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Abstract

A variation of graph coloring known as a t-tone k-coloring assigns a set
of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets
of colors assigned to any two vertices distance d apart share fewer than d

colors in common. The minimum integer k such that a graph G has a t-
tone k-coloring is known as the t-tone chromatic number. We study the
2-tone chromatic number in three different graph products. In particular,
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given graphs G and H, we bound the 2-tone chromatic number for the direct
product G×H, the Cartesian product G�H, and the strong product G⊠H.

Keywords: t-tone coloring, Cartesian product, direct product, strong prod-
uct.
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1. Introduction

Many variations of classic graph k-colorings abound, whereby we take a k-coloring
of a graph to mean an assignment of an element from {1, . . . , k}, called a color,
to each of the vertices of the graph. Chartrand was the first to introduce a t-
tone k-coloring [4], which is an assignment of t elements from the set {1, . . . , k}
to each vertex such that the sets of colors assigned to any two distinct vertices
within distance d share fewer than d colors. This t-tone k-coloring variation can
be viewed as a generalization of classic graph coloring since a 1-tone k-coloring
of a graph is simply a k-coloring.

For the purpose of this paper, we consider only simple, undirected graphs G
with vertex set V (G) and edge set E(G). For each vertex v ∈ V (G), degG(v)
denotes the number of vertices adjacent to v and the maximum degree of G is
defined to be ∆(G) = maxv∈V (G) degG(v). The distance between two vertices u

and v of V (G) is the size of the shortest length path between u and v, and is
denoted by dG(u, v). When the context is clear, we use the shorthand notation
d(u, v).

As stated above, a proper k-coloring of a graph G is an assignment of an
element from {1, . . . , k}, called a color, to each vertex in V (G) such that no
two adjacent vertices are assigned the same color. The chromatic number of G,
denoted χ(G), is the minimum number k such that G has a proper k-coloring.
We use Kn to denote the complete graph on n vertices. Given a graph G, a clique
is any complete subgraph of G, and the clique number of G, denoted ω(G), is the
cardinality of the maximum clique of G. For positive integers t and k where t ≤ k,
we let [k] represent the set {1, . . . , k} and denote the family of t-element subsets
of [k] by Pt([k]). The following is a formal definition of the t-tone chromatic
number of a graph.

Definition. Let G be a graph, and let t and k be positive integers such that
t ≤ k. A t-tone k-coloring of G is a function f : V (G) → Pt([k]) such that
|f(u) ∩ f(v)| < dG(u, v) for all distinct vertices u and v. A graph that has a
t-tone k-coloring is said to be t-tone k-colorable. The t-tone chromatic number of

G, denoted τt(G), is the minimum integer k such that G is t-tone k-colorable.
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Figure 1 depicts a 2-tone 5-coloring of P5 which is, indeed, minimum. Given a
t-tone k-coloring f of G, we call f(v) the label of v and the elements of [k] colors.

{1,2} {3,4} {1,5} {2,4} {1,3}

Figure 1. A 2-tone coloring of P5.

Given a graph G, a proper distance (d, k)-coloring of G is a map f : V (G) → [k]
such that for any two distinct vertices u and v of V (G) with dG(u, v) ≤ d, we
have f(u) 6= f(v). A t-tone k-coloring can also be viewed as a generalization of a
(d, k)-coloring in that both incorporate similar conditions based on the distance
between vertices. Applications of (2, k)-colorings include channel assignment, or
broadcast scheduling, for packet radio networks [7] and facility location problems
[8].

Recall that the square of G, denoted G2, is the graph with V (G2) = V (G)
and edge set E(G2) = { uv : dG(u, v) ≤ 2 }. We call the reader’s attention to the
fact that any proper k-coloring of G2 is a proper distance (2, k)-coloring of G, and
vice versa. Therefore, we use χ(G2) to denote the smallest integer k such that
G has a proper distance (2, k)-coloring. Fonger et al. [4] (p. 11) noted that the
relationship between χ(G2) and τ2(G) can at times seem counterintuitive. For
instance, one can show that χ(P 2

5 ) = 3 < 5 = τ2(P5), but that τ2(G) < χ(G2)
when G is the Petersen graph. However, the following was shown to be true for
any graph G.

Theorem 1 [4]. Given any graph G, τ2(G) ≤ χ(G) + χ(G2).

Although a better general upper bound for τ2(G) exists, the relationship between
χ(G2) and τ2(G) found in Theorem 1 will be useful for our results. In 2011,
Bickle and Phillips [1] gave general bounds for the t-tone chromatic number of a
graph G in terms of ∆(G). Shortly thereafter, Cranston, Kim, and Kinnersley
[2] (p. 3) gave the following upper bound, which we will refer to in subsequent
sections.

Theorem 2 [2]. For any graph G, τ2(G) ≤
⌈

(2 +
√
2)∆(G)

⌉

.

