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Abstract

In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open
packing set if no two vertices of S have a common neighbour in G. An open
packing set which is not a proper subset of any open packing set is called
a maximal open packing set. The minimum and maximum cardinalities of
a maximal open packing set are respectively called the lower open packing
number and the open packing number and are denoted by ρoL and ρo. In
this paper, we present some bounds on these parameters.
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1. Introduction

By a graph G = (V,E), we mean a connected, finite, undirected graph with
neither loops nor multiple edges. For graph theoretic terminology we refer to
Chartand and Lesniak [2].

The open neighbourhood of a vertex v is NG(v)={u ∈ V : uv ∈ E}, while
its closed neighbourhood is NG[v]=NG(v) ∪ {v}. For a set S ⊆ V , NG(S) =
⋃

v∈S NG(v) and NG[S]=NG(S) ∪ S. If the graph is clear from the context, then
we omit the subscript on these neighbourhood names. For a set of S ⊆ V , the
subgraph induced by S is denoted by 〈S〉G or simply 〈S〉. A clique in a graph
G is a complete subgraph of G. The maximum order of a clique in G is called
the clique number and is denoted by ω(G) and a clique of order ω(G) is called
a maximum clique. If G is a graph, then G+ is the graph obtained from G by
attaching a pendant edge at every vertex of G. A subset D of vertices is said to be
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a dominating set of G if every vertex x in V either belongs to D or is adjacent
to a vertex in D. The domination number γ(G) is the minimum cardinality
of a dominating set of G. A dominating set D of a graph G is called a total

dominating set if 〈D〉 has no isolates and the minimum cardinality of a total
dominating set is the total domination number of G, denoted by γt(G).

A set S of vertices in a graph G is called an independent set of G if no
two vertices of S are adjacent in G. The independence number β0(G) of a
graph G is defined to be the maximum cardinality of an independent set of G
and the minimum cardinality of a maximal independent set of G is called the
independence domination number of G, denoted by i(G). A 2-packing of a
graph G is a set of vertices whose closed neighbourhoods are pairwise disjoint in
G. Equivalently, a 2-packing of a graph G is a set of vertices whose elements
are pairwise at at least 3 apart in G. The lower packing number of G, denoted
ρL(G), is the minimum cardinality of a maximal 2-packing of G while the distance
packing number of G, denoted ρ(G), is the maximum cardinality of a maximal
2-packing of G. A set S of vertices of G is an open packing of G if the open
neighbourhoods of the vertices of S are pairwise disjoint in G. The lower open

packing number of G, denoted ρoL(G), is the minimum cardinality of a maximal
open packing of G while the open packing number of G, denoted ρo(G), is the
maximum cardinality among all open packings of G. An open packing set of
cardinality ρoL and ρo are respectively called the ρoL-set and ρo-set of G. The
packing number of a graph has been studied in [1, 3, 6, 7] and the open packing
number of a graph has been studied in [5]. This paper further studies these
packing parameters.

2. Graphs of Diameter Two

Obviously, if G is a graph of diameter 2, then ρ(G) = ρL(G) = 1. The values of
ρo and ρoL of a graph of diameter 2 are determined in this section.

Lemma 2.1. Let G be a graph of order at least 3. Then ρo(G) = 1 if and only

if diam(G) ≤ 2 and every edge of G lies on a triangle.

Proof. Suppose ρo(G) = 1. Now, if there exist two vertices x and y with
d(x, y) ≥ 3, then {x, y} is an open packing set so that ρo(G) ≥ 2, which is a
contradiction. Hence distance between any two vertices in G is at most 2 so that
diam(G) ≤ 2. Now, let e = uv be any edge of G. Then the vertices u and v have
a common neighbour, say w, for otherwise the set consisting of the vertices u and
v would be an open packing set and consequently ρo(G) ≥ 2, contradicting the
assumption, and thus (u, v, w, u) is a triangle containing the edge e.

Conversely, suppose diam(G) ≤ 2 and every edge of G lies on a triangle. If
diam(G) = 1, then G is complete, and thus ρo(G) = 1. Suppose diam(G) = 2.
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Let u and v be any two vertices of G. Now, if u and v are adjacent, then the
edge uv belongs to some triangle in G, hence u and v have a common neighbour.
Even in the case that u and v are not adjacent, they have a common neighbour
as diam(G) = 2.

