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Abstract

Given a connected graph and a vertex x ∈ V (G), the geodesic graph
Px(G) has the same vertex set as G with edges uv iff either v is on an
x − u geodesic path or u is on an x − v geodesic path. A characterization
is given of those graphs all of whose geodesic graphs are complete bipartite.
It is also shown that the geodetic number of the Cartesian product of Km,n

with itself, where m,n ≥ 4, is equal to the minimum of m, n and eight.
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1. Introduction

Given a connected graph G and a vertex x ∈ V (G), the geodesic graph Px(G) [1]
is the graph with the same vertex set as G and edges uv ∈ E(Px(G)) iff either v
is on an x− u geodesic path or u is on an x− v geodesic path. (A geodesic path
is a shortest path between vertices.) In this paper, we prove that for connected
graphs G and H with g ∈ V (G) and h ∈ V (H), Pg(G) � Ph(H) = P(g,h)(G � H),
where G � H is the Cartesian product of graphs [2]. It is shown in [1] that G
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is bipartite if and only if Px(G) = G for every x ∈ V (G). We characterize those
graphs G for which Px(G) is complete bipartite for every x ∈ V (G).

For vertices u and v in a connected graph G, I[u, v] is the set of all vertices on
some geodesic between u and v. S is a geodetic set if

⋃
{I[u, v] : u, v ∈ S}=V (G).

The geodetic number of a connected graph G, g(G), is the size of a minimal
geodetic set for G. The geodetic number was introduced in [5] and has been
widely studied. See, for example, [3, 4, 7, 8], and [9] for results related to the
geodetic number of graph products. It is known [6] that the geodetic number of
a complete bipartite graph Km,n is four if both m and n are at least four and
then it follows from [8] that if m,n, r, s ≥ 4, then g(Km,n�Kr,s) ≥ 4. In [4] the
authors introduce linear geodetic sets (see section 3 below) and use them to show
that if m,n, r, s ≥ 4, then g(Km,n�Kr,s) ≤ 8. We show that if m,n ≥ 4, then
g(Km,n�Km,n) = min{m,n, 8}.

2. The Geodesic Graph

In this section we first prove that for connected graphs G and H with g ∈ V (G)
and h ∈ V (H), Pg(G)�Ph(H) = P(g,h)(G�H). Recall that the Cartesian product
of graphs G and H, G�H, has vertex set V (G)×V (H); (a, b) is adjacent to (c, d)
in the product iff either a = c and b is adjacent to d, or b = d and a is adjacent
to c.

We will use the following two lemmas. The first appears in [8] and is called
“folklore” in [4].

Lemma 1. Let G and H be connected graphs. Given any two vertices (u, x)
and (v, y) in G � H, we have dG � H((u, x), (v, y)) = dG(u, v) + dH(x, y). Fur-
thermore, if P is a (u, x) − (v, y) geodesic in G � H and P1 and P2 are the
projections of V (P ) onto G and H, respectively, then P1 induces a u− v geodesic
in G and P2 induces an x− y geodesic in H.

Lemma 2 [1]. If e = uv ∈ E(G) is not an edge in Px(G), then e is an edge in
an odd cycle of G. If dG(x, u) = dG(x, v), then uv is not an edge in Px(G).

Theorem 3. Let G and H be connected graphs with g ∈ V (G) and h ∈ V (H).
Then Pg(G)�Ph(H) = P(g,h)(G�H).

Proof. We first prove that Pg(G)�Ph(H) ⊆ P(g,h)(G�H). The vertex sets are
equal so we consider edges. Let e be an edge inG�H which is not in P(g,h)(G�H).
Either e = (u, y)(v, y) or e = (x, u)(x, v). We assume the former. Then by
Lemma 2, e belongs to an odd cycle in G�H and e lies on neither a (g, h)− (u, y)
geodesic nor a (g, h) − (v, y) geodesic in G�H. By Lemma 1, the projections of
these geodesics induce g − u and g − v geodesics in G and an h − y geodesic in
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H such that dG�H((g, h), (u, y)) = dG(g, u) + dH(h, y) = dG�H((g, h), (v, y)) =
dG(g, v) + dH(h, y). It follows that dG(g, u) = dG(g, v), hence by Lemma 2,
uv /∈ E(Pg(G)). Then e = (u, y)(v, y) /∈ E(Pg(G)�Ph(H)).