In addition to the above, Bal et al. recently studied the t-tone chromatic num-
ber of random graphs [3]. We now shift our focus to t-tone colorings in graph
products. Recall the definition of the direct product of two graphs.

Definition. Given two graphs G and H, the direct product of G and H, denoted
G×H, is the graph whose vertex set is the Cartesian product V (G)×V (H), and
whose edge set is

E(G×H) = {(x1, y1)(x2, y2) : x1x2 ∈ E(G) and y1y2 ∈ E(H)}.
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Figure 2. K2 ×K3.

Figure 2 depicts the direct product of K2 and K3. In Section 2, we use similar
proof techniques to those used in [4](p. 6) to determine the exact value of τ2(Km×
Kn), and we give general upper and lower bounds for τ2(G×H).

Next, recall the definition of the Cartesian product.

Definition. The Cartesian product of graphs G and H, denoted G�H, is the
graph whose vertex set is V (G)×V (H), whereby two vertices (u1, u2) and (v1, v2)
are adjacent if u1v1 ∈ E(G) and u2 = v2, or u1 = v1 and u2v2 ∈ E(H).

Figure 3. K2�K3.

Figure 3 depicts the Cartesian product of K2 and K3. As mentioned in [5],
a straight-forward argument shows that τt(G�H) ≤ τt(G)τt(H), but that this
bound can be improved. Focusing only on the case when t = 2, in Section 3 we
give an upper bound based on the value of max{χ(G2), χ(H2)}.

Finally, recall the definition of the strong product of graphs.

Definition. The strong product of graphs G and H, denoted G⊠H, is the graph
whose vertex set is the Cartesian product V (G) × V (H) and whose edge set is
given by E(G⊠H) = E(G�H) ∪ E(G×H).

Figure 4 depicts the strong product of K2 and K3. In Section 4, we show that
τ2(G⊠H) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)} using similar techniques and results
for the direct product and the Cartesian product.

2. Direct Product

In this section, we focus on the direct product of two graphs, whose definition
we restate for ease of reference. The direct product of two graphs G and H
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Figure 4. K2 ⊠K3.

is denoted G × H with vertex set V (G × H) = V (G) × V (H) and edge set
E(G×H) = {(x1, y1)(x2, y2) : x1x2 ∈ E(G) and y1y2 ∈ E(H)}.

Throughout this section, when we consider the direct product G×H, where
|V (G)| = m and |V (H)| = n, we will represent the vertices of G as x1, . . . , xm
and the vertices of H as y1, . . . , yn. Using this notation, for each i ∈ [m] we define
the column Ci as the set of all vertices with first coordinate xi. In particular, for
i ∈ [m], the ith column is given by Ci = {(xi, yj) : j ∈ [n]}. Similarly, for j ∈ [n],
the jth row is the set Rj = {(xi, yj) : i ∈ [m]}.

In order to find an upper and lower bound of the 2-tone chromatic number
of the direct product of any two graphs G and H, we first consider the direct
product of two complete graphs. By definition of the direct product, we know for
m,n ∈ N such that 2 ≤ m ≤ n,

V (Km ×Kn) = {(xi, yk) : i ∈ [m] and k ∈ [n]},

and
E(Km ×Kn) = {(xi, yk)(xj , yℓ) : i 6= j and k 6= ℓ}.

The following is a direct consequence of the distance formula for the direct prod-
uct found in [6](p. 54)

Proposition 3. Let m,n ∈ N such that m ≥ 2 and n ≥ 3. If u and v are any

two distinct vertices of V (Km ×Kn) that are contained within the same column,

then d(u, v) = 2.

Recall from Section 1 that given a graph G and a t-tone k-coloring f of G, we
call f(v) the label of v and the elements of [k] colors. Additionally, for any set of
vertices A ⊆ V (G), we define the set of colors contained in the labels associated

with A to be
c(A) = {c ∈ [k] : c ∈ f(v) for some v ∈ A}.

Theorem 4. If m,n ∈ N, where 2 ≤ m ≤ n and t = 1+
√
1+8n
2 , then

τ2(Km ×Kn) = min

{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋ − 1)

2

}

.
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Proof. First consider the case where m = n = 2. Since K2 ×K2
∼= 2K2,

τ2(K2 ×K2) = τ2(K2) = 4.

One can easily verify that this is the minimum of the three functions.
Now consider all other cases where m ≥ 2, n ≥ m and n 6= 2. Let f be a

minimum 2-tone k-coloring of Km × Kn. For each 1 ≤ i ≤ m, define Ai as the
set of all vertices v ∈ Ci such that for each a ∈ f(v), there exists a vertex w ∈ Ci

with w 6= v and a ∈ f(w). Note the following property of this subset Ai ⊆ Ci.
Fix i ∈ [m] and let v ∈ Ai as described above; that is, for a ∈ f(v) there exists
w ∈ Ci with a ∈ f(w). This implies that for all 1 ≤ j ≤ m such that j 6= i and
for any u ∈ Cj , a 6∈ f(u) since u is adjacent to at least one of v or w. Therefore,
the set of colors contained in the labels associated with Ai is disjoint from the set
of colors contained in the labels associated with Cj ; that is, c(Ai) ∩ c(Cj) = ∅.

