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Abstract

The Harary index is defined as the sum of reciprocals of distances be-
tween all pairs of vertices of a connected graph. In this paper, the exact
formulae for the Harary indices of tensor product G × Km0,m1,...,mr−1

and
the strong product G⊠Km0,m1,...,mr−1

, whereKm0,m1,...,mr−1
is the complete

multipartite graph with partite sets of sizes m0,m1, . . . ,mr−1 are obtained.
Also upper bounds for the Harary indices of tensor and strong products of
graphs are estabilished. Finally, the exact formula for the Harary index of
the wreath product G ◦G′ is obtained.
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1. Introduction

All graphs considered in this paper are simple and connected. For vertices u, v ∈
V (G), the distance between u and v in G, denoted by dG(u, v), is the length of a
shortest (u, v)-path in G. For two simple graphs G and H their tensor product,

denoted by G×H, has vertex set V (G)×V (H) in which (g1, h1) and (g2, h2) are
adjacent whenever g1g2 is an edge in G and h1h2 is an edge in H. Note that if G
and H are connected graphs, then G×H is connected only if at least one of the
graphs is nonbipartite. The strong product of graphs G and H, denoted by G⊠H,
is the graph with vertex set V (G)× V (H) = {(u, v) : u ∈ V (G), v ∈ V (H)} and
(u, x)(v, y) is an edge whenever (i) u = v and xy ∈ E(H), or (ii) uv ∈ E(G)
and x = y, or (iii) uv ∈ E(G) and xy ∈ E(H). Similarly, the wreath product of
the graphs G and H, denoted by G ◦ H, has vertex set V (G) × V (H) in which
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(g1, h1)(g2, h2) is an edge whenever g1g2 is an edge in G, or g1 = g2 and h1h2
is an edge in H. The tensor product of graphs has been extensively studied in
relation to the areas such as graph colorings, graph recognition, decompositions
of graphs, design theory, see [1, 2, 4, 11, 17].

A topological index of a graph is a real number related to the graph; it does not
depend on labeling or pictorial representation of a graph. In theoretical chemistry,
molecular structure descriptors (also called topological indices) are used for mod-
eling physicochemical, pharmacologic, toxicologic, biological and other properties
of chemical compounds [9]. There exist several types of such indices, especially
those based on vertex and edge distances. One of the most intensively studied
topological indices is the Harary index; for other related topological indices see
[26].

Let G be a connected graph. Then Harary index of G is defined as H(G) =
1
2

∑

u, v ∈V (G)
1

dG(u,v) with the summation going over all pairs of distinct vertices of

G. The Harary index of a graph G has been introduced by Plavsić et al. [22] and
independently by Ivanciuć et al. [13] in 1993. Its applications and mathematical
properties are well studied in [5, 8, 27, 15]. Zhou et al. [28] have obtained the
lower and upper bounds of the Harary index of a connected graph. Very recently,
Xu et al. [25] have obtained lower and upper bounds for the Harary index of a
connected graph in relation to χ(G), the chromatic number of G and ω(G), the
clique number of G, and characterized the extremal graphs that attain the lower
and upper bounds. Also, Feng et al. [8] have given a sharp upper bound for the
Harary index of a graph based on the matching number, that is, the size of a
maximum matching.

The Harary index and its related molecular descriptors have shown some
success in structure property correlations [6, 7, 10]. Its modification has also
been proposed [15] and its use in combination with other molecular descriptors
improves the correlations [24, 23]. There are many topological indices such as
Wiener index, hyper-Wiener index, vertex and edge PI indices, vertex and edge
Szeged indices; they have been studied for general graphs and also for the product
graphs such as tensor product [12, 19, 21], strong product [20], Cartesian product
[14]. In the same way we would like to investigate the Harary index of tensor
product, strong product and wreath product. We have obtained formulea for
the Harary indices of G×Km0,m1,...,mr−1

and G⊠Km0,m1,...,mr−1
. Also we have

obtained upper bounds for the Harary indices of the tensor and strong products
of graphs. Finally, the exact formula for Harary index of the wreath product of
graphs is obtained. Based on the results obtained, exact Harary indices of some
classes of graphs are obtained.