For the reverse inclusion, we consider an edge e in G�H which is not in
Pg(G)�Ph(H). By symmetry, we can assume e = (u, y)(v, y), where y ∈ V (H)
and uv /∈ E(Pg(G)). Then, u does not lie on a g − v geodesic and v does not lie
on a g − u geodesic, from which it follows that dG(g, u) = dG(g, v). Then from
Lemma 1, dG�H((g, h), (u, y)) = dG� H((g, h), (v, y)) and hence, from Lemma 2,
e /∈ E(P(g,h)(G�H)), which completes the proof.

For a subset S of the vertex set V (G) of the graph G, G[S] will denote the induced
subgraph of G. For our main theorem below we will need to develop conditions
under which Px(G[S]) = Px(G)[S]. That is, we need conditions under which the
geodesic graph of the induced subgraph is equal to the induced subgraph of the
geodesic graph of G. Notice that since G[S] is not necessarily connected, Px(G[S])
may not even be defined. When G[S] is not connected, we understand Px(G[S])
to be the geodesic graph of the component of G[S] containing x. We begin with
an example to show that these two graphs are not, in general, equal.

Figure 1

Example 4. It is not necessarily true that Px(G[S]) = Px(G)[S]. In Figure 1, x
is indicated in the diagram and S is the subset of V (G) consisting of the vertices
in the outer cycle, C6.

Lemma 5. Let S ⊆ V (G) and let x ∈ S. If either Px(G[S]) or Px(G)[S] is a
complete bipartite graph, then they are equal.

Proof. We assume, first, that Px(G[S]) is complete bipartite. Clearly the vertex
sets of Px(G[S]) and Px(G)[S] are equal, so we show they have the same edge
sets. Let uv ∈ E(Px(G[S])). We can assume v is on an x − u geodesic in G[S].
Since Px(G[S]) is complete bipartite, we have dG[S](u, x) = 2 and dG[S](v, x) = 1.
Since u, v, and x are all in S, and v is adjacent to x in S, uv ∈ E(Px(G)[S]).

To prove the reverse inclusion, let uv be an edge in Px(G)[S]. If uv is not
an edge in the complete bipartite graph Px(G[S]), then uv must be an edge
in an odd cycle in G[S] and both u and v must be in the same partition of
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vertices of Px(G[S]). If w is an antipodal point from uv on the odd cycle in
G[S], then dG[S](x, u) = dG[S](x,w) + dG[S](w, u) = dG[S](x,w) + dG[S](w, v) =
dG[S](x, v). We have two cases.

Case 1 (3-cycle): dG[S](x, u) = dG[S](x, v) = 1 (in G[S]) so that both u and v
are adjacent to x in G[S] and so also in G. But by Lemma 2, this implies that uv
cannot be an edge in Px(G). Then since u and v are in S, uv cannot be an edge
in Px(G)[S], which contradicts our assumption.

Case 2 (5-cycle): dG[S](x, u) = dG[S](x, v) = 2 in G[S] and u, v, and x are all
in the same partition. But since uv is an edge in Px(G)[S], either dG[S](x, u) or
dG[S](x, v) is less than 2, which contradicts our assumption.