Corollary 2.2. Let G be a graph with diam(G) = 2. Then ρo(G) = ρ(G) if and
only if every edge of G lies on a triangle.

Proof. If every edge of G lies on a triangle, it follows from Lemma 2.1, that
ρo(G) = 1. Also, it is obvious that ρ(G) = 1 as diam(G) = 2.

Lemma 2.3. Let G be a graph of order n ≥ 3. Then ρoL(G) = 1 if and only if

there exists a vertex v of eccentricity at most two such that 〈N(v)〉 has no isolates.

Proof. Suppose ρoL(G) = 1. Let {v} be a maximal open packing set of G. If
degv = n− 1, then e(v) = 1. Suppose degv ≤ n− 2. Then every non-neighbour
of v must be adjacent to a neighbour of v. That is, every vertex of G other than
v is at a distance of at most two from v which in turn implies that e(v) = 2.
Further, if 〈N(v)〉 has an isolated vertex, say u, then {u, v} is an open packing
set, which is a contradiction to the maximality of {v}. Thus 〈N(v)〉 has no
isolates. Conversely, suppose there is a vertex v of eccentricity at most two such
that 〈N(v)〉 has no isolates. Since e(v) ≤ 2, the non-neighbours of v (if any) must
have a neighbour in N(v). Also, since 〈N(v)〉 has no isolates v and each vertex
in N(v) have a common neighbour. Thus {v} forms a maximal open packing set
of G and so ρoL(G) = 1.

With the aid of the above results one can determine the values of ρo and ρoL for
a graph of diameter 2 as follows.

Theorem 2.4. If G is a graph of diameter 2, then ρoL(G) ≤ ρo(G) ≤ 2. Further,

(i) ρo(G) = 1 if and only if every edge of G lies in a triangle.

(ii) ρoL(G) = 2 if and only if 〈N(v)〉 has an isolated vertex for every v ∈ V (G).

Proof. Since diam(G) = 2, any two non-adjacent vertices in G have a common
neighbour which in turn implies that for any open packing set S of G, the induced
subgraph 〈S〉 is complete. Further, no two vertices of the open packing set S have
a common neighbour it follows that each component of 〈S〉 is either K1 or K2

and consequently ρo(G) ≤ 2. The inequality ρoL(G) ≤ ρo(G) ≤ 2 immediately
follows from the definitions of ρoL(G) and ρo(G). Now, (i) is a direct consequence
of Lemma 2.1. Further, suppose ρoL(G) = 2 and there is a vertex v ∈ V (G) such
that 〈N(v)〉 has no isolates. Since diam(G) = 2, it follows that e(v) = 1 or 2.
Now, by Lemma 2.3, we have ρoL(G) = 1, which is a contradiction and hence the
result follows. Conversely, assume that for each v ∈ V (G), 〈N(v)〉 has an isolate.
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Since no vertex of G has eccentricity three or more, it follows by Lemma 2.3, we
have ρoL(G) 6= 1 and consequently ρoL(G) = 2.

Corollary 2.5. If G is a connected graph on n vertices with ∆(G) = n− 1, then
ρo(G) ≤ 2. Further, ρo(G) = 2 if and only if δ(G) = 1 and ρoL(G) = 2 if and only

if G is a star.

Proof. Let v be a vertex with deg v = n−1. Obviously, diam(G) ≤ 2 and hence
by Theorem 2.5, we have ρo(G) ≤ 2. Now, suppose ρo(G) = 2. Then by Lemma
2.1, there is an edge e not lying on any triangle in G. As ∆(G) = n − 1, the
edge e must be incident at v, say e = uv. Certainly deg u = 1 so that δ(G) = 1.
Conversely, suppose δ(G) = 1. Then any pendant vertex along with v forms an
open packing set and so ρo(G) = 2.

Suppose ρoL(G) = 2. We need to prove that no two neighbours of v are
adjacent. If not, let u and w be two adjacent neighbours of v. Then {u} and {w}
are maximal open packing sets of G so that ρoL(G) = 1, which is a contradiction.
Thus G is a star. Also, obviously for a star, we have ρoL(G) = 2.

3. Bounds

In this section we obtain some bounds for the open packing number of a graph in
terms of order, packing number, total domination number and the clique number
of a graph.

Theorem 3.1. If G is a connected graph of order n ≥ 2, then ρo(G) ≤ n
δ(G) .