For each 1 ≤ i ≤ m, let si = |c(Ai)|. Let sℓ = min1≤i≤m si for some
ℓ ∈ [m]. Thus, the number of distinct colors contained in the labels associated
with ∪m

i=1Ai is at least msℓ. By definition, for each (xℓ, yj) ∈ Cℓ\Aℓ, there exists
a color a ∈ f((xℓ, yj)) such that a is not contained in any other label associated
with Cℓ. Furthermore, if for some 1 ≤ i ≤ m where i 6= ℓ we have a ∈ c(Ai),
then there would exist v ∈ Ai and w ∈ Ci such that a ∈ f(v) ∩ f(w). However,
this would contradict the fact that f is a proper 2-tone coloring since one of v
or w is adjacent to (xℓ, yj). Thus, for each 1 ≤ i ≤ m, a 6∈ c(Ai). It follows that
k ≥ msℓ + |Cℓ\Aℓ|. We now determine the minimum k based on the value of
|Cℓ\Aℓ|. We do this by considering the following three cases.

Case 1. Assume that |Cℓ\Aℓ| = n. Thus, Aℓ = ∅ and sℓ = 0. Let Q =
{Ci : i ∈ [m] and si = 0} and T = {Ci : i ∈ [m] and si > 0}, where |Q| = q

and |T | = t. Note that q + t = m. Since sℓ = 0, we know t < m or equivalently
t + 1 ≤ m. For indexing purposes, we shall write Q = {Cα(1), . . . , Cα(q)}, where
α(i) ∈ [m] for 1 ≤ i ≤ q. Since q = m − t ≤ m ≤ n, there exists a set
W = {vα(1), . . . , vα(q)} such that vα(i) ∈ Cα(i) for each α(i), and if α(i) 6= α(j),
then vα(i) and vα(j) are in different rows. Notice that the induced subgraph
of W is a clique so that |f(vα(i)) ∩ f(vα(j))| = 0 when α(i) 6= α(j). Define,
B = {(xi, yj) ∈ Ci : Ci ∈ Q and Rj ∩W = ∅}.

Note that there exist at least n − q colors that are contained in c(B) which
are not contained in c(W ). Thus, |c(B) ∪ c(W )| ≥ 2q + n − q = n + q. Finally,
for each column Ci ∈ T , we know that si ≥ 2. Thus,

k ≥ n+ q + 2t

= m+ n+ t

≥ m+ n.

Case 2. Assume that |Cℓ\Aℓ| = 0. It follows that Aℓ = Cℓ and |Aℓ| = n.
Furthermore, since sℓ represents the number of distinct colors contained in the
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labels associated with Aℓ, we know that sℓ ≥ 2. Since any two distinct vertices
u, v ∈ Aℓ satisfy d(u, v) = 2, we know that

(

sℓ
2

)

≥ n. Using the quadratic formula,

this implies that sℓ ≥
⌈

1+
√
1+8n
2

⌉

. Consequently, k ≥ m
⌈

1+
√
1+8n
2

⌉

.

Case 3. Assume that n > |Cℓ\Aℓ| > 0. If
(

sℓ
2

)

> n, then clearly k ≥
m

⌈

1+
√
1+8n
2

⌉

. So assume
(

sℓ
2

)

≤ n, or equivalently 2 ≤ sℓ ≤
⌊

1+
√
1+8n
2

⌋

. We

have n = |Aℓ|+ |Cℓ\Aℓ|, which implies |Cℓ\Aℓ| = n−|Aℓ|. As in Case 2, we know
(

sℓ
2

)

≥ |Aℓ|. Thus, n−
(

sℓ
2

)

≤ n− |Aℓ|, which implies n−
(

sℓ
2

)

≤ |Cℓ\Aℓ|.
Therefore,

msℓ + |Cℓ\Aℓ| ≥ msℓ + n−
(

sℓ

2

)

= msℓ + n− sℓ(sℓ − 1)

2
.

So we consider the function g(s) = ms + n − s(s−1)
2 over the interval 2 ≤ s ≤

⌊

1+
√
1+8n
2

⌋

. One can easily verify that g′(s) = m− s+ 1
2 and g′′(s) = −1. Thus,

g is concave down for all values of 2 ≤ s ≤
⌊

1+
√
1+8n
2

⌋

, and over this interval

g has a local maximum when s = m + 1
2 . Therefore, the local minimums for g

occur when s = 2 and s =
⌊

1+
√
1+8n
2

⌋

. Letting t = 1+
√
1+8n
2 , it follows that

k ≥ msℓ + |Cℓ\Aℓ|

≥ min
s

ms+ n− s(s− 1)

2

such that 2 ≤ s ≤
⌊

1 +
√
1 + 8n

2

⌋

≥ min

{

2m+ n− 1,m⌊t⌋+ n− ⌊t⌋(⌊t⌋ − 1)

2

}

.