If m0 = m1 = · · · = mr−1 = s in Km0,m1,...,mr−1
(the complete multipartite

graph with partite sets of sizes m0, m1, . . . ,mr−1), then we denote it by Kr(s).
For S ⊆ V (G), 〈S〉 denotes the subgraph of G induced by S. A path and cycle



Harary Index of Product Graphs 19

on n vertices are denoted by Pn and Cn, respectively. We call C3 a triangle.
For two subsets S, T ⊂ V (G), not necessarily disjoint, by dG(S, T ) we mean the
sum of the distances in G from each vertex of S to every vertex of T, that is,
dG(S, T ) =

∑

s∈S, t∈T dG(s, t). For subsets S, T ⊂ V (G), E(S, T ) denotes the set
of edges of G having one end in S and the other end in T. For subsets S and T, not
necessarily disjoint, by dHG (S, T ) we mean the sum dHG (S, T ) =

∑

s∈S, t∈T
1

dG(s,t) .

Notation and definitions which are not given here can be found in [3] or [11].

2. Harary Index of Tensor Product of Graphs

Let G be a connected graph with V (G)={v0, v1, . . . , vn−1} and letKm0,m1,...,mr−1
,

r ≥ 3, be the complete multiparite graph with partite sets V0, V1, . . . , Vr−1 with
|Vi| = mi, 0 ≤ i ≤ r− 1. In the graph G×Km0,m1,...,mr−1

, let Bij = vi × Vj , vi ∈
V (G) and 0 ≤ j ≤ r − 1. For our convenience, we write

V (G)× V (Km0,m1,...,mr−1
)=

⋃n−1
i=0

{

vi ×
⋃r−1

j =0 Vj

}

=
⋃n−1

i=0 {{vi × V0} ∪ {vi × V1} ∪ · · · ∪ {vi × Vr−1}}

=
⋃n−1

i=0

{

Bi0 ∪Bi1 ∪ · · · ∪Bi(r−1)

}

, where Bij = vi × Vj

=
⋃

r−1
n−1
i=0
j =0

Bij .

Let B = {Bij}i=0,1,...,n−1
j=0,1,...,r−1

. We call Xi =
⋃r−1

j=0Bij a layer and Yj =
⋃n−1

i=0Bij a

column of G×Km0,m1,...,mr−1
, see Figures 1 and 2. Clearly, a layer (resp. column)

is an independent set in G×Km0,m1,...,mr−1
; in particular, Bij is an independent

set. Further, if vivk ∈ E(G), then the subgraph 〈Bij ∪Bkp〉 of G×Km0,m1,...,mr−1

is isomorphic to K|Vj ||Vp| or a totally disconnected graph according to j 6= p or
j = p. It is used in the proof of the next lemma.

The proof of the following lemma follows easily from the properties, structure
of G×Km0,m1,...,mr−1

and the paths as shown in Figures 1 and 2.

Lemma 1. Let G be a connected graph on n ≥ 2 vertices and let Bij , Bkp ∈ B

of the graph G×Km0,m1,...,mr−1
, where r ≥ 3.

(i) For any two distinct vertices in Bij , their distance is 2.

(ii) Distance between two distinct vertices one from Bij and another from Bip,

j 6= p, is 2.

(iii) Distance between two vertices one from Bij and another from Bkj , i 6= k,
is 2 or 3 according as vivk lies on a triangle in G or vivk ∈ E(G) and vivk
does not lie on a triangle in G.

(iv) If vivk ∈ E(G), then distance between two vertices one in Bij and the another

in Bkp, i 6= k, j 6= p, is 1.

(v) If vivk /∈ E(G), then distance between the vertices one in Bij and another in

Bkp is dG(vi, vk).
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Figure 1. If vivk is on a triangle vivℓvk of G, then a shortest path of length 2 from a

vertex of Bij to a vertex of Bkj is shown in broken edges. If vivk is an edge but not on

a triangle of G, then a shortest path of length 3 from a vertex of Bij to a vertex of Bkj

is shown in solid edges.
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Figure 2. If a (vi, vk)- shortest path is of even (resp. odd≥ 3) length in G, then a shortest

path from a vertex of Bij to a vertex of Bkj is shown in solid edges (resp. broken edges).
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The proof of the following lemma follows easily from Lemma 1 and hence it is
left to the reader. The lemma is used in the proof of the main theorem of this
section.