Proof. Let S be any open packing set of G. Since every vertex in G has at
least δ neighbours and no vertex in S is adjacent to two or more vertices in S,
it follows that every vertex in S must be adjacent to at least (δ − 1) vertices in
V − S. Further, no two vertices in S can have a common neighbour in G, we
have |V − S| ≥ |S| (δ − 1) and hence the result follows as S is arbitrary.

Theorem 3.2. If G is a graph with ρo(G) = n
δ(G) , then

n
δ(G) is an even integer.

Proof. Suppose ρo(G) = n
δ(G) . Let S be a ρo-set of G. Now, we claim that 〈S〉

has no isolates. Suppose 〈S〉 has r of isolates. Then |V − S| ≥ rδ+(ρo−r)(δ−1)
and hence by our assumption, we get r ≤ 0. Certainly, 〈S〉 =

⋃

K2 as S is a
ρo-set of G and hence the result follows.

In the following theorem, we characterize the r-regular graphs attaining the above
bound. For this purpose, given positive integers r and n with n

r
an even integer

and n ≥ 3, we define τr,n to be the family of r-regular graphs of order n which
are constructed as follows. Consider an (r−1)-regular graph H on n− n

r
vertices.
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Also, consider n
2r copies of K2, say u1v1,u2v2,u3v3,. . . ,ukvk, where k = n

2r . Now,
join each of the vertices of U = {u1, u2, . . . , uk, v1, v2, . . . , vk} to any r−1 vertices
of H such that N(x) ∩N(y) = ∅ for any two distinct vertices x and y of U .

Note that, as at least one of the integers r−1 and n− n
r
is even, the existence

of an (r−1)-regular graph H on n− n
r
vertices is guaranteed. Therefore the family

τr,n is always non-empty for any pair r and n of positive integers with n
r
an even

integer and n ≥ 3. For example, a graph in τ4,8 and a graph from τ4,16 are given
in the following Figure 3.1.

(a) (b)
Figure 3.1. (a) A graph in τ4,8.

(b) A graph in τ4,16.

Theorem 3.3. Let G be an r-regular graph on n vertices such that n
r

is an

integer. Then ρo(G) = n
r
if and only if G ∈ τr,n.

Proof. Suppose ρo(G) = n
r
. By Theorem 3.2, n

r
is an even integer. Now, let S be

any ρo-set of G. If there exists an isolated vertex x in 〈S〉, then all the neighbours
of x will be in V − S. Further, every vertex in S has at most one neighbour in S

so that |V − S| ≥ r+(r−1)(ρo−1). Hence ρo = |S| ≤ n−r−(r−1)(ρo−1) which
implies that ρo ≤ n−1

r
, producing a contradiction. Thus 〈S〉 has no isolates and

so 〈S〉=( n
2r )K2 because each component of 〈S〉 is either K1 or K2. This implies

that the r − 1 neighbours of each vertex in S are in V − S. Further, since
N(u) ∩N(v) = ∅ for every pair of distinct vertices u and v of S, it follows that
N(S)∩ (V −S) = V −S as |V − S| = n− n

r
and therefore every vertex in V −S

has exactly one neighbour in S as S is an open packing set of G. Thus 〈V − S〉
is an (r − 1)-regular graph on n− n

r
vertices. Hence G ∈ τr,n.

Conversely, if G ∈ τr,n, then the vertices lying on the n
2r copies of K2 of G form a

maximal open packing set of G so that ρo(G) ≥ n
r
. Now, it follows from Theorem

3.1 that ρo(G) = n
r
.

Now, we present an upper bound for the open packing number ρo in terms of the
total domination number γt.

Theorem 3.4. Let G be a graph of order n with δ(G) ≥ 2. Then ρo(G) ≤
n− γt(G), where γt(G) is the total domination number of G.
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Proof. Let S be any open packing set of G. Now, we claim that V − S is
dominating set of G. Since each component of 〈S〉 is either K1 or K2, it follows
that every vertex v ∈ S must be adjacent to at least one vertex in V − S as
δ(G) ≥ 2. Further, every vertex in V − S is adjacent to at most one vertex in S

and so 〈V − S〉 has no isolates. Hence V − S is a total dominating set of G so
that ρo(G) ≤ n− γt(G).