Since 2m+ n− 1 > m+ n, we may conclude that

k ≥ min

{

m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋ − 1)

2

}

.

Note that these cases sometimes overlap. For example,
(

s
2

)

= n implies that

⌊t⌋ = ⌈t⌉ = t and n− ⌊t⌋(⌊t⌋−1)
2 = 0, resulting in m⌈t⌉ = m⌊t⌋+ n− ⌊t⌋(⌊t⌋−1)

2 . In
any case, we have

τ2(Km ×Kn) ≥ min

{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋ − 1)

2

}

.

It remains to be shown that

τ2(Km ×Kn) ≤ min

{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋ − 1)

2

}

.
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Given m,n ∈ N where 2 ≤ m ≤ n and t = 1+
√
1+8n
2 , we construct different 2-tone

colorings, which depend on the value of min
{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋−1)
2

}

.

{1,2}

{2,3}

{1,3}

{1,4}

{2,4}

{3,4}

{5,6}

{6,7}

{5,7}

{5,8}

{6,8}

{7,8}

Figure 5. K2 ×K6.

Case 1. First, assume that

min
{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋−1)
2

}

= m⌈t⌉.

Choose m pairwise disjoint sets each containing ⌈t⌉ distinct colors, and denote
each set of colors Si for 1 ≤ i ≤ m. Since

(⌈t⌉
2

)

≥ n, for each 1 ≤ i ≤ m there
exist n distinct combinations containing two colors from the set Si. Thus, we
may define f : V (Km ×Kn) → P2

([

⌈t⌉
])

to be any mapping such that for each
1 ≤ i ≤ m the restriction of f to the set of vertices in Ci is an injective mapping to
the set of combinations containing two colors from the set Si. Figure 5 illustrates
a labeling of V (K2×K6) assigned by f . To see that f is a proper 2-tone coloring
of Km ×Kn, let u and v be distinct vertices of V (Km ×Kn). If u and v are not
contained in the same column, then f(u) ∩ f(v) = ∅. So assume u, v ∈ Ci for
some i ∈ [m]. We know by Proposition 3 that d(u, v) = 2. So we must show that
|f(u)∩ f(v)| ≤ 1. However, this follows from the fact that f does not assign any
label to more than one vertex of Ci. Therefore, f is a proper 2-tone coloring.

Case 2. Next, assume that min
{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋−1)
2

}

= m+n.

Let f1 be a proper coloring of Km and f2 be a proper coloring of Kn defined as
follows:
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f1 : V (Km) → {1, . . . ,m}
xi 7→ i

f2 : V (Kn) → {m+ 1, . . . ,m+ n}
yj 7→ m+ j.

Define the following function on V (Km ×Kn):

g : V (Km ×Kn) → P2([m+ n])

(xi, yj) 7→ {f1(xi), f2(yj)}.

Figure 6 illustrates a labeling of V (K2 ×K3) assigned by g.

{1,3}

{1,4}

{1,5}

{2,3}

{2,4}

{2,5}

Figure 6. K2 ×K3.

We claim g is a proper 2-tone coloring of Km ×Kn. Clearly, |g((x, y))| = 2 for
all (x, y) ∈ V (Km × Kn). Let (xi, yk) and (xj , yℓ) be two distinct vertices of
V (Km×Kn), where 1 ≤ i, j ≤ m and 1 ≤ k, ℓ ≤ n. Then g((xi, yk)) = {i, k+m}
and g((xj , yℓ)) = {j, ℓ +m}. If (xi, yk) and (xj , yℓ) are adjacent, then i 6= j and
k 6= ℓ. Thus, |g((xi, yk)) ∩ g((xj , yℓ))| = 0. If d((xi, yk), (xj , yℓ)) = 2, then either
i 6= j or k 6= ℓ. In any case, |g((xi, yk))∩ g((xj , yℓ))| ≤ 1. Therefore, g is a proper
2-tone coloring of Km ×Kn, and we may conclude that τ2(Km ×Kn) ≤ m+ n.

Case 3. Assume that min
{

m⌈t⌉,m+ n,m⌊t⌋+ n− ⌊t⌋(⌊t⌋−1)
2

}

= m⌊t⌋ +

n − ⌊t⌋(⌊t⌋−1)
2 . Note that t = 1+

√
1+8n
2 is the only positive solution to

(

t
2

)

= n.

