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Abstract

An α-labeling of a bipartite graph Γ of size e is an injective function
f : V (Γ) → {0, 1, 2, . . . , e} such that {|f(x) − f(y)| : [x, y] ∈ E(Γ)} =
{1, 2, . . . , e} and with the property that its maximum value on one of the two
bipartite sets does not reach its minimum on the other one. We prove that
the generalized Petersen graph P8n,3 admits an α-labeling for any integer
n ≥ 1 confirming that the conjecture posed by Vietri in [10] is true. In such
a way we obtain an infinite class of decompositions of complete graphs into
copies of P8n,3.
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1. Introduction

As usual, we denote by Kv and Km×n the complete graph on v vertices and the
complete m-partite graph with parts of size n, respectively. Given a subgraph Γ
of a graph K, a Γ-decomposition of K is a set of graphs, called blocks, isomorphic
to Γ, whose edges partition the edge-set of K. Such a decomposition is said to
be cyclic when it is invariant under a cyclic permutation of all the vertices of K.
For a survey on the subject see [3].

The problem of establishing the set of values of v for which a Γ-decomposition
of Kv exists has been extensively studied and it is in general quite difficult. The
concept of a graceful labeling of a graph Γ, introduced by Rosa [7], is proved to
be an useful tool for determining the existence of cyclic Γ-decompositions of the
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complete graph. A graceful labeling of a graph Γ of size e is an injective function
f : V (Γ) → {0, 1, 2, . . . , e} such that

{|f(x)− f(y)| : [x, y] ∈ E(Γ)} = {1, 2, . . . , e}.

In the case where Γ is bipartite and f has the additional property that its max-
imum value on one of the two bipartite sets does not reach its minimum on the
other one, one says that f is an α-labeling. For a very rich survey on graceful
labelings we refer to [5]. In [7], Rosa proved the following result.

Theorem 1. If a graph Γ of size e admits a graceful labeling f , then there exists

a cyclic Γ-decomposition of K2e+1. Also, if f is, in addition, an α-labeling, then

there exists a cyclic Γ-decomposition of K2et+1 for any positive integer t.

In this paper we shall investigate the existence of α-labelings of a class of gener-
alized Petersen graphs.

Definition. Let n, k be positive integers such that n ≥ 3 and 1 ≤ k ≤ ⌊n−1

2
⌋.

The generalized Petersen graph Pn,k is the graph whose vertex set is {ai, bi : 1 ≤
i ≤ n} and whose edge set is {[ai, bi], [ai, ai+1], [bi, bi+k] : 1 ≤ i ≤ n}, where
subscripts are meant modulo n.

In [4], Frucht and Gallian proved that Pn,1, which can be seen as the prism on 2n
vertices, is graceful. Moreover when n is even, namely when the graph is bipartite,
their labelings are α-labelings. In [6], with the aid of a computer, some Pn,k’s with
k ≥ 2 and small values of n where shown to be graceful. The only results about
infinite classes of Pn,k’s with k > 1 were obtained by Vietri. He proved that P8n,3

is graceful for every positive integer n, see [9, 10], and that P8n+4,3 is graceful
for every positive integer n, see [8]. Also, in [10] Vietri conjectured that there
exists an α-labeling for every graph P8n,3. Here we prove that Vietri’s conjecture
is true. As a consequence we obtain a new infinite class of decompositions of the
complete graph into generalized Petersen graphs. Even though the literature is
quite poor about results on Pn,k-decompositions of the complete graph, we point
out that Adams and Bryant in [1] determined the spectrum of values of v for
which a P5,2-decomposition of Kv exists and that Bonisoli, Buratti and Rinaldi
in [2] obtained some results about sharply vertex-transitive Pn,k-decomposition
of Kv.

The results contained in this paper were already briefly presented in [A.
Benini and A. Pasotti, Decompositions into generalized Petersen graphs via grace-

ful labeling, Electron. Notes Discrete Math. 40 (2013) 295–298].
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2. On α-labelings of P8n,3

In this section we prove the existence of an α-labeling of P8n,3 by a direct con-
struction. The basic idea is to see the graph as a disjoint union of suitable
subgraphs as skillfully done by Vietri in [8, 10].

