note that Theorem 2 implies Theorem 1 (1) for $k=2$.
In this paper, we consider a spanning k-tree with extra degree constraints imposed on a set of vertices. Matsuda and Matsumura considered the case that every specified vertex has degree one. They proved the following theorem.

Theorem 3 (Matsuda and Matsumura [3]). Let k and s be integers with $k \geq 2$ and $0 \leq s \leq k$. Suppose a graph G is $(s+1)$-connected and satisfies $\sigma_{k}(G) \geq$ $|V(G)|+(k-1) s-1$. Then for any s distinct vertices of G, G has a spanning k-tree such that each of s specified vertices has degree one.

This is not only a generalization of Theorem 2, but also implies Theorem 1 (3) for $k=s=2$.

Hereafter, we consider a spanning k-tree in which every specified vertex has degree less than k. Our main result is the following.

Theorem 4. Let $k \geq 3$ and $s \geq 0$ be integers, and G be a connected graph. If $\sigma_{k}(G) \geq|V(G)|+s-1$, then for any s distinct vertices of G, G has a spanning k-tree such that each specified vertex has degree less than k.

We note that this is also a generalization of Theorem 2 for $k \geq 3$. For $k=2$, we have to restrict ourselves to $0 \leq s \leq k=2$ because a spanning 2-tree has just two vertices of degree one. Then we can easily derive the same conclusion by Theorem 1.

Consider a complete bipartite graph G with parts X and Y such that $|X|=s$ and $|Y|=(k-2) s+2$ and let $S=X$. Then $\sigma_{k}(G)=|V(G)|+s-2$. Suppose G has a spanning k-tree T with $\operatorname{deg}_{T}(v)<k$ for every $v \in S$. Then $|V(G)|-1=$ $|E(T)| \leq(k-1) s<|V(G)|-1$, a contradiction. Hence G has no such a tree and the degree sum condition in Theorem 4 is sharp.

An outdirected tree \vec{T} is a rooted tree in which all the edges are directed away from the root. Let $V(\vec{T})$ and $A(\vec{T})$ be the vertex set and the arc set of \vec{T}, respectively. For a subset S of $V(\vec{T})$, we denote by $N_{T}^{+}(S)$ the set of vertices w of $V(\vec{T})$ for which there is an arc $u w \in A(\vec{T})$ for some $u \in S$. For a tree T and $u, v \in V(T)$, let $P_{T}(u, v)$ be the unique path in T connecting u and v.

2. Proof of Theorem 4

If $s=0$, we have nothing to prove since G has a spanning k-tree by Theorem 2 . So we may assume that $s \geq 1$. Let S be the set of s specified vertices.

By Theorem 2, G has a spanning k-tree. Choose a spanning k-tree T of G such that $\left|V_{k}(T) \cap S\right|$ is as small as possible. If $V_{k}(T) \cap S=\emptyset$, then T is a desired tree. Hence we may assume that $V_{k}(T) \cap S$ is not empty and let v be a vertex of S which have degree k in T.

Let T_{1}, \ldots, T_{k} be the connected components of $T-\{v\}$. For each $1 \leq i \leq k$, let t_{i} be the vertex of T_{i} which is adjacent to v in T and let u_{i} be a vertex of T_{i} with $\operatorname{deg}_{T}\left(u_{i}\right)=1$.

If u_{i} and u_{j} are adjacent in G for some $1 \leq i<j \leq k$, then $T^{\prime}=T+u_{i} u_{j}-v t_{i}$ is a spanning k-tree of G with $\left|V_{k}\left(T^{\prime}\right) \cap S\right|<\left|V_{k}(T) \cap S\right|$, a contradiction. Hence $\left\{u_{1}, \ldots, u_{k}\right\}$ is an independent set of G.

Let $W_{1}=\bigcup_{i=2}^{k} N_{G}\left(u_{i}\right) \cap V\left(T_{1}\right)$.
Claim 1. t_{1} is not contained in W_{1}.
Proof. If t_{1} is contained in W_{1}, then t_{1} is adjacent to u_{i} for some $2 \leq i \leq k$. If we take $T^{\prime}=T-v t_{1}+t_{1} u_{i}$, then $\left|V_{k}\left(T^{\prime}\right) \cap S\right|<\left|V_{k}(T) \cap S\right|$, a contradiction.

Claim 2. For each $w \in W_{1}$, the following statements hold.
(1) Either $\operatorname{deg}_{T}(w)=k$, or $w \in S$ and $\operatorname{deg}_{T}(w)=k-1$.
(2) $N_{G}\left[u_{1}\right] \cap\left(N_{T}(w) \backslash V\left(P_{T}\left(w, u_{1}\right)\right)\right)=\emptyset$.