The bound for ρo provided in Theorem 3.4 is not true for graphs G with δ(G) = 1.
For example, δ(G) = 1 for the graph G of Figure 3.2.(a), where γt(G) = 5 and
ρo(G) = 5 > n − γt(G). Also, the bound given in Theorem 3.4 is sharp. For
example, the graph G of Figure 3.2.(b) is of minimum degree 2 with γt(G) = 6
and ρo(G) = 6 = n− γt(G).

(a) (b)
Figure 3.2. (a) A graph G with δ(G) = 1 and ρo(G) > n− γt(G).

(b) A graph G with δ(G) = 2 and ρo(G) = n− γt(G).

The following theorem provides an upper bound for the open packing number ρo

in terms of the clique number ω of a graph.

Theorem 3.5. For any connected graph G of order n ≥ 3, ρo(G) ≤ n−ω(G)+1
with equality if and only if G is either Kn or a graph obtained from Kn−1 by

adding a vertex and joining it to exactly one vertex of Kn−1.

Proof. As an open packing set of G contains at most one vertex of a clique it
follows that ρo(G) ≤ n− ω(G) + 1. Further, suppose ρo(G) = n− ω(G) + 1. Let
H be a maximum clique and S be a ρo-set of G. Certainly, S contains exactly
one vertex of H, say u, and of course contains all the vertices of G lying outside
H. Hence the vertex u has at most one neighbour in V (G) − V (H) and every
other vertex of H has no neighbour in V (G)− V (H). Thus G is either complete
or a graph obtained from a complete graph by adding a vertex and joining it to
exactly one vertex of the complete graph.

4. Realization Theorems

In this section we present some relationship among the packing parameters along
with realization theorems. It has been proved in [4] that the inequalities ρ(G) ≤
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ρo(G) ≤ 2ρ(G) hold true for any graph G. Let us recall the proof for the sake of
completeness. It immediately follow from the definitions of 2-packing and open
packing that ρ(G) ≤ ρo(G). Further, as each component of 〈S〉, where S is an
open packing set, is either K1 or K2, the set obtained by choosing exactly one
vertex from each component of 〈S〉 is a 2-packing set of G so that ρo(G) ≤ 2ρ(G).
In the following, we prove that ρo can assume any value between ρ and 2ρ.

Theorem 4.1. For any two positive integers a and b with a ≤ b ≤ 2a, there

exists a graph G for which ρ(G) = a and ρo(G) = b.

Proof. Suppose a and b are two positive integers with a ≤ b ≤ 2a. We construct
a graph G with ρ(G) = a and ρo(G) = b as follows.

Case 1. a = b. If a = 1, let G be a complete graph. Assume that a ≥ 2.
Now, let G = K+

a . Let S be the set of all pendant vertices of G. Then, obviously
S is a 2-packing set of maximum cardinality so that ρ(G) = |S| = a. Also, S is an
open packing set of G and so ρo(G) ≥ |S| = a. Now, suppose D is any maximal
open packing set of G. Then D can have at most one non-pendant vertex of G.
Also, if D contains a non-pendant vertex v of G, then D = {v, v

′

}, where v
′

is the
pendant vertex of G, forms a maximal open packing set of G. Clearly, |D| ≤ a

and consequently ρo(G) ≤ a. Thus ρo(G) = a.

Case 2. b > a. Let b = a+ r, where 1 ≤ r ≤ a. We now construct a graph G

with ρ(G) = a and ρo(G) = b as follows.
Draw a path P = (v11, v12, v21, v22, . . . , va1, va2) on 2a vertices. Now in-

troduce a vertices w1, w2, . . . , wa and join wi to the vertices vi1 and vi2 for all
i = 1, 2, . . . , a. Moreover, at each of the vertices w1, w2, . . . , wr attach exactly
one pendant edge, say wiw

′

i, 1 ≤ i ≤ r (by attaching a pendant edge wiw
′

i at wi,
we mean that a new vertex w

′

i is introduced and is joined with wi by an edge).
For a = 3 and b = 5 the graph is illustrated in Figure 4.1.

Figure 4.1. A graph G with ρ(G) = 3 and ρo(G) = 5.