Lemma 2. Let G be a connected graph on n ≥ 2 vertices and let Bij , Bkp ∈ B

of the graph G′ = G×Km0,m1,...,mr−1
, where r ≥ 3.

(i) If vivk ∈ E(G), then

dHG′(Bij , Bkp) =















mjmp, if j 6= p,
m2

j

2 , if j = p and vivk is on a triangle of G,
m2

j

3 , if j = p and vivk is not on a triangle of G.

(ii) If vivk /∈ E(G), then dHG′(Bij , Bkp) =







mjmp

dG(vi,vk)
, if j 6= p,

m2

j

dG(vi,vk)
, if j = p.

(iii) dHG′(Bij , Bip) =

{

mj(mj−1)
2 , if j = p,

mjmp

2 , if j 6= p.

Theorem 3. Let G be a connected graph with n ≥ 2 vertices and m edges and

let λ be the number of edges of G which do not lie on any C3 of it. If n0 and q
are the numbers of vertices and edges of Km0,m1,...,mr−1

, r ≥ 3, respectively, then

H(G×Km0,m1,...,mr−1
) = n2

0H(G) + nn0(n0−1)
4 −

(

m+ λ
3

) (n2

0
−2q)
2 .

Proof. Let G′ = G×Km0,m1,...,mr−1
. Clearly,

H(G′) =
1

2

∑

Bij , Bkp ∈B
dHG′(Bij , Bkp)

=
1

2

(

∑n−1

i=0

∑r−1

j, p=0
j 6= p

dHG′(Bij , Bip) +
∑n−1

i, k=0
i 6= k

∑r−1

j=0
dHG′(Bij , Bkj)

+
∑n−1

i, k=0
i 6= k

∑r−1

j, p=0
j 6= p

dHG′(Bij , Bkp) +
∑n−1

i=0

∑r−1

j=0
dHG′(Bij , Bij)

)

=
1

2
{A1 +A2 +A3 +A4},

(1)

where A1 to A4 are the sums of the above terms, in order. We shall calculate A1

to A4 of (1) separately.

(A1). First we compute
∑n−1

i=0

(

∑r−1
j,p=0
j 6=p

dHG′(Bij , Bip)

)

. For this, we compute
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∑r−1
j, p=0
j 6= p

dHG′(Bij , Bip).

∑r−1

j, p=0
j 6= p

dHG′(Bij , Bip)=
∑r−1

p=0
p 6=0

dHG′(Bi0, Bip) +
∑r−1

p=0
p 6=1

dHG′(Bi1, Bip) + · · ·

+
∑r−1

p=0
p 6= r−1

dHG′(Bi(r−1), Bip), since |Bip| = mp

=
∑r−1

p=0
p 6=0

m0mp

2
+
∑r−1

p=0
p 6=1

m1mp

2
+ · · ·+

∑r−1

p=0
p 6= r−1

mr−1mp

2
,

=
∑r−1

a, p=0
a 6= p

mamp

2
.

(2)

Now summing (2) over i = 0, 1, . . . , n− 1, we get

∑n−1

i=0

∑r−1

j, p=0
j 6= p

dHG′(Bij , Bip) =
∑n−1

i=0

∑r−1

a, p=0
a 6= p

mamp

2

=
n

2

(

∑r−1

a, p=0
a 6= p

mamp

)

.

(3)

(A2). Next we compute
∑r−1

j=0

(

∑n−1
i, k=0
i 6= k

dHG′(Bij , Bkj)

)

. For this, initialy we

calculate
∑n−1

i, k=0
i 6= k

dHG′(Bij , Bkj).

Let E1 = {uv ∈ E(G) |uv is on a C3 in G} and E2 = E(G)− E1.