Proof. (1) Suppose $\operatorname{deg}_{T}(w)<k$ for some $w \in W_{1}$. Since w is adjacent to u_{i} for some $2 \leq i \leq k, T^{\prime}=T-t_{1} v+u_{i} w$ is also a spanning k-tree with $\operatorname{deg}_{T^{\prime}}(v)=k-1$. If $w \notin S$, then $\left|V\left(T^{\prime}\right) \cap S\right|<|V(T) \cap S|$, a contradiction. If $w \in S$ and $\operatorname{deg}_{T}(w) \leq k-2$, then also $\left|V\left(T^{\prime}\right) \cap S\right|<|V(T) \cap S|$. This contradicts the choice of T.
(2) Suppose there exists $z \in N_{T}(w) \backslash V\left(P_{T}\left(w, u_{1}\right)\right)$ which is adjacent to u_{1} in G for some $w \in W_{1}$. Since w is adjacent to u_{i} in G for some $2 \leq i \leq k$, $T^{\prime}=T-w z-v t_{1}+u_{1} z+w u_{i}$ is a spanning k-tree with $\left|V_{k}\left(T^{\prime}\right) \cap S\right|<\left|V_{k}(T) \cap S\right|$. This contradicts the choice of T.

Let $W_{1, a}=\left\{w \in W_{1}: w \notin S\right\} \quad$ and $\quad W_{1, b}=\left\{w \in W_{1}: w \in S\right\}$.

Claim 3. $\left|N_{T}\left(W_{1}\right) \backslash N_{G}\left[u_{1}\right]\right| \geq(k-1)\left|W_{1, a}\right|+(k-2)\left|W_{1, b}\right|$.
Proof. We may assume that W_{1} is not empty since otherwise the above inequality obviously holds. Furthermore, since t_{1} does not belong to W_{1} by Claim $1, v$ is not contained in $N_{T}\left(W_{1}\right)$.

We consider T_{1} as an outdirected tree with the root u_{1}. For any $w_{0} \in W_{1}$ and $z \in N_{T_{1}}^{+}\left(w_{0}\right), z \notin N_{G}\left[u_{1}\right]$ holds by Claim 2 (2). This implies that $N_{T_{1}}^{+}\left(w_{0}\right) \subseteq$ $N_{T}\left(W_{1}\right) \backslash N_{G}\left[u_{1}\right]$ for every $w_{0} \in W_{1}$. Moreover, for any two distinct vertices w_{1} and w_{2} of $W_{1}, N_{T_{1}}^{+}\left(w_{1}\right)$ and $N_{T_{1}}^{+}\left(w_{2}\right)$ are disjoint. Consequently,

$$
\begin{aligned}
\left|N_{T}\left(W_{1}\right) \backslash N_{G}\left[u_{1}\right]\right| & \geq\left|N_{T_{1}}^{+}\left(W_{1}\right)\right|=\sum_{w \in W_{1}}\left|N_{T_{1}}^{+}(w)\right| \\
& =(k-1)\left|W_{1, a}\right|+(k-2)\left|W_{1, b}\right| .
\end{aligned}
$$

Claim 4. $\sum_{i=1}^{k}\left|V\left(T_{1}\right) \cap N_{G}\left(u_{i}\right)\right| \leq\left|V\left(T_{1}\right)\right|-1+\left|W_{1, b}\right|$.
Proof. By Claim 3, we obtain

$$
\begin{aligned}
\left|V\left(T_{1}\right) \cap N_{G}\left(u_{1}\right)\right| & \leq\left|V\left(T_{1}\right)\right|-1-\left|N_{T}\left(W_{1}\right) \backslash N_{G}\left[u_{1}\right]\right| \\
& \leq\left|V\left(T_{1}\right)\right|-1-(k-1)\left|W_{1, a}\right|-(k-2)\left|W_{1, b}\right| .
\end{aligned}
$$

By the definition of W_{1}, we have $\sum_{i=2}^{k}\left|V\left(T_{1}\right) \cap N_{G}\left(u_{i}\right)\right| \leq(k-1)\left|W_{1}\right|$. Then

$$
\sum_{i=1}^{k}\left|V\left(T_{1}\right) \cap N_{G}\left(u_{i}\right)\right| \leq\left|V\left(T_{1}\right)\right|-1+\left|W_{1, b}\right| .
$$

Similarly, for each T_{j} we can define $W_{j}, W_{j, a}, W_{j, b}$ for $2 \leq j \leq k$. As Claim 4 we have

$$
\sum_{i=1}^{k}\left|V\left(T_{j}\right) \cap N_{G}\left(u_{i}\right)\right| \leq\left|V\left(T_{j}\right)\right|-1+\left|W_{j, b}\right| .
$$