Therefore, ⌊t⌋ satisfies
(⌊t⌋

2

)

≤ n. Let s =
(⌊t⌋

2

)

and consider the subgraph H of
Km ×Kn induced by the set {(xi, yj) : i ∈ [m], j ∈ [s]}. Thus, H ∼= Km ×Ks.
As in Case 2, choose m pairwise disjoint sets of ⌊t⌋ distinct colors and denote
each set Si for each i ∈ [m]. Define f1 : V (H) → P2

([

⌊t⌋
])

to be any mapping
such that for each i ∈ [m], the restriction of f1 to the set of vertices of Ci is an
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injective mapping to the set of combinations containing two colors from the set
Si. A similar argument as in Case 2 can be used to show that f1 is a proper
2-tone coloring of H.

Next, choose n − s distinct colors each of which are not contained in the
set ∪m

i=1Si, and label these colors {ts+1, . . . , tn}. Additionally, for each i ∈ [m],
choose one color from the set Si and call it ci. Notice that V (Km×Kn)\V (H) =
{(xi, yj) : i ∈ [m], s+ 1 ≤ j ≤ n}. Define

f2 : V (Km ×Kn)\V (H) → P2([m+ n− s])

(xi, yj) 7→ {ci, tj}.

We claim that f2 is a proper 2-tone coloring of (Km × Kn)\H. To see this,
let (xi, yk) and (xj , yℓ) be two distinct vertices of V (Km × Kn)\V (H) for some
1 ≤ i, j ≤ m and s+ 1 ≤ k, ℓ ≤ n. If (xi, yk) and (xj , yℓ) are adjacent, then i 6= j

and k 6= ℓ. Since Si and Sj are two disjoint sets of colors, we know that ci 6= cj .
Moreover, we know that tk 6= tℓ since k 6= ℓ. Thus, |f2((xi, yk))∩f2((xj , yℓ))| = 0.
If d((xi, yk), (xj , yℓ)) = 2, then either i 6= j or k 6= ℓ. It follows that |f2((xi, yk))∩
f2((xj , yℓ))| ≤ 1. Therefore, f2 is a proper 2-tone coloring of (Km ×Kn)\H.

Now define g : V (Km ×Kn) → P2([m⌊t⌋+ n− s]) such that

g(u) =

{

f1(u) if u ∈ V (H),

f2(u) otherwise.

Figure 7 illustrates a labeling of V (K2 × K11) assigned by g. To see that g is
a proper 2-tone coloring, we only need to consider when u ∈ V (H) and v 6∈
V (H). Write u = (xi, yk) and v = (xj , yℓ) for some i, j ∈ [m], k ∈ [s], and
ℓ ∈ {s + 1, . . . , n}. By definition g(v) = {cj , tℓ}, and we know tℓ 6∈ g(u) since
u ∈ V (H). So if u and v are located in the same column, then |g(u) ∩ g(v)| ≤ 1.
If u and v are not located in the same column, then i 6= j and cj 6∈ g(u) since
cj 6∈ Si. It follows that |g(u) ∩ g(v)| = 0. Therefore, g is a proper 2-tone coloring

of Km ×Kn using m⌊t⌋+ n−
(⌊t⌋

2

)

colors.

Using similar ideas found in Theorem 4, we can bound the value of τ2(G × H)
given any graphs G and H. We make use of the following general lower bound
given in [4] (p. 8).

Theorem 5 [4]. Let G be a graph and let ∆(G) = d. Then

τ2(G) ≥
⌈
√
8d+ 1 + 5

2

⌉

.
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{1,2}

{1,3}

{1,4}

{1,5}

{2,3}

{2,4}

{2,5}

{3,4}

{3,5}

{4,5}

{1,11}

{6,7}

{6,8}

{6,9}

{6,10}

{7,8}

{7,9}

{7,10}

{8,9}

{8,10}

{9,10}

{6,11}

Figure 7. K2 ×K11.

Theorem 6. Given two graphs G and H,

max

{⌈

5 +
√

1 + 8∆(G)∆(H)

2

⌉

, τ2(Kω(G) ×Kω(H))

}

≤ τ2(G×H)

≤ χ(G2) + χ(H2).

Proof. We first show that for any graphs G and H, we have τ2(G × H) ≤
χ(G2) + χ(H2). Assume χ(G2) = k1 and χ(H2) = k2. Let f1 : V (G) → [k1] be
a distance (2, k1)-coloring of G, and let f2 : V (H) → {k1 + 1, . . . , k1 + k2} be a
distance (2, k2)-coloring of H. Define

g : V (G×H) → P2([k1 + k2])

such that

(x, y) 7→ {f1(x), f2(y)} for all x ∈ V (G) and y ∈ V (H).