This concludes the proof that if Px(G[S]) is complete bipartite, then the
two sets are equal. Now we prove that if Px(G)[S] is complete bipartite, then
again the sets are equal. Assume Px(G)[S] is complete bipartite and let uv
be an edge in Px(G)[S]. Note that {x, u, v} ⊆ S. We show uv ∈ E(Px(G[S]).
Since uv is an edge in Px(G)[S], it is an edge in Px(G), so we may assume that
uv lies on an x − v geodesic path in G. Since Px(G)[S] is complete bipartite,
dG[S](x, v) = dG[S](x, u) + 1 is either equal to one or two. In the first case, x = u
and the result immediately follows. In the second case, u is adjacent to x in
G[S]. Notice that v cannot be adjacent to x in Px(G)[S] since they are in the
same partite set, so dG[S](x, u) 6= dG[S](x, v) and hence uv ∈ E(Px(G[S])).

Again, for the reverse inclusion, assume uv ∈ E(Px(G[S])). Then u and v are
in S and dG[S](x, u) 6= dG[S](x, v). Now, if uv /∈ E(Px(G)[S]), then since u and
v are in S, uv /∈ E(Px(G)), which would imply that dG(x, u) = dG(x, v). Since
Px(G)[S] is complete bipartite, this distance is either one or two. If one, then
both u and v are adjacent to x in G, and also in G[S], which contradicts our
assumption that dG[S](x, v) 6= dG[S](x, v). If two, then x, u, and v are in the same
partition of Px(G)[S]. By our assumption, dG[S](x, u) 6= dG[S](x, v), so that one
of u or v must be adjacent to x in G[S] and so in G. But this contradicts our
finding that dG(x, u) = dG(x, v).

Definition 1. Let G be a graph with A, B ⊆ V (G). If A ∩ B = ∅, the join of
the induced subgraphs of A and B, G[A] ∨ G[B], has vertex set A ∪ B and edge
set E(G[A]) ∪ E(G[B]) ∪ {(a, b) : a ∈ A and b ∈ B}.

Lemma 6. If a graph G that may be expressed as the join of non-empty induced
subgraphs G[A] ∨ G[B] has complete bipartite geodesic graphs on all of its ver-
tices and Pa(G)[A] is an independent graph for some a ∈ A, then G[A] is an
independent graph as well, and similarly for B.

Proof. Clearly a is an isolated vertex (degree zero) in G[A]. Suppose there is an
edge uv in G[A]. Then in Pu(G), u is adjacent to v as well as to every vertex in
B. The vertex a is also adjacent to every vertex in B but is adjacent to neither



Products of Geodesic Graphs and the Geodetic Number... 39

u nor v. But then Pu(G) cannot be complete bipartite. From this contradiction,
we conclude that E(G[A]) = ∅.

Theorem 7. The following are equivalent for a connected graph G.
(1) G has complete bipartite geodesic graphs on each of its vertices;

(2) G may be expressed as the join of non-empty induced subgraphs G[A] ∨G[B]
where for each a ∈ A, Pa(G)[A] is either an independent graph or a complete
bipartite graph and similarly for each b ∈ B;

(3) G = G[A] ∨ G[B] for A ∪ B = V (G), where each of G[A] and G[B] either
is an independent graph or has complete bipartite geodesic graphs on each of
its respective vertices.

Proof. To prove (2) implies (1), assume G = G[A] ∨ G[B], where A ∪ B =
V (G). If for some a ∈ A, Pa(G)[A] is an independent graph, then by Lemma 6,
E(G[A]) = ∅ so that Px(G) is complete bipartite for every x ∈ A. A similar
argument holds for G[B]. We can assume, then, that Pa(G)[A] and Pb(G)[B] are
complete bipartite for each a ∈ A and b ∈ B, and further that every a ∈ A
is adjacent to every b ∈ B. We claim that for x ∈ V (G), Px(G) is complete
bipartite.