∑n−1

i,k=0
i 6=k

dHG′(Bij , Bkj)=
∑n−1

i,k=0,i 6=k
vivk /∈E(G)

dHG′(Bij , Bkj) +
∑n−1

i,k=0, i 6=k
vivk ∈E1

dHG′(Bij , Bkj)

+
∑n−1

i,k=0, i 6=k
vivk ∈E2

dHG′(Bij , Bkj)

=
∑n−1

i,k=0, i 6= k
vivk /∈E(G)

m2
j

dG(vi, vk)
+
∑n−1

i,k=0, i 6=k
vivk ∈E1

m2
j

2

+
∑n−1

i, k=0, i 6= k
vivk ∈E2

m2
j

3
, by Lemma 2,

=
∑n−1

i, k=0, i 6= k
vivk /∈E(G)

m2
j

dG(vi, vk)
+
∑n−1

i,k=0, i 6=k
vivk ∈E1

(

m2
j

2
+m2

j −m2
j

)

+
∑n−1

i,k=0, i 6= k
vivk ∈E2

(

m2
j

3
+m2

j −m2
j

)

∗

=

(

∑n−1

i,k=0, i 6=k
vivk /∈E(G)

m2
j

dG(vi, vk)
+
∑n−1

i,k=0, i 6=k
vivk ∈E1

m2
j

dG(vi, vk)



Harary Index of Product Graphs 23

+
∑n−1

i,k=0, i 6=k
vivk∈E2

m2
j

dG(vi, vk)

)

−
∑n−1

i,k=, i 6= k
vivk ∈E1

m2
j

2
−
∑n−1

i,k=0, i 6= k
vivk∈E2

2m2
j

3
,

since dG(vi, vk) = 1 if vivk ∈ E1,

=
∑n−1

i,k=0
i 6=k

m2
j

dG(vi, vk)
−

(

∑n−1

i,k=0, i 6=k
vivk∈E1

m2
j

2
+
∑n−1

i, k=0
i 6= k

vivk ∈E2

m2
j

2

)

−
∑n−1

i,k=0, i 6=k
vivk∈E2

m2
j

6
.

Thus

∑n−1

i,k=0
i 6=k

dHG′(Bij , Bkj) = 2H(G)m2
j −mm2

j −
λm2

j

3
,(4)

where m and λ are the number of edges of G and the number of edges of G which
do not lie on any C3, respectively. Note that each edge vivk of G is being counted
twice in the sum, namely, vivk and vkvi.

Now summing (4) over j = 0, 1, . . . , r − 1, we get

∑r−1

j=0

∑n−1

i,k=0
i 6= k

dHG′(Bij , Bkj) =2H(G)
(

∑r−1

j=0
m2

j

)

−

(

m+
λ

3

)

(

∑r−1

j=0
m2

j

)

.

(5)

(A3). Next we compute
∑n−1

i, k=0
i 6= k

(

∑r−1
j, p=0
j 6= p

dHG′(Bij , Bkp)

)

. For this, first we cal-

culate
∑r−1

j, p=0
j 6= p

dHG′(Bij , Bkp).

∑r−1

j, p=0,
j 6= p

dHG′(Bij , Bkp) =
∑r−1

p=0
p 6=0

dHG′(Bi0, Bkp) +
∑r−1

p=0
p 6=1

dHG′(Bi1, Bkp) + · · ·

+
∑r−1

p=0
p 6= r−1

dHG′(Bi(r−1), Bkp)

=
∑r−1

p=0
p 6=0

m0mp

dG(vi, vk)
+
∑r−1

p=0
p 6=1

m1mp

dG(vi, vk)
+ · · ·

+
∑r−1

p=0
p 6= r−1

mr−1mp

dG(vi, vk)
, by Lemma 2,

=
∑r−1

a, p=0
a 6= p

mamp

dG(vi, vk)
.

(6)
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Using (6) we have

∑n−1

i, k=0
i 6= k

∑r−1

j, p=0
j 6= p

dHG′(Bij , Bkp) =
∑n−1

i, k=0
i 6= k

∑r−1

a, p=0
a 6= p

mamp

dG(vi, vk)

=2H(G)

(

∑r−1

a,p=0
a 6= p

mamp

)

.

(7)

(A4). Finally, we compute
∑n−1

i=0

(

∑r−1
j=0 d

H
G′(Bij , Bij)

)

.

∑r−1

j=0
dHG′(Bij , Bij) =

∑r−1

j=0

mj(mj − 1)

2
, by Lemma 2.(8)

Now
∑n−1

i=0

∑r−1

j=0
dHG′(Bij , Bij)=

∑n−1

i=0

(

∑r−1

j=0

mj(mj − 1)

2

)

=
n

2

(

∑r−1

j=0
mj(mj − 1)

)

.