Vietri’s decomposition. Using the notation given in Definition 1, any gen-
eralized Petersen graph of the form P8n,3 can be decomposed into the cycle C12n =
(b1 a1 a2 a3 b3 b8n b8n−3 a8n−3 a8n−2 a8n−1 b8n−1 b8n−4 b8n−7 a8n−7 · · · a11 b11 b8 b5
a5 a6 a7 b7 b4) together with a family of stars with 3 rays, whose endvertices
belong to C12n. We point out that it results V (C12) = {ai : 1 ≤ i ≤ 8n−1, i 6≡ 0
(mod 4)} ∪ {bi : 1 ≤ i ≤ 8n, i 6≡ 2 (mod 4)}. The stars completing the graph
can be divided into two classes: stars of class 1, of center b4i−2 and endvertices
b4i−5, a4i−2, b4i+1 for 1 ≤ i ≤ 2n, and stars of class 2, of center a4i and endvertices
a4i−1, b4i, a4i+1 for 1 ≤ i ≤ 2n.

Using the previous decomposition, we are able to prove Vietri’s conjecture.

Theorem 2. For any positive integer n ≥ 1, P8n,3 admits an α-labeling.

Proof. We distinguish two cases depending on the parity of n.

Case 1: n even. We consider the Vietri’s decomposition of P8n,3 and we start
labeling the vertices of C12n as follows:

(
b1
0 ,

a1
24n− 1,

a2
2 ,

a3
24n− 3,

b3
4 ,

b8n
24n− 5,

b8n−3

6 ,
a8n−3

24n− 7, . . . ,
b4n+7

6n− 2,
b4n+4

18n+ 1,
b4n+1

6n ,

a4n+1

18n− 3,
a4n+2

6n+ 2,
a4n+3

18n− 5,
b4n+3

6n+ 4, . . . ,
a6

12n− 4,
a7

12n+ 1,
b7

12n− 2,
b4

12n− 1).

In formal terms, we have the following labels for the vertices of C12:

ai =































































24n− 1 for i = 1,

12n+ 6k − 3 for i = 4k + 1 and 1 ≤ k ≤ n,

12n+ 6k − 1 for i = 4k + 1 and n+ 1 ≤ k ≤ 2n− 1,

2 for i = 2,

12n− 6k + 2 for i = 4k + 2 and 1 ≤ k ≤ 2n− 1,

24n− 3 for i = 3,

12n+ 6k − 5 for i = 4k + 3 and 1 ≤ k ≤ n,

12n+ 6k − 3 for i = 4k + 3 and n+ 1 ≤ k ≤ 2n− 1.
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bi =







































12n+ 6k − 7 for i = 4k and 1 ≤ k ≤ n,

12n+ 6k − 5 for i = 4k and n+ 1 ≤ k ≤ 2n,

0 for i = 1,

12n− 6k for i = 4k + 1 and 1 ≤ k ≤ 2n− 1,
4 for i = 3,

12n− 6k + 4 for i = 4k + 3 and 1 ≤ k ≤ 2n− 1.

It is easy to see that the absolute values of the differences between the labels of
adjacent vertices give all the odd integers from 1 to 24n− 1.
In particular, setting yi = 6(4n−i), the labels of the endvertices of the completing
stars have the following form:

stars of
class 1











Sx = {6x, 6x+ 8, 6x+ 16} for 0 ≤ x ≤ 2n− 3,

S2n−2 = {12n− 12, 12n− 4, 4},

S2n−1 = {12n− 6, 2, 10}.

stars of
class 2























S′

i = {yi − 1, yi − 5, yi − 9} for 0 ≤ i ≤ n− 2,

S′

n−1 = {18n+ 5, 18n+ 1, 18n− 5},

S′

i = {yi − 3, yi − 7, yi − 11} for n ≤ i ≤ 2n− 2,

S′

2n−1 = {12n+ 3, 12n− 1, 24n− 3}.

Now, we want to label the centers of the completing stars in such a way that all
the even integers from 2 to 24n have to appear as absolute values of the differences
between the labels of the centers and the related endvertices.

For any star Sx of class 1 we define its center cx as follows:

cx =











































24n− 6x for x even, 0 ≤ x ≤ n− 2,

24n− 6x− 8 for x odd, 1 ≤ x ≤ n− 3,

24n− 6x− 10 for x even, n ≤ x ≤ 2n− 4,

24n− 6x− 18 for x odd, n− 1 ≤ x ≤ 2n− 3,

12n+ 2 for x = 2n− 2,

24n− 2 for x = 2n− 1.