Let a ∈ A. Let A1 and A2 be the sets of vertices of distance one or two,
respectively, in G from a. Since no two vertices equidistant from a may be
adjacent in Pa(G), Pa(G) contains no edge in E(G[B]), no two vertices in A1

are adjacent in Pa(G), and no two vertices in A2 are adjacent in Pa(G). Since
Pa(G)[A] is complete bipartite, every vertex in A1 is adjacent to every vertex in
A2. Also, since all vertices in A1 and in B are adjacent to a, no two vertices
in A1 ∪ B are adjacent in Pa(G). Thus Pa(G) is complete bipartite across the
partition A1∪B and A2∪{a}. Notice either A2 or both A1 and A2 may be empty,
but that Pa(G) remains complete bipartite in those cases. We have shown that
Pa(G) is complete bipartite for each a ∈ A. Similarly, Pb(G) is complete bipartite
for each b ∈ B. The result follows.

We now prove (3) implies (2). That Px(G[A]) = Px(G)[A] when Px(G[A])
is complete bipartite follows from Lemma 5; and that Px(G[A]) is independent
when G[A] is independent (the converse of Lemma 6) is clear.

Now to prove (1) implies (2), let G have a complete bipartite geodesic graph
at every vertex. Fix x in V (G) and consider the partition of vertices of the
geodesic graph Px(G) into its partite sets A and B; then G[A] ∨G[B] = G. We
claim that for each b ∈ B, Pb(G)[B] is either an independent graph or a complete
bipartite graph and a similar claim holds for each a ∈ A.

Let b ∈ B. We assume the geodesic graph Pb(G) has partite sets B1 and
B2 so that Pb(G) is the graph (B1 ∪ B2,{uv : u ∈ B1, v ∈ B2}). The subgraph
induced by B ⊆ B1 ∪B2 is Pb(G)[B] = (B, {uv : u ∈ B1 ∩B, v ∈ B2 ∩B}). Two
cases follow:
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Case 1: B contains vertices from both B1 and B2 so that Pb(G)[B] is a
complete bipartite graph.

Case 2: B ⊆ B1 or B ⊆ B2. Then Pb(G)[B] is an independent graph.

We conclude by proving that (2) implies (3). We assume G = G[A] ∨G[B],
where for each a ∈ A, Pa(G)[A] is either an independent graph or a complete
bipartite graph and the same is true for each b ∈ B. Let a ∈ A and assume
Pa(G)[A] is a complete bipartite graph. Then by Lemma 5, Pa(G[A]) is also a
complete bipartite graph. If Pa(G)[A] is an independent graph, then by Lemma 6,
G[A] is also an independent graph. Since the proof for b ∈ B is similar, the result
follows.

3. The Geodetic Number of Products of Graphs.

In this section we examine the geodetic number of the product of complete bi-
partite graphs. First, two observations:

1. [2] The Cartesian product of graphs is bipartite if and only if each factor is
bipartite.

2. (Folklore) If G and H are non-trivial connected graphs, then G�H = Km,n

if and only if G = H = K2.

Knowing that the Cartesian product of complete bipartite graphs is not in gen-
eral complete bipartite, we now consider the geodetic number of the product of
complete bipartite graphs. We begin with known results.

Theorem 8 [8]. For graphs G and H,max{g(G), g(H)} ≤ g(G�H).

Theorem 9 [6]. If m,n ≥ 4, then g(Km,n) = 4.

Definition 2 [4]. Let S = {x1, x2,, . . . , xk} be a geodetic set of the graph G. S is
called a linear geodetic set if for any x ∈ V (G), there exists an index i, 1 ≤ i ≤ k,
such that x ∈ I[xi, xi+1].

Remark 10. If m,n, r, s ≥ 4, then as is pointed out in the comments after The-
orem 2.3 of [4], Km,n and Kr,s have linear geodetic sets and so it follows directly
from that theorem that g(Km,n�Kr,s) ≤ 8. Putting these results together, we
have that if m,n, r, s ≥ 4, then 4 ≤ g(Km,n�Kr,s) ≤ 8.