(9)

Using (1) and the sums A1, A2, A3 and A4 in (3),(5),(7) and (9), respectively, we
have

H(G′) =
1

2

{

n

2

(

∑r−1

a, p=0
a 6= p

mamp

)

+ 2H(G)
(

∑r−1

j=0
m2

j

)

−

(

m+
λ

3

)

(

∑r−1

j=0
m2

j

)

+ 2H(G)

(

∑r−1

a, p=0
a 6= p

mamp

)

+
n

2

(

∑r−1

j=0
mj(mj − 1)

)

}

= H(G)

(

∑r−1

j=0
m2

j +
∑r−1

a, p=0
a 6= p

mamp

)

+
n

4

(

∑r−1

a, p=0
a 6= p

mamp +
∑r−1

j=0
mj(mj − 1)

)

−
1

2

(

m+
λ

3

)

(

∑r−1

j=0
m2

j

)

=n2
0H(G) +

nn0(n0 − 1)

4
−

(

m+
λ

3

)

(n2
0 − 2q)

2
,

where n0 =
∑r−1

i=0 mi and q is the number of edges of Km0,m1,...,mr−1
.

Remark. In the above theorem if r = 2, then G × Km0,m1
would be a discon-

nected whenever G is a bipartite graph. As we deal with only connected graphs,
we consider r ≥ 3.

If mi = s, 0 ≤ i ≤ r − 1 in Theorem 3, then we have the following corollary.
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Corollary 4. Let G be a connected graph with n ≥ 2 vertices and m edges; let λ
be the number of edges of G which do not lie on any C3 of it. Then H(G×Kr(s)) =

r2s2H(G) + nrs(rs−1)
4 − rs2

2

(

m+ λ
3

)

, where r ≥ 3.

As Kr = Kr(1), from the above corollary we have the following corollary.

Corollary 5. Let G be a connected graph with n ≥ 2 vertices and m edges; let λ
be the number of edges of G which do not lie on any C3 of it. Then H(G×Kr) =

r2H(G)−
(

m+ λ
3

)

r
2 + nr(r−1)

4 , where r ≥ 3.

Corollary 6. Let G be a connected graph on n ≥ 2 vertices with m edges. If

each edge of G is on a C3, then H(G × Kr(s)) = r2s2H(G) − mrs2

2 + nsr(sr−1)
4 ,

where r ≥ 3.

For a triangle free graph G, λ = m and hence we have the following corollary.

Corollary 7. If G is a connected triangle free graph on n ≥ 2 vertices and m
edges, then H(G×Kr(s)) = r2s2H(G)− 2mrs2

3 + nsr(sr−1)
4 , where r ≥ 3.

If s = 1 in the above corollary, we obtain the following corollary.

Corollary 8. If G is a connected triangle free graph on n ≥ 2 vertices and m
edges, then H(G×Kr) = r2H(G)− 2mr

3 + nr(r−1)
4 , where r ≥ 3.

One can see that [25], H(Pn) = n
(

∑n
i=1

1
i

)

− n and

H(Cn) =







n
(

∑

n
2

i=1
1
i

)

− 1, if n is even,

n
(

∑

n−1

2

i=1
1
i

)

, if n is odd.

By using Corollary 5, H(Pn) and H(Cn), we obtain the exact Harary indices of
the following graphs.

Example 1.

(i) If n ≥ 2 and r ≥ 3, then H(Pn ×Kr) = nr2
(

∑n
i=1

1
i

)

− r
12(11n+ 9rn− 8).

(ii) H(Cn ×Kr) =















r2
{

n
(

∑

n
2

i=1
1
i

)

− 1
}

+ nr
12 (3r − 11), if n is even,

3r(5r−3)
4 , if n = 3

r2n
(

∑

n−1

2

i=1
1
i

)

+ nr
12 (3r − 11), if n > 3 is odd.
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3. An Upper Bound for Harary Index of Tensor Product of

Graphs

In this section, we establish an upper bound for the Harary index of the tensor
product of graphs.

Let (V1, V2, . . . , Vχ) be a proper χ(G)-colouring of G, where χ(G) is the chro-
matic number of G, such that no Vi can be augmented by adding any vertex of
Vj , j ≥ i+1, that is, no vertex of Vj is nonadjacent to all the vertices of Vi, i < j,
in G. Without loss of generality we assume that |V1| ≥ |V2| ≥ · · · ≥ |Vr| . We call
such a χ(G)-colouring a decreasing χ(G)-colouring of G.