For the stars S′

i of class 2 we define the center c′i = 1 + 6i for any i.
From the stars Sx of class 1, setting λx = 24n− 12x, we obtain the following

6n differences:

{λx, λx − 8, λx − 16} for x even, 0 ≤ x ≤ n− 2,

{λx − 8, λx − 16, λx − 24} for x odd, 1 ≤ x ≤ n− 3,

{λx − 10, λx − 18, λx − 26} for x even, n ≤ x ≤ 2n− 4,

{λx − 18, λx − 26, λx − 34} for x odd, n− 1 ≤ x ≤ 2n− 3,

{6, 14, 12n− 2} for x = 2n− 2,

{12n+ 4, 24n− 4, 24n− 12} for x = 2n− 1.
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From the stars S′

i of class 2, setting µi = 6(4n− 2i), we have the 6n differences:

{µi − 2, µi − 6, µi − 10} for 0 ≤ i ≤ n− 2,

{12n, 12n+ 6, 12n+ 10} for i = n− 1,

{µi − 4, µi − 8, µi − 12} for n ≤ i ≤ 2n− 2,

{4, 8, 12n+ 2} for i = 2n− 1.

It is a simple routine to verify that the absolute values of the 12n differences so

obtained are all the even integers from 2 to 24n.
Call f : V (P8n,3) → {i ∈ N : 0 ≤ i ≤ 24n} the function defined by the

above labels. Now we check that f is an injective function by writing explicitly
the labels of the vertices of P8n,3. Denoting by A and B the two bipartite sets of
the cycle, we have

f(A) = {2i ∈ N : 0 ≤ i ≤ 6n− 1}

and
f(B) = {2i+ 1 ∈ N : 6n− 1 ≤ i ≤ 12n− 1} \ {18n− 1}.

Also, denoting by C and D the centers of the stars of class 1 and class 2, respec-
tively, we have

f(C) =
{

12n+ 12i ∈ N : 0 ≤ i ≤
n

2
− 1

}

∪
{

12n+ 2 + 12i ∈ N : 0 ≤ i ≤
n

2
− 1

}

∪

{

6n+ 10 + 12i ∈ N : n ≤ i ≤
3n

2
− 1

}

∪

{

6n+ 12i ∈ N : n+ 1 ≤ i ≤
3n

2

}

and
f(D) = {1 + 6i ∈ N : 0 ≤ i ≤ 2n− 1}.

Since f(A), f(B), f(C) and f(D) are disjoint sets, the function f is injective and
this implies that P8n,3 is graceful.

Finally, it is easy to see that the two bipartite sets of P8n,3 are A ∪ D and
B ∪ C, and that f(A ∪D) ⊆ {i ∈ N : 0 ≤ i ≤ 12n− 2} and f(B ∪ C) ⊆ {i ∈
N : 12n− 1 ≤ i ≤ 24n}. Then maxA∪D f < minB∪C f , so f is an α-labeling of
P8n,3.

Case 2: n odd. We consider again the Vietri’s decomposition and we label
the vertices of C12n as follows:

(
b1
0 ,

a1
24n,

a2
2 ,

a3
24n− 2,

b3
4 ,

b8n
24n− 4,

b8n−3

6 ,
a8n−3

24n− 6, . . . ,
b4n+7

6n− 2,
b4n+4

18n+ 2,
b4n+1

6n+ 3,



48 A. Benini and A. Pasotti

a4n+1

18n ,
a4n+2

6n+ 5,
a4n+3

18n− 2,
b4n+3

6n+ 7, . . . ,
a6

12n− 1,
a7

12n+ 4,
b7

12n+ 1,
b4

12n+ 2).

In formal terms, we have the following labels for the vertices of C12n:

ai =



















































24n for i = 1,

12n+ 6k for i = 4k + 1 and 1 ≤ k ≤ 2n− 1,

2 for i = 2,

12n− 6k + 5 for i = 4k + 2 and 1 ≤ k ≤ n,

12n− 6k + 2 for i = 4k + 2 and n+ 1 ≤ k ≤ 2n− 1,

24n− 2 for i = 3,

12n+ 6k − 2 for i = 4k + 3 and 1 ≤ k ≤ 2n− 1.

bi =



















































12n+ 6k − 4 for i = 4k and 1 ≤ k ≤ 2n,

0 for i = 1,

12n− 6k + 3 for i = 4k + 1 and 1 ≤ k ≤ n,

12n− 6k for i = 4k + 1 and n+ 1 ≤ k ≤ 2n− 1,

4 for i = 3,

12n− 6k + 7 for i = 4k + 3 and 1 ≤ k ≤ n,

12n− 6k + 4 for i = 4k + 3 and n+ 1 ≤ k ≤ 2n− 1.