We claim that g is a proper 2-tone coloring of G×H. Clearly, |g((x, y))| = 2 for
all (x, y) ∈ V (G×H). Let (u, v) and (w, z) be two distinct vertices of V (G×H).
If (u, v) and (w, z) are adjacent, then uw ∈ E(G) and vz ∈ E(H). It follows that
f1(u) 6= f1(w) and f2(v) 6= f2(z). Since f1 is a mapping into the set [k1] and f2
is a mapping into the set {k1+1, . . . , k1+k2}, we have |g((u, v))∩ g((w, z))| = 0.
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Suppose that dG×H((u, v), (w, z))=2. If u=w, then v 6= z and since dH(v, z) ≤ 2,
it follows that f2(v) 6= f2(z). Thus, |g((u, v))∩ g((w, z))| ≤ 1. Similarly, if v = z,
then |g((u, v)) ∩ g((w, z))| ≤ 1. So we may assume that u 6= w and v 6= z. There
exists a vertex (x, y) ∈ V (G×H) such that uxw is a path in G and vyz is a path
in H. Since dG(u,w) ≤ 2 and dH(v, z) ≤ 2, we know that f1(u) 6= f1(w) and
f2(v) 6= f2(z). Thus, |g((u, v)) ∩ g((w, z))| = 0, and we may conclude that g is a
proper 2-tone coloring of G×H, and τ2(G×H) ≤ χ(G2) + χ(H2).

4

6

5

4

1 2 3

{1,4} {2,4} {3,4}

{1,5} {3,5}

{1,6} {3,6}

{1,4} {2,4} {3,4}

{2,5}

{2,6}

Figure 8. A 2-tone coloring of P3 × P4.

In terms of a lower bound, note that by definition of the direct product, Kω(G)×
Kω(H) is a subgraph of G ×H. Thus, τ2(Kω(G) ×Kω(H)) ≤ τ2(G ×H). On the
other hand, we know ∆(G×H) = ∆(G)∆(H). So by Theorem 5, we know that
⌈

5+
√

1+8∆(G)∆(H)

2

⌉

≤ τ2(G×H). Therefore,

max

{⌈

5 +
√

1 + 8∆(G)∆(H)

2

⌉

, τ2(Kω(G) ×Kω(H))

}

≤ τ2(G×H).

It should be noted that there exist graphs G and H such that the upper bound in
Theorem 6 is better than applying Theorem 2. For example, consider the graph
P3 × P4 in Figure 8. One can easily verify that the labeling shown in Figure 8 is
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in fact a 2-tone coloring. Thus, τ2(P3 × P4) ≤ 6, which is an improvement from
the bound given in Theorem 2 of

τ2(P3 × P4) ≤
⌈

(2 +
√

(2))∆(P3 × P4)
⌉

=
⌈

(2 +
√
2)4

⌉

= 14.

3. Cartesian Product

We now focus on the Cartesian product of two graphs. Recall that the Cartesian
product G�H has vertex set V (G�H) = V (G) × V (H), whereby two vertices
(u1, u2) and (v1, v2) are adjacent if u1v1 ∈ E(G) and u2 = v2, or u1 = v1 and
u2v2 ∈ E(H).

In this particular product, we have an obvious lower bound for the 2-tone
chromatic number.

Proposition 7. Given two graphs G and H,

max{τ2(G), τ2(H)} ≤ τ2(G�H).

Proof. This follows from the fact that G and H are both subgraphs of G�H.

In terms of an upper bound, it is stated in [5] that τ2(G�H) ≤ τ2(G)τ2(H), but
that this bound could be improved. We give an upper bound for τ2(G�H) in
terms of max{χ(G2), χ(H2)} depending on the parity of this value.

Theorem 8. Given two graphs G and H where max{χ(G2), χ(H2)} = χ(G2),

τ2(G � H) ≤
{

2χ(G2) if χ(G2) is odd,

2(χ(G2) + 1) otherwise.

Proof. If χ(G2) is an even integer, then we let k = χ(G2) + 1. Otherwise, we
will let k = χ(G2). Let f1 : V (G) 7→ [k] be a proper distance (2, k)-coloring of G,
and let f2 : V (H) 7→ [k] be a proper distance (2, k)-coloring of H.

Define g : V (G�H) 7→ P2([2k]) such that

(x, y) 7→
{

f1(x) + f2(y) (mod k), (f2(y)− f1(x) (mod k)k) + k
}

.

Figure 9 depicts a labeling of V (P3�P3) assigned by g. We will first show that
g assigns two distinct colors to each vertex of G�H. Let (x, y) ∈ V (G�H) and
write g((x, y)) = {a, b}. Since a= f1(x) + f2(y)(mod k), it follows that a ∈ [k].
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3

2

1

1 2 3

{2,6} {3,5} {1,4}

{3,4} {1,6} {2,5}

{1,5} {2,4} {3,6}

Figure 9. A 2-tone coloring of P3�P3.

On the other hand, b = (f2(y)−f1(x)(mod k))+ k. So b ∈ {k+1, . . . , 2k}, which
implies |g((x, y))| = 2.