We need to prove that ρ(G) = a and ρo(G) = b. Obviously, S1 = {wi : 1 ≤ i ≤ a}
is a 2-packing set of G so that ρ(G) ≥ a. Also, the set {wi, w

′

j : 1 ≤ i ≤ a, 1 ≤
j ≤ r} forms a maximal open packing set of G. Certainly, ρo(G) ≥ a + r = b.
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Further, a maximum 2-packing set of G consists of exactly one vertex from each
triangle and hence ρ(G) ≤ a which implies that ρ(G) = a. Now, let D be any
maximal open packing set of G. If D contains one of the vertices on P , say
v11, then D consists of the vertices wi, w

′

j where 2 ≤ i ≤ a, 2 ≤ j ≤ r so that
|D| ≤ a+ r− 1. Further, if D contains no vertex on P , then D consists of all the
vertices wi and its neighbours w

′

j , where 1 ≤ i ≤ a, 1 ≤ j ≤ r so that |D| ≤ a+r.
Thus ρo(G) ≤ a+ r = b.

Obviously, ρoL(G) ≤ ρo(G) for any graph G. Further, the difference between
these parameters is arbitrarily large. For example, for the graph G obtained
from a complete graph Kr where r ≥ 3, by attaching exactly one pendant edge
of any r − 1 vertices of Kr, we have ρoL(G) = 1 and ρo(G) = r − 1 so that
ρo(G)− ρoL(G) = r − 2. In fact these parameters can assume arbitrary values as
shown below.

Theorem 4.2. For any two positive integers a and b with a ≤ b, there exists a

graph G such that ρoL(G) = a and ρo(G) = b.

Proof. Suppose that a and b are two positive integers with a ≤ b. We construct
the required graph G in the following cases.

Case 1. a + 1 ≤ b ≤ 2a. We construct a graph G with ρoL(G) = a and
ρo(G) = b as follows. Consider a complete graph Kb on b vertices with V (Kb) =
{v1, v2, . . . , vb}. Attach at each vertex vi of Kb, a pendant edge viv

′

i, where
1 ≤ i ≤ b. Further, attach a triangle at each of the vertices v

′

1, v
′

2, . . . , v
′

a−1, say

Ci = (v
′

i, wi1, wi2, v
′

i). Let G be the resultant graph. The graph G when a = 4
and b = 8 is given in Figure 4.2.

Figure 4.2. A graph G with ρoL(G) = 4 and ρo(G) = 8.

We need to show that ρoL(G) = a and ρo(G) = b. Obviously, the set S1 = {wi1 :
2 ≤ i ≤ a − 1} ∪ {v1, v

′

1} is a maximal open packing set of G so that ρoL(G) ≤
|S1| = a. Now, it is not difficult to see that any maximal open packing set of G
contains at least a vertices so that ρoL(G) ≥ a. Further, S2 = {wi1 : 1 ≤ i ≤ a−1}
∪ {v

′

j : a ≤ j ≤ b} is a maximal open packing set so that ρo(G) ≥ |S2| = b. Now,
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let D be a maximal open packing set of G. Then at most one vertex on Kb will
be in D. If D contains one of the vertices vi, where 1 ≤ i ≤ a − 1, say v1, then
D consists of the vertex v

′

1 together with the vertex wi1 or wi2 for all i, where
2 ≤ i ≤ a − 1 so that |D| = a. On the other hand, if D contains one of the
vertices vj , where a ≤ j ≤ b, say va, then D consists of the vertex v

′

a along the
vertex wi1 or wi2, for all i = 1, 2, . . . , a − 1 so that |D| ≤ a + 1. Further, if D
contains no vertex of Kb, then D consists of all the pendant vertices and exactly
one vertex from each triangle Ci, where 1 ≤ i ≤ a − 1, so that |D| ≤ b. Thus
ρo(G) ≤ b.

Figure 4.3. A graph G with ρoL(G) = 2 and ρo(G) = 5.

Case 2. a = b. In this case, a required graph G is constructed as follows.
If a = 1, let G be a complete graph on n ≥ 3 vertices. Assume that a ≥ 2.
Now, consider a complete graph Ka on a vertices. Attach a pendant edge at
each of any a− 1 vertices of Ka and then attach a triangle at each of the newly
introduced pendant vertices. Moreover, attach a triangle in the remaining vertex
of Ka, where no pendant edge is attached. Let G be the resultant graph. For
a = b = 6 the graph G is illustrated in Figure 4.4. By a similar argument as
given in Case 1, one can prove that ρoL(G) = ρo(G) = a.