Since $\operatorname{deg}_{G}\left(u_{i}\right) \leq|\{v\}|+\sum_{j=1}^{k}\left|V\left(T_{j}\right) \cap N_{G}\left(u_{i}\right)\right|$ and $\sum_{j=1}^{k}\left|W_{j, b}\right| \leq s-1$,

$$
\begin{aligned}
\sum_{i=1}^{k} d_{G}\left(u_{i}\right) & \leq k+\sum_{i=1}^{k} \sum_{j=1}^{k}\left|V\left(T_{j}\right) \cap N_{G}\left(u_{i}\right)\right| \\
& \leq k+\sum_{j=1}^{k}\left(\left|V\left(T_{j}\right)\right|-1+\left|W_{j, b}\right|\right) \\
& \leq k+|V(G)|-1-k+s-1 \\
& =|V(G)|+s-2
\end{aligned}
$$

a contradiction. This completes the proof of Theorem 4.

3. Remarks

For a graph G, let f be a mapping from $V(G)$ to positive integers and let $f^{-1}(a)=$ $\{x \in V(G): f(x)=a\}$ for a positive integer a. We call a tree T to be a f-tree if $\operatorname{deg}_{T}(v) \leq f(v)$ for every vertex v of T. The following sufficient conditions are already known for a graph to have a spanning f-tree.

Theorem 5 (Ellingham et al. [1]). Let G be a connected graph and let f be a mapping from $V(G)$ to positive integers. If $w(G-S) \leq \sum_{x \in S}(f(x)-2)+2$, for all $S \subset V(G)$, then G has a spanning f-tree, where $w(G-S)$ denotes the number of components of $G-S$.

Theorem 6 (Enomoto and Ozeki [2]). Let G be an n-connected graph and f be a mapping from $V(G)$ to positive integers. Suppose $\left|f^{-1}(1)\right|+\left|f^{-1}(2)\right| \leq n+1$ and

$$
\alpha(G) \leq \min _{R}\left\{\sum_{x \in R}(f(x)-1): R \subset V(G),|R|=n\right\}+1 .
$$

Then G has a spanning f-tree.
The above theorems are generalizations of the following classical results on spanning k-trees.

Theorem 7 (Win [9]). Let $k \geq 3$ be an integer and G be a connected graph. If $w(G-S) \leq(k-2)|S|+2$, for all $S \subset V(G)$, then G has a spanning k-tree.

Theorem 8 (Neumann-Lara and Rivera-Campo [5]). Let $k \geq 2$ and $n \geq 2$ be integers and G be an n-connected graph. If $\alpha(G) \leq(k-1) n+1$, then G has a spanning k-tree.

It is natural to consider a degree sum condition for a spanning f-tree. We pose the following conjecture.

Conjecture 9. Let G be an n-connected graph, f be a mapping from $V(G)$ to positive integers and let $k=\max \{f(x): x \in V(G)\}$. Suppose $\left|f^{-1}(1)\right| \leq n$ and

$$
\sigma_{k}(G) \geq|V(G)|+\sum_{x \in V(G)}(k-f(x))+1 .
$$

Then G has a spanning f-tree.
We note that Theorems 3 and 4 partially confirm this conjecture.

Acknowledgement

The author would like to thank Professor Mikio Kano for his valuable comments. The author also would like to thank two anonymous referees for their helpful comments and suggestions.

References

[1] M.N. Ellingham, Y. Nam and H.-J. Voss, Connected (g, f)-factors, J. Graph Theory 39 (2002) 62-75. doi:10.1002/jgt. 10019
[2] H. Enomoto and K. Ozeki, The independence number condition for the existence of a spanning f-tree, J. Graph Theory 65 (2010) 173-184. doi:10.1002/jgt. 20471
[3] H. Matsuda and H.Matsumura, On a k-tree containing specified leaves in a graph, Graphs Combin. 22 (2006) 371-381. doi:10.1007/s00373-006-0660-5
[4] H. Matsuda and H. Matsumura, Degree conditions and degree bounded trees, Discrete Math. 309 (2009) 3653-3658. doi:10.1016/j.disc.2007.12.099
[5] V. Neumann-Lara and E. Rivera-Campo, Spanning trees with bounded degrees, Combinatorica 11 (1991) 55-61. doi:10.1007/BF01375473
[6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[7] O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963) 21-27. doi:10.2307/2308928
[8] S. Win, Existenz von gerüsten mit vorgeschriebenem maximalgrad in graphen, Abh. Math. Seminar Univ. Hamburg 43 (1975) 263-267. doi:10.1007/BF02995957
[9] S. Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs Combin. 5 (1989) 201-205. doi:10.1007/BF01788671