Theorem 9. Let G be connected graph with n ≥ 2 vertices and m edges; let G′

be a graph with χ(G′)=r ≥ 3. If color classes of the decreasing χ(G′)-coloring of

G′ have m0, m1, . . . ,mr−1 vertices, then H(G × G′)≤H(G ×Km0,m1,...,mr−1
)=

n2
0H(G)+ nn0(n0−1)

4 −
(

m+ λ
3

) (n2

0
−2q)
2 , where

∑r−1
i=0 mi=n0 equals the number of

vertices of G′, q is the number of edges of Km0,m1,...,mr−1
and λ is the number of

edges of G which do not lie on a triangle.

Proof. As G′ is a subgraph of Km0,m1,...,mr−1
, H(G×G′)≤H(G×Km0,m1,...,mr−1

),
since dG×G′((x1, y1), (x2, y2)) ≥ dG×Km0,m1,...,mr−1

((x1, y1), (x2, y2)) for any pair

of vertices (x1, y1) and (x2, y2) ofG×G′. Thus, H(G×G′)≤H(G×Km0,m1,...,mr−1
)

= n2
0H(G) + nn0(n0−1)

4 −
(

m+ λ
3

) (n2

0
−2q)
2 , by Theorem 3.

4. Harary Index of Strong Product of Graphs

In this section, we obtain the Harary index of G⊠Km0,m1,...,mr−1
. Let G be a sim-

ple connected graph with V (G) = {v0, v1, . . . , vn−1} and let Km0,m1,...,mr−1
, r ≥

2, be the complete multiparite graph with partite sets V0, V1, . . . , Vr−1 and let
|Vi| = mi, 0 ≤ i ≤ r− 1. In the graph G⊠Km0,m1,...,mr−1

, let Bij = vi × Vj , vi ∈
V (G) and 0 ≤ j ≤ r − 1. For our convenience, as in the case of tensor product,
the vertex set of G ⊠ Km0,m1,...,mr−1

is written as V (G) × V (Km0,m1,...,mr−1
) =

⋃r−1, n−1
i=0, j=0 Bij . As in the tensor product of graphs, let B = {Bij}i=0,1,...,n−1

j=0,1,...,r−1
. Let

Xi =
⋃r−1

j=0 Bij and Yj =
⋃n−1

i=0 Bij ; we call Xi and Yj as layer and column of
G ⊠ Km0,m1,...,mr−1

, respectively, see Figures 3 and 4. If we denote V (Bij) =
{xi1, xi2, . . . , ximj

} and V (Bkp) = {xk1, xk2, . . . , xkmp
}, then xiℓ and xkℓ, 1 ≤ ℓ ≤

j, are called the corresponding vertices of Bij and Bkp. Further, if vivk ∈ E(G),
then the induced subgraph 〈Bij

⋃

Bkp〉 of G ⊠ Km0,m1,...,mr−1
is isomorphic to

K|Vj ||Vp| or mp independent edges joining the corresponding vertices of Bij and
Bkj according as j 6= p or j = p, respectively.

The proof of the following lemma follows easily from the properties and
structure of G⊠Km0,m1,...,mr−1

, see Figures 3 and 4.
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Figure 3. If vivk ∈ E(G), then shortest paths of length 1 and 2 from Bij to Bkj are shown

in solid edges, where the vertical line between Bij and Bkj denotes the edge joining the

corresponding vertices of Bij and Bkj . The broken edges denote a shortest path of length

2 from a vertex of Bij to a vertex of Bij .
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B(n−1)0 B(n−1)1 B(n−1)(r−1)
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Figure 4. Corresponding to a shortest path of length k > 1 in G, the shortest path from

any vertex of Bij to any vertex of Bkj (resp. any vertex of Bij to any vertex of

Bkp, p 6= j) of lenght k is shown in solid edges (resp. broken edges).



28 K. Pattabiraman and P. Paulraja

Lemma 10. Let G be a connected graph and let Bij , Bkp ∈ B of the graph

G′ = G⊠Km0,m1,...,mr−1
, where r ≥ 2.