Theorem 11. If m,n ≥ 4, then g(Km,n�Km,n) = min{m,n, 8}.
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Proof. We first show that g(Km,n�Km,n) ≤ min{m,n, 8}. If min{m,n, 8} = 8,
then this inequality holds by the previous Remark, so we assume that min{m,n, 8}
= n and construct a geodetic set with n elements.

Assume we have a bipartition of Km,n : {L1,L2, . . . , Lm} and {R1, R2, . . . , Rn}.
Let S = {(R1, R1), (R2, R2), . . . , (Rn, Rn)}. We claim that S is a geodetic set in
Km,n�Km,n. Let X be an arbitrary element of Km,n�Km,n not in S. We show
that X is on a geodesic from S.

Case 1: If X = (Li, Lj), then (R1, R1) → (R1, Lj) → (Li, Lj) → (R2, Lj) →
(R2, R2) is a geodesic in S containing X.

Case 2: If X = (Ri, Rj), where i 6= j, then (Ri, Ri) → (Ri, L1) → (Ri, Rj) →
(L2, Rj) → (Rj , Rj) is a geodesic in S containing X. If i = j, then X ∈ S.

Case 3: If X = (Li, Rj), pick k 6= j, k ≤ n. Then (Rj , Rj) → (Li, Rj) →
(Rk, Rj) → (Rk, Li) → (Rk, Rk) is a geodesic in S containing X.

Case 4: If X = (Rj , Li), then X is on a geodesic from S as in Case 3.
Thus S is a geodetic set with n elements and g(Km,n�Km,n)≤n=min{m,n, 8}.
To complete the proof it is sufficient to show that g(Km,n�Km,n) 6= min{m,n,

8}−1. We label N = min{m,n, 8}, assume n ≤ m, assume N > 4, and assume we
have the same bipartition of Km,n as we had in the first part of this proof. Let T
be a geodetic set in Km,n�Km,n of size N−1. Then, regardless of whether N = n
or N = 8, there is some Li ∈ Km,n such that (Li, Y ) /∈ T for any Y ∈ Km,n.
Otherwise, there would be at least N pair of points in T . Similarly, there are
Rj , Lk, Rp in Km,n so that (Rj , Y ) /∈ T for any Y ∈ Km,n, (X,Lk) /∈ T for
any X ∈ Km,n and (X,Rp) /∈ T for any X ∈ Km,n. We will use these particular
points Li, Rj , Lk, Rp below.

Points in T are of the form (L,L), (R,R), (L,R), or (R,L), where L is a
member of the first set of the bipartition and R a member of the second set.
Geodesics between these points may be: from (L,L) to (L,L) of length two or
four depending on whether two of the Ls are the same and similarly from (R,R)
to (R,R); from (L,L) to (R,R) of length two; from (L,R) to (L,R) of length two
or four depending on whether Ls or Rs are the same and similarly from (R,L) to
(R,L); from (L,R) to (L,L) (or from (L,R) to (R,R)) of length one or three and
simliarly from (R,L) to either (R,R) or (L,L); from (L,R) to (R,L) of length
two.

Now consider the point (Li, Lk) as defined above. Because of the condi-
tions on Li and Lk and the length of the possible geodesics containing this point,
(Li, Lk) can only be on geodesics of the form (R,R) to (R,R) (with the Rs differ-
ent), so there must be two points of the form (R,R) in T . Similarly, considering
the point (Rj , Rp), there must be two points of the form (L,L) in T . The point
(Li, Rp) can only be on geodesics of the form (R,L) to (R,L), with the Rs dif-
ferent and the Ls different and so there must be two points of the form (R,L) in
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T . Similarly, the point (Rj , Lk) can only be on a geodesic of the form (L,R) to
(L,R), so there must be two points of the form (L,R) in T . There are then eight
points in T . But T has N − 1 points and N − 1 = min{m,n, 8} − 1 ≤ 8− 1 = 7.
Thus, there is no geodesic set of size N − 1.
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