One can easily see that the absolute values of the differences between the labels
of adjacent vertices give all the odd integers from 1 to 12n− 1 together with all
the even integers from 12n+2 to 24n. If n = 1, then the labels of the endvertices
of the remaining stars are {0, 4, 11}, {2, 9, 13}, {24, 20, 16} and {22, 18, 14}. One
can directly check that if we label the centers of these stars with 21, 15, 1, 10
respectively, we obtain an α-labeling of P8,3.

Let now n ≥ 3. Setting again yi = 6(4n− i), it is easy to see that the labels
of the endvertices of the remaining stars have the following form:

stars of
class 1











































Sx = {6x, 6x+ 8, 6x+ 16} for 0 ≤ x ≤ n− 3,

Sn−2 = {6n− 12, 6n− 4, 6n+ 7},

Sn−1 = {6n− 6, 6n+ 5, 6n+ 13},

Sx = {6x+ 3, 6x+ 11, 6x+ 19} for n ≤ x ≤ 2n− 3,

S2n−2 = {12n− 9, 12n− 1, 4},

S2n−1 = {2, 10, 12n− 3}.

stars of
class 2

{

S′

i = {yi, yi − 4, yi − 8} for 0 ≤ i ≤ 2n− 2,

S′

2n−1 = {24n− 2, 12n+ 2, 12n+ 6}.

Now we are going to label the centers of these stars in such a way that all the
even integers from 2 to 12n and all the odd integers from 12n + 1 to 24n − 1
appear as absolute values of the differences between the labels of the centers and
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the related endvertices. If n = 3, then we label the centers of the stars of class 1
and class 2, respectively, as follows:

c0 = 69 c1 = 53 c2 = 55 c3 = 39 c4 = 41 c5 = 67
c′0 = 1 c′1 = 7 c′2 = 11 c′3 = 24 c′4 = 28 c′5 = 34

A direct calculation shows that we obtain an α-labeling of P24,3.
From now on let n ≥ 5. For any star Sx of class 1 we define its center cx as

follows:

cx =







































































24n− 6x− 3 for x even, 0 ≤ x ≤ n− 3,

24n− 6x− 11 for x odd, 1 ≤ x ≤ n− 4,

18n− 1 for x = n− 2,

18n+ 1 for x = n− 1,

24n− 6x− 13 for x odd, n ≤ x ≤ 2n− 5,

24n− 6x− 5 for x even, n+ 1 ≤ x ≤ 2n− 4,

12n+ 3 for x = 2n− 3,

12n+ 5 for x = 2n− 2,

24n− 5 for x = 2n− 1.

For the stars S′

i of class 2 we define the centers c′i’s as follows:

c′i =































1 + 6i for 0 ≤ i ≤ n− 2,

6n− 7 for i = n− 1,

6(i+ 1) for n ≤ i ≤ 2n− 3,

12n− 8 for i = 2n− 2,

12n− 2 for i = 2n− 1.

From the stars Sx of class 1, setting λx = 24n− 12x, we obtain the following 6n
differences:

{λx − 3, λx − 11, λx − 19} for x even, 0 ≤ x ≤ n− 3,

{λx − 11, λx − 19, λx − 27} for x odd, 1 ≤ x ≤ n− 4,

{12n+ 11, 12n+ 3, 12n− 8} for x = n− 2,

{12n+ 7, 12n− 4, 12n− 12} for x = n− 1,

{λx − 16, λx − 24, λx − 32} for x odd, n ≤ x ≤ 2n− 5,

{λx − 8, λx − 16, λx − 24} for x even, n+ 1 ≤ x ≤ 2n− 4,

{18, 10, 2} for x = 2n− 3,

{14, 6, 12n+ 1} for x = 2n− 2,

{24n− 7, 24n− 15, 12n− 2} for x = 2n− 1.

From the stars S′

i of class 2, setting again µi = 6(4n − 2i), we have the 6n
differences:
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{µi − 1, µi − 5, µi − 9} for 0 ≤ i ≤ n− 2,

{12n+ 13, 12n+ 9, 12n+ 5} for i = n− 1,

{µi − 6, µi − 10, µi − 14} for n ≤ i ≤ 2n− 3,

{20, 16, 12} for i = 2n− 2,

{12n, 4, 8} for i = 2n− 1.

It is not hard to check that the absolute values of the 12n differences so obtained
are all the even integers from 2 to 12n together with all the odd integers from
12n+ 1 to 24n− 1.

