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Abstract

Given an integer valued weighting of all elements of a 2-connected plane
graph G with vertex set V', let ¢(v) denote the sum of the weight of v € V' and
of the weights of all edges and all faces incident with v. This vertex coloring
of G is proper provided that c¢(u) # c(v) for any two adjacent vertices u and
v of G. We show that for every 2-connected plane graph there is such a
proper vertex coloring with weights in {1,2,3}. In a special case, the value
3 is improved to 2.
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1. INTRODUCTION

We consider a simple, finite, and undirected graph G with vertex set V' and edge
set E. If G is plane, then F' denotes the set of faces of G. The set V U E and the
set V.U E U F is the set of elements of G. For further notation and terminology,
we refer to [7] and [10].

Colorings of a graph defined by weightings (labellings) of elements of that
graph are popular topics in research. Here we will consider vertex colorings of G,
this is a mapping ¢ of V' into the set of positive integers ([13]).

For each vertex v € V', let S(v) be a nonempty subset of the set of elements
of Gand § = {S(v) | v € V} = {S(v)}. For a positive integer k we consider
a weighting of | J,cy, S(v), this is a mapping w from [J,y, S(v) into the set of
integers ¢ with 1 <17 < k.

Furthermore, we define the corresponding vertex coloring ¢ by ¢(v) and ¢(v) =
>zes(w) W() for v € V. The vertex coloring c is called irregular if c(u) # c(v)
for any two vertices u and v of G, and proper, if c(u) # c(v) for any two adjacent
vertices w and v of G, unless S(u) = S(v).

Moreover, for fixed S, let k;(S) and k,(S) be the minimum k such that there
exists a corresponding irregular coloring and a corresponding proper coloring,
respectively. If S = (J,cy S(v) is ordered and the k-th member of S gets the
weight 2F, then k,(S) < ki(S) < 29.

Note that k;({{v}}) = |V| and k,({{v}}) = x(G), where x(G) is the chro-
matic number of G ([13]).

Modifying the sets S(v), next we will survey several coloring concepts con-
sidered so far. The case S = {Ny(v)}, where Ny (v) denotes the set of vertices
adjacent to v € V, was recently considered in [6] and [9]. The following result of
Norin can be found there.

Theorem 1 [6]. Let G be a graph with chromatic number x(G) = r and coloring
number col(G) = k. Let nqy,...,n, be pairwise coprime integers with n; > k for
i=1,...,7. Then ky({Nv(v)}) < ning---n,.

By taking ny = 7, no = 8, ng = 9, and ngy = 11, it follows from Theorem 1
that k,({Nv(v)}) < 5544 for a planar graph G. In [6], this bound is improved
to 468. Moreover, it is shown there that k,({Ny(v)}) < 36 for a 3-colorable
planar graph, that k,({ Ny (v)}) < 4 for a planar graph of girth > 13, and that
kp({Nv(v)}) < 2if G is a tree.

Recently [4], it was proved that k,({Ny[v]}) < A2 — A + 1 for a graph with
maximum degree A, where Ny [v] = {v}UNy (v) forv e V, k,({Nv[v]}) < A-1
if G is bipartite, and k,({Ny[v]}) <2 if G is a tree.

Let Ng(v) denote the set of edges incident with v € V. Karoniski, Luczak,
and Thomason posed the following conjecture for graphs having no component
Kos.
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Conjecture 2 [16]. k,({Ng(v)}) < 3.

We remark that Conjecture 2 is true for 3-colorable graphs [16] and k,({ Ng(v)}) <
30 is shown in [1]. This bound is reduced to 16 in [2] and to 13 in [18]. The best
known result is k,({Ng(v)}) < 5 by Kalkowski, Karonski, and Pfender [15].

Note that k;({Ng(v)}) is called the irregularity strength of G [8, 11]. The
latest results and a survey about this topic can be found in [9].

The case S = {{v} UNg(v)} was firstly introduced by Baca, Jendrol’, Miller,
and Ryan in [5]. Here, k;({{v} U Ng(v)}) is called the total vertex irregularity
strength. Motivated by [5] and [15], Przybyto and Wozniak posed the following
conjecture.

Conjecture 3 [17]. ky,({{v} UNEg(v)}) < 2.
In addition, Przybylo and Wozniak showed
Theorem 4 [17]. k,({{v} U Ng(v)}) < min{ll,1+ |x(G)/2]}.

It follows from Theorem 4 that Conjecture 3 is true for 3-colorable graphs. The
breakthrough is done by Kalkowski [6] showing that k,({{v} U Ng(v)}) < 3
by using the weights for the vertices in {1,2} and the weights for the edges in
{1,2,3}.