Figure 4.4. A graph G with ρoL(G) = ρo(G) = 6.
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Case 3. b > 2a. Let b = 2a + r, where r ≥ 1. We now construct a
graph G with ρoL(G) = a and ρo(G) = b as follows. Consider a path P =
{v11, v12, u1, v21, v22, u2, . . . , v(a−1)1, v(a−1)2, ua−1, va1, va2} on 3a−1 vertices. Now,
introduce a vertices w1, w2, . . . , wa and join each wi, where 1 ≤ i ≤ a to the
vertices vi1 and vi2. Also, attach exactly one pendant edge at each wi, where
1 ≤ i ≤ a and let the corresponding pendant vertices be w

′

i. Moreover, attach r

number of triangles C1, C2, . . . , Cr at the vertex v11, say Ci = (v11, xi1, xi2, v11),
where 1 ≤ i ≤ r. Finally, attach exactly one pendant edge at each of the vertices
xi1, where 1 ≤ i ≤ r and let x

′

i1 be the corresponding pendant vertices. For a = 2
and b = 5 the graph is illustrated in Figure 4.3.

Obviously, the sets S1 = {wi, w
′

i : 1 ≤ i ≤ a} ∪ {x
′

j1 : 1 ≤ j ≤ r}
and S2 = {vi1 : 1 ≤ i ≤ a} are maximal open packing sets of G so that
ρoL(G) ≤ a and ρo(G) ≥ b. Now, let D be any maximal open packing set

of G. For each i, where 2 ≤ i ≤ a, let Hi =
〈

{vi1, vi2, wi, w
′

i}
〉

and let

H1 =
〈

{v11, v12, w1, w
′

1} ∪ {xj1, xj2, x
′

j1 : 1 ≤ i ≤ r}
〉

. Then D must contain at

least one vertex from each Hi, where 1 ≤ i ≤ a. Also, D can have at most two
vertices from each Hi, where 2 ≤ i ≤ a, and r + 2 vertices from H1. Further,
when D has the vertex wi, it can not have the vertex ui. These observations
together prove that a ≤ |D| ≤ b which yields ρoL(G) = a and ρo(G) = b.

5. Conclusion and Scope

Theory of domination is an important as well as fastest growing area in Graph
theory. The bibliography in domination maintained by Haynes et al. [4] currently
has over 1200 entries. The notion of packing is closely related to domination and
consequently the study of packing parameters is of a great importance. The study
has been already initiated in [1, 3, 5, 6, 7] and this paper further extends this
study. More specifically, we determine the values of open packing parameters ρo

and ρoL for the graphs of diameter two. Also, several bounds for these parameters
in terms of order, degree, total domination number and clique number have been
obtained. Moreover, some relationships among packing parameters along with
realization theorems are presented. Even if this paper is a little extension of the
study of the packing parameters, there is a wide scope of further research on
these parameters and here we list some of them.

1. Find a characterization of connected graphs of order n ≥ 2 with ρo(G) =
n

δ(G) .

2. Find a characterization of graphs of order n with δ(G) ≥ 2 for which ρo(G)+
γt(G) = n.

3. Characterize the connected graphs of order n ≥ 3 for which ρo(G) = n −
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ω(G), where ω(G) denotes the clique number of G.

4. It has been observed that the value of ρo is ranging from ρ and 2ρ and we
have proved that ρo assumes any value in this range. Hence the problem of
characterizing the extremal graphs is worthy trying.

5. Characterize the graphs G for which ρo(G) = ρoL(G).

The effect of the removal of a vertex or an edge on any graph theoretic
parameter is of practical importance. As far as the parameter ρo is concerned,
removal of a vertex from a graph G may increase or decrease the value of ρo(G)
or may remain unchanged. Hence the vertex set V (G) can be split into the sets
V o(G), V +(G) and V −(G), where

V o(G) = {v ∈ V : ρo(G− v) = ρo(G)},

V +(G) = {v ∈ V : ρo(G− v) > ρo(G)},

V −(G) = {v ∈ V : ρo(G− v) < ρo(G)}.

Also, the removal of an edge from a graph G may increase the value of ρo(G) or
may remain unchanged and hence the edge set E(G) can be split into the sets
Eo(G) and E+(G). Now, we can start investigating the properties of these sets.
Similar study can be initiated for the remaining packing parameters as well.
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