(i) If vivk ∈ E(G) and xit ∈ Bij , xkℓ ∈ Bkj , then

dG′(xit, xkℓ) =

{

1, if t = ℓ,

2, if t 6= ℓ,

and if xit ∈ Bij , xkℓ ∈ Bkp, j 6= p, then dG′(xit, xkℓ) = 1.

(ii) If vivk /∈ E(G), then for any two vertices xit ∈ Bij , xkℓ ∈ Bkp, dG′(xit, xkℓ) =
dG(vi, vk).

(iii) For any two distinct vertices in Bij , their distance is 2.

The proof of the following lemma follows easily from Lemma 10. The lemma is
used in the proof of the main theorems of this section.

Lemma 11. Let G be a connected graph and let Bij , Bkp ∈ B of the graph

G′ = G⊠Km0,m1,...,mr−1
, where r ≥ 2.

(i) If vivk ∈ E(G), then dHG′(Bij , Bkp) =

{

mjmp, if j 6= p,
mj(mj+1)

2 , if j = p.

(ii) If vivk /∈ E(G), then dHG′(Bij , Bkp) =







mjmp

dG(vi,vk)
, if j 6= p,

m2

j

dG(vi,vk)
, if j = p.

(iii) dHG′(Bij , Bip) =

{

mjmp, if j 6= p,
mj(mj−1)

2 , if j = p.

The proof of the following theorem is similar to the proof of Theorem 3. Here
the Lemma 11 is used for the computation of A1,A2,A3 and A4, by Theorem 3.
Hence the proof of the following Theorem 12 is omitted.

Theorem 12. Let G be a connected graph with n vertices. Then H(G⊠Km0,m1,...,

mr−1
) = n2

0H(G) − m
2

(

n2
0 − 2q − n0

)

+ n
4

(

n2
0 + 2q − n0

)

, where n0 =
∑r−1

i=0 mi

and q is the number of edges of Km0,m1,...,mr−1
.

If mi = s, 0 ≤ i ≤ r − 1, in Theorem 12, we have the following corollary.

Corollary 13. Let G be a connected graph with n vertices and m edges. Then

H(G⊠Kr(s)) = r2s2H(G)− mrs(s−1)
2 + nrs(2rs−s−1)

4 .

As Kr = Kr(1), the above corollary gives the next one.

Corollary 14. Let G be a connected graph with n vertices and m edges. Then

H(G⊠Kr) = r2H(G) + nr(r−1)
2 .
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By using Corollary 14, H(Pn) and H(Cn), we obtain the exact Harary indices of
the following graphs.

Example 2.

(i) If r ≥ 2, then H(Pn ⊠Kr) = nr2
(

∑n
i=1

1
i

)

− nr(r+1)
2 .

(ii) H(Cn ⊠Kr) =







r2
{

n
(

∑

n
2

i=1
1
i

)

− 1
}

+ nr(r−1)
2 , if n is even,

r2n
(

∑

n−1

2

i=1
1
i

)

+ nr(r−1)
2 , if n is odd.

Next, we obtain an upper bound for the Harary index of the graph G ⊠G′.
The following theorem follows from Theorem 12.

Theorem 15. Let G be connected graph with n vertices and m edges; let G′ be

a graph with χ(G′) = r ≥ 2. If the decreasing χ(G′)-coloring color classes of

G′ have m0, m1, . . . ,mr−1 vertices, then H(G⊠G′) ≤ H(G⊠Km0,m1,...,mr−1
) =

n2
0H(G)−m

2

(

n2
0 − 2q − n0

)

+n
4

(

n2
0 + 2q − n0

)

, where n0 is the number of vertices

of G′ and q is the number of edges of Km0,m1,...,mr−1
.

Proof. As G′ is a subgraph of Km0,m1,...,mr−1
, H(G⊠G′) ≤ H(G⊠Km0,m1,...,

mr−1
), since dG⊠G′((x1, y1), (x2, y2)) ≥ dG⊠Km0,m1,...,mr−1

((x1, y1), (x2, y2)) for any

pair of vertices (x1, y1) and (x2, y2) of G ⊠ G′. Hence, H(G ⊠ G′) ≤ H(G ⊠

Km0,m1,...,mr−1
) = n2

0H(G) − m
2

(

n2
0 − 2q − n0

)

+ n
4

(

n2
0 + 2q − n0

)

, by Theo-
rem 12.