Next, we show that g satisfies the distance criteria for 2-tone colorings. Let
(u, v) and (w, z) be two distinct vertices of V (G�H).

Case 1. Suppose that dG�H((u, v), (w, z)) = 1. Then either u = w and
dH(v, z) = 1 or v = z and dG(u,w) = 1. If u = w and dH(v, z) = 1, then we
know that f1(u) = f1(w) and f2(v) 6= f2(z). This implies that

f1(u) + f2(v) 6≡ f1(w) + f2(z) (mod k).

Moreover,

f2(v)− f1(u) 6≡ f2(z)− f1(w) (mod k),

which implies

(f2(v)− f1(u) (mod k)) + k 6= (f2(z)− f1(w) (mod k)) + k.

So |g((u, v))∩g((w, z))| = 0.A similar argument shows that |g((u, v))∩g((w, z))| =
0 if v = z and dG(u,w) = 1.

Case 2. Suppose that dG�H((u, v), (w, z)) = 2. Then exactly one of the
following will be true:

(a) u = w and dH(v, z) = 2,

(b) v = z and dG(u,w) = 2,

(c) dG(u,w) = 1 and dH(v, z) = 1.
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In the case of either (a) or (b), a similar argument as in Case 1 shows |g((u, v))∩
g((w, z))| = 0. So assume dG(u,w) = 1 and dH(v, z) = 1. It follows that
f1(u) 6= f1(w) and f2(v) 6= f2(z). If |g((u, v)) ∩ g((w, z))| ≤ 1, we are done. So
suppose that g((u, v)) = g((w, z)). Thus,

(f2(v)− f1(u) (mod k)) + k = (f2(z)− f1(w) (mod k)) + k,

or equivalently f2(v)− f1(u) ≡ f2(z)−f1(w)(mod k). Rearranging terms gives

(1) f2(v)− f2(z) ≡ f1(u)− f1(w) (mod k).

On the other hand, we have

f1(u) + f2(v) ≡ f1(w) + f2(z) (mod k),

which implies

(2) f1(u)− f1(w) ≡ f2(z)− f2(v) (mod k).

Combining (1) and (2), we have

f2(v)− f1(z) ≡ f2(z)− f2(v) (mod k),

which implies 2f2(v)≡ 2f2(z)(mod k).However, this cannot happen since f2(v) 6≡
f2(z)(mod k) and gcd(2, k)=1. Thus, |g((u, v)) ∩ g((w, z))| ≤ 1.

Although the upper bound in Theorem 8 does not involve τ2(G) or τ2(H), it
should be noted that there are graphs for which the upper bound is best pos-
sible. For example, consider the graph P3�P3. By Theorem 8, we know that
τ2(P3�P3) ≤ 2χ(P 2

3 ) = 6. On the other hand, P3�P3 contains a cycle of length
4. Since τ2(C4) = 6, it follows that τ2(P3�P3) = 6.

4. Strong Product

The last graph product that we consider is the strong product G ⊠ H. Recall
that the strong product G ⊠ H has vertex set V (G ⊠ H) = V (G) × V (H) and
edge set E(G⊠H) = E(G�H) ∪ E(G×H).

Using similar ideas to those found in Sections 2 and 3, we have the following
upper and lower bounds for τ2(G⊠H).

Theorem 9. Given two graphs G and H,

max{τ2(G×H), τ2(G�H)} ≤ τ2(G⊠H) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)}.
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Proof. Note that G�H and G × H are both subgraphs of G ⊠ H. Thus,
max{τ2(G�H), τ2(G×H)} ≤ τ2(G⊠H).

Next, we will prove that τ2(G⊠H) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)}. With-
out loss of generality, we may assume τ2(G)χ(H2) ≤ χ(G2)τ2(H). Let f1 be a
proper 2-tone coloring of G using the colors {1, 2, . . . , τ2(G)}. Let f2 be a proper
distance (2, k)-coloring of H using the colors {1, τ2(G) + 1, 2τ2(G) + 1, . . . , (k −
1)τ2(G) + 1} where k = χ(H2).

Define g : V (G ⊠H) → P2([kτ2(G)]) such that for each (x, y) ∈ V (G ⊠H)
and for each c ∈ f1(x), we have c+ f2(y) ∈ g((x, y)). We show that g is a proper
2-tone coloring of G⊠H. Let (u, v) and (w, z) be vertices of V (G⊠H).

Case 1. Assume that dG⊠H((u, v), (w, z)) = 1. By definition of the strong
product, exactly one of the following will be true:

(a) dG(u,w) = 1 and v = z,

(b) u = w and dH(v, z) = 1,

(c) dG(u,w) = 1 and dH(v, z) = 1.

We show that |g((u, v)) ∩ g((w, z))| = 0 in each of the above cases.