Let f : V (P8n,3) → {i ∈ N : 0 ≤ i ≤ 24n} be the function defined by the
above labels. We have to check that f is an injective function, so we list all the
labels of the vertices. Denoting by A and B the two bipartite sets of C12n, we
have

f(A) = {2i ∈ N : 0 ≤ i ≤ 3n− 1} ∪ {2i+ 1 ∈ N : 3n+ 1 ≤ i ≤ 6n}

and
f(B) = {2i ∈ N : 6n+ 1 ≤ i ≤ 12n}.

Also, denoting by C and D the centers of the stars of class 1 and class 2, respec-
tively, we have:

f(C) =

{

5 + 12i ∈ N : n+ 1 ≤ i ≤
3n− 3

2

}

∪

{

7 + 12i ∈ N : n+ 1 ≤ i ≤
3n− 3

2

}

∪

{

6n+ 1 + 12i ∈ N : n+ 1 ≤ i ≤
3n− 3

2

}

∪

{

6n+ 3 + 12i ∈ N : n+ 1 ≤ i ≤
3n− 1

2

}

∪ {18n− 1, 18n+ 1, 12n+ 3, 12n+ 5, 24n− 5}

and

f(D = {1 + 6i ∈ N : 0 ≤ i ≤ n− 2}

∪ {6i ∈ N : n+ 1 ≤ i ≤ 2n− 2}

∪ {6n− 7, 12n− 8, 12n− 2}.

Since f(A), f(B), f(C) and f(D) are disjoint sets, f is injective and so we have
proved that P8n,3 is graceful.

To conclude, the two bipartite sets of P8n,3 are A ∪ D and B ∪ C, and
f(A ∪D) ⊆ {i ∈ N : 0 ≤ i ≤ 12n+ 1} and f(B ∪ C) ⊆ {i ∈ N : 12n+ 2 ≤ i ≤
24n}. Hence maxA∪D f < minB∪C f , so f is an α-labeling of P8n,3.
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Example 3. Here we show the α-labeling of P32,3 obtained through the con-
struction given in the proof of Theorem 2. In the next figure below we have the
labels of the vertices of the cycle C48:

0

2

4

6

8

10 12

14

16 18

20

22
24

26

28

30

32

3436

38

4042

44

46

95 93

91

8987

85

8381

79

7775

73

6967

65

63 61

59

57 55

53

51 49

47

Now we consider the labels of the completing stars whose differences are all the
even integers from 2 to 96. Stars of class 1:

96

0 8 16

96
88
80

82

6 14 22

68
60

84

12 20 28

72
64

56
60

18 26 34

42
34

2676

40

38
30
22

30 38 46

10
2

36 44 4

14
6

46

42 2 10

52
92

8418
62

24 32

48 50 94

and stars of class 2:

1

95 91 87

94
90
86

7

89 85 81

78
74

13

83 79 75

70
66

62
19

77 73 67

58
54

4882

61

44
40
36

63 59 55

28
24

57 53 49

20
16

12

93 51 47

50
8

432
25

69 65

31 37 43
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Example 4. We show the α-labeling of P40,3 obtained through the construction
given in the proof of Theorem 2. In the figure below we have the labels of the
vertices of the cycle C60.

0

2

4

6

8

10 12

14

16 18

20

22

26

28

45

47

51

53

5557

59

61

120 118

116

114112

110

108106

104

102100

98

9694

78 76

74

72 70

68

66 64

62

24
92

33

903588

37

86
39

84 41 82

438049

The cycle so labeled gives as differences all the odd integers from 1 to 59 together
with all the even integers from 62 to 120. Now we consider the completing stars.
Stars of class 1:

117

0 8 16

117
109

101
103

6 14 22

89
81

105

12 20 28

93
85

77
89

18 26 37

71
63

5297

49

44
36
28

39 47 55
32
24

45 53 61

18
10

2

51 59 4

14
6
6140

77

33 41

79 63 65

91

24 35 43

67
56

48

115

2 10 57

113
105

58

and stars of class 2:

1

120 116 112

119
115
111

7

114 110 106
103

99
13

108 104 100

95
91

87
19

102 98 94

83
79

75107

82

54
50
46

84 80 76
38
34

78 74 70

30
26
22

72 68 64

20
16
1242

36

90 86

42 48 52

23

96 92 88

73
69

65

58

66 62 118

8
4
60

The differences appearing in the stars are exactly all the even integers from 2 to
60 together with all the odd integers from 61 to 119. So all the integers from 1
to 120 appear exactly once as a difference of adjacent vertices of P40,3.
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As an immediate consequence of Theorems 1 and 2, we have

Theorem 5. There exists a cyclic P8n,3-decomposition of K24nt+1 for any positive

integer t.
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