5. Harary Index of the Wreath Product of Graphs

In this section, we obtain the Harary index of G ◦G′.

Theorem 16. Let G and G′ be two connected graphs with |V (G)| = n and

|V (G′)| = m. Then H(G ◦G′) = n
4

(

m2 + 2 |E(G′)| −m
)

+m2H(G).

Proof. Let V (G) = {u1, u2, . . . , un} and let V (G′) = {v1, v2, . . . , vm}. Let xij
denote the vertex (ui, vj) of G ◦G′. By the definition of Harary index

H(G ◦G′) =
1

2

∑

xij ,xkℓ∈V (G◦G′)

1

dG◦G′(xij , xkℓ)

=
1

2

(

∑n−1

i=0

∑m−1

j, ℓ=0
j 6= ℓ

1

dG◦G′(xij , xiℓ)

+
∑n−1

i, k=0
i 6= k

∑m−1

j=0

1

dG◦G′(xij , xkj)

+
∑n−1

i, k=0
i 6= k

∑m−1

j, ℓ=0
j 6= ℓ

1

dG◦G′(xij , xkℓ)

)

=
1

2
{A1 +A2 +A3},

(10)
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where A1 to A3 are the sums of the above terms, in order.
We shall calculate the terms A1 to A3 of above expression separately.

A1 =
∑n−1

i=0

∑m−1

j, ℓ=0
j 6= ℓ

1

dG◦G′(xij , xiℓ)

=n

(

∑

vjvℓ∈E(G′)

1

dG′(vj , vℓ)
+
∑

vjvℓ /∈E(G′)

1

dG′(vj , vℓ)

)

=n

(

∑

vj∈V (G′)
deg(vj) +

∑

vj∈V (G′)

1

2
(m− deg(vj)− 1 )

)

,

since each layer induces a copy of G′ and

dG◦G′(xij , xiℓ) =

{

1, if vjvℓ ∈ E(G′),

2, if vjvℓ /∈ E(G′).

=n

(

2
∣

∣E(G′)
∣

∣+
1

2
(m2 − 2

∣

∣E(G′)
∣

∣−m )

)

=
n

2

(

4
∣

∣E(G′)
∣

∣+m2 − 2
∣

∣E(G′)
∣

∣−m
)

=
n

2

(

m2 + 2
∣

∣E(G′)
∣

∣−m
)

.

(11)

A2 =
∑n−1

i, k=0
i 6= k

∑m−1

j=0

1

dG◦G′(xij , xkj)

=m
∑n−1

i, k=0
i 6= k

1

dG(ui, uk)
= 2mH(G).

(12)

since the distance between a pair of vertices in a column is the same as the
distance between the corresponding vertices of any other column.

Similar to the computation of A2, we have

A3 =
∑n−1

i, k=0
i 6= k

∑m−1

j, ℓ=0
j 6= ℓ

1

dG◦G′(xij , xkℓ)
= 2m(m− 1)H(G).(13)

Using (11), (12) and (13) in (10) we have

H(G ◦G′) =
1

2

(n

2

(

m2 + 2
∣

∣E(G′)
∣

∣−m
)

+ 2mH(G) + 2m(m− 1)H(G)
)

=
n

4

(

m2 + 2
∣

∣E(G′)
∣

∣−m
)

+m2H(G).

As an application we present formulae for Harary indices of open and closed fence
graphs, Pn ◦K2 and Cn ◦K2, respectively.
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Example 3.

(i) H(Pn ◦K2) = 4n
(

∑n
i=1

1
i

)

− 3n.

(ii) H(Cn ◦K2) =







n
(

1 + 4
∑

n
2

i=1
1
i

)

− 4, if n is even,

n
(

1 + 4
∑

n−1

2

i=1
1
i

)

, if n is odd.
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[5] K.C. Das, B. Zhou and N. Trinajstić, Bounds on Harary index , J. Math. Chem. 46
(2009) 1377–1393.
doi:10.1007/s10910-009-9522-8

[6] J. Devillers and A.T. Balaban, (Eds), Topological Indices and Related Descriptors
in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999).

[7] M.V. Diudea, Indices of reciprocal properties or Harary indices , J. Chem. Inf. Com-
put. Sci. 37 (1997) 292–299.
doi:10.1021/ci960037w
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