(a) Assume dG(u,w) = 1 and v = z. Since f1 is a proper 2-tone coloring of
G, f1(u) ∩ f1(w) = ∅. Thus, we can write f1(u) = {c1, c2} and f1(w) = {c3, c4}
where ci 6= cj for 1 ≤ i < j ≤ 4. Since f2(v) = f2(z), we know for i ∈ {1, 2} and
j ∈ {3, 4} that ci + f2(v) 6= cj + f2(z). Therefore, |g((u, v)) ∩ g((w, z))| = 0.

(b) Assume u = w and dH(v, z) = 1. Since f2 is a proper distance (2, k)-
coloring of H, f2(v) 6= f2(z) and we may write f2(v) = iτ2(G) + 1 and f2(z) =
jτ2(G) + 1 for some 0 ≤ i < j ≤ k− 1. Let f1(u) = {c1, c2} where c1 6= c2. Thus,

g((u, v)) = {c1 + iτ2(G) + 1, c2 + iτ2(G) + 1}

and
g((w, z)) = {c1 + jτ2(G) + 1, c2 + jτ2(G) + 1}.

It is clear that c1 + iτ2(G) + 1 6= c1 + jτ2(G) + 1 since i < j. Similarly, c2 +
iτ2(G)+ 1 6= c2+ jτ2(G)+ 1. Note that if c1+ iτ2(G)+ 1 = c2+ jτ2(G)+ 1, then

c1 − c2 = (j − i)τ2(G).

We know that c1 − c2 6= 0 since i < j. On the other hand, c1 − c2 cannot be a
multiple of τ2(G) since 1 ≤ c1, c2 ≤ τ2(G). Therefore,

c1 + iτ2(G) + 1 6= c2 + jτ2(G) + 1,

and a similar argument shows that

c2 + iτ2(G) + 1 6= c1 + jτ2(G) + 1.
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Thus, |g((u, v)) ∩ g((w, z))| = 0.

(c) Assume dG(u,w) = 1 and dH(v, z) = 1. It follows that f1(u) ∩ f1(w) = ∅
and f2(v) 6= f2(z). As before, let f1(u) = {c1, c2} and f1(w) = {c3, c4} where
ca 6= cb when 1 ≤ a < b ≤ 4. Also, write f2(v) = iτ2(G)+1 and f2(z) = jτ2(G)+1
for some 0 ≤ i < j ≤ k − 1. Thus,

g((u, v)) = {c1 + iτ2(G) + 1, c2 + iτ2(G) + 1}

and

g((w, z)) = {c3 + jτ2(G) + 1, c4 + jτ2(G) + 1}.
Again, we see that c1 + iτ2(G) + 1 6= c2 + iτ2(G) + 1 since c1 6= c2. Similarly,
c3 + jτ2(G) + 1 6= c4 + jτ2(G) + 1 since c3 6= c4. Furthermore, for any a ∈ {1, 2}
and b ∈ {3, 4}, we know

ca + iτ2(G) + 1 6= cb + jτ2(G) + 1

since ca − cb cannot be a multiple of τ2(G). Therefore, |g((u, v))∩ g((w, z))| = 0.

Case 2. Assume that dG⊠H((u, v), (w, z)) = 2. Necessarily, dG(u,w) ≤ 2 and
dH(v, z) ≤ 2. Thus, |f1(u) ∩ f1(w)| ≤ 1 so there exist a ∈ f1(u) and b ∈ f1(w)
such that a 6= b. Furthermore, since dH(v, z) ≤ 2, we may assume there exist
0 ≤ i < j ≤ k − 1 such that f2(v) = iτ2(G) + 1 and f2(z) = jτ2(G) + 1. We have
already seen that this implies a + iτ2(G) + 1 6= b + jτ2(G) + 1 since i < j and
1 ≤ a, b ≤ τ2(G). Therefore, |g((u, v)) ∩ g((w, z))| ≤ 1.

{1,2} {3,4} {2,5}

{5,6} {7,8} {1,6}

{1,3} {2,4} {3,5}

Figure 10. P3 ⊠ P3

Note that for P3⊠P3, we can find a 2-tone 8-coloring as shown in Figure 10. This
coloring is best possible since P3 ⊠ P3 contains K4 and τ2(K4) = 8. However, in
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this case Theorem 9 gives bounds of

5 = max{τ2(P3�P3), τ2(P3 × P3)} ≤ τ2(P3 ⊠ P3)

≤ min{τ2(G)χ(H2), χ(G2)τ2(H)} = 15.

This alone shows that perhaps an upper bound in terms of other graph parameters
would be more useful. On the other hand, since K3 ⊠K3

∼= K9, it follows that
τ2(K3 ⊠K3) = 18. In this particular case, we have

6 = min{τ2(K3�K3), τ2(K3 ×K3)} ≤ τ2(K3 ⊠K3)

≤ min{τ2(G)χ(H2), χ(G2)τ2(H)} = 18,

which shows the upper bound in Theorem 9 is sharp.
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