Motivated by the above mentioned conjectures and results and by the paper
of Wang and Zhu [19], Jendrol' and Sugerek [12] introduced a concept for a 2-
connected plane graph G by considering k,({{v} UNg(v)UNp(v)}), where Np(v)
denotes the set of faces of G incident with v. In [4], k;({{v} U Ng(v) U Np(v)})
is called the entire vertex irregularity strength.

Jendrol’ and Sugerek formulated the following conjecture

Conjecture 5 [12]. If G is a 2-connected plane graph, then ky,({{v} U Ng(v) U
Np(v)}) < 2.

In Section 2, we will show that k,({{v}UNEg(v)UNEp(v)}) < 3 for each 2-connected
plane graph G and that Conjecture 5 is true, if the subgraph of G spanned by
the vertices of degree at least 4 is bipartite.

2. RESuLTS

Jendrol’ and Sugerek proved

Theorem 6 [12]. If G is a 2-connected plane graph, then k,({{v} U Ng(v) U
Nr(v)}) < x(G).

We will show
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Theorem 7. If G is a 2-connected plane graph, then k,({{v}UNEg(v)UNEp(v)}) <
3.

Proof. From the Four Color Theorem [3], we know that x(G) < 4. If x(G) < 3,
then we are done by Theorem 6.

Suppose x(G) = 4 and let f(v) € {1,2,3,4} for v € V be a proper vertex
coloring of G. Now we associate the following weights to the members of S =
VUEUF: put w(v) = f(v) for v e V(GQ), w(e) =2 for e € E, and w(«) = 2 for
a € F. Clearly, c¢(v) = f(v) (mod 4) for v € V, hence, c(u) # ¢(v) if v and v are
adjacent vertices of G.

Next we gradually relabel vertices weighted with weight 4. Therefore, let u
and v be two adjacent vertices of G connected by the edge e with w(u) = 4,
w(v) < 3 and w(e) = 2. We relabel u, v, and e as follows.

If w(v) = 2 or 3, then the new labels are w*(u) = 3, w*(v) = w(v) — 1, and
w*(e) = 3. If w(v) =1, then w*(u) =1, w*(v) = 2 and w*(e) = 1.

Note that c¢(v) = f(v) (mod 4) for each v € V after this relabeling and that
each edge incident with a remaining vertex of weight 4 still has weight 2 (i.e. the
relabelling can proceed). |

Conjecture 5 is true for every 2-connected bipartite plane graph, see Theorem 6.
We prove the next theorem supporting Conjecture 5, too.

Theorem 8. Let G be a 2-connected plane graph and H be the subgraph of G
induced by all vertices of degree at least 4. If H is empty or bipartite, then
kp({{v} U Ng(v) U Np(v)}) < 2 and there is a corresponding vertex coloring ¢
such that the weights of all faces of G equal 2.

Proof. Case 1: H is the empty graph. If G is isomorphic to Ky, then the
assertion is easily checked.

Hence, we may assume that x(G) < 3. Using Theorem 4, we may assume
that there is a coloring ¢’ realizing k,({{v} U Ng(v)}) < 2. We extend ¢ to a
coloring ¢ realizing k,({{v} U Ng(v) U Np(v)}) < 2 by the additional weights
w(a) = 2 for every face a € F. Note that all vertices of G have degree 2 or 3 and
that c(v) = ¢(v) + 2d for a vertex v € V of degree d. Hence, c(u) # ¢(v) for any
two adjacent vertices u,v € V' of the same degree.

It remains to consider adjacent vertices u,v € V of degree 2 and 3, respec-
tively. Let e be the edge connecting u and v. Since w(a) = 2 for every face
acF, clu) <w(e)+8and c¢(v) > w(e) +9 and we are done in Case 1.

Case 2: H is a non-empty graph. Let V(H) and E(H) denote the vertex
set and the edge set of H, respectively. Let the graph G’ be obtained from G
by simultaneously replacing each vertex v € V(H) of degree d as follows. Since
G is embedded into the plane, let eq,...,eq € E be the edges of F incident
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with v in clockwise order. Delete v, add the cycle on {vi,...,v4} with edge
set {vivg, vavs, ..., V4_1V4, VqV1}, and let e; be incident with v; for i = 1,...,d.
Although v is replaced by v;, the edge e; is considered to be an edge of G and
an edge of G’ as well (i = 1,...,d), thus, E C E(G'). A vertex in V' \ V(H)
is also considered to be a vertex of G’, hence, V \ V(H) C V(G'). Obviously,
G' = (V(G"),E(G"), F(G)) is a plane 2-connected graph of maximum degree 3.

By Case 1, G’ admits a weighting w’ with " (v) = {v}UNgg (v)UNpc(v)
for v S V(G,) and kp({{’l}} ) NE(G’)(U) ) NF(G’)(U) ’ NS V(G,)}) S 2 for the
corresponding vertex coloring ¢’ and w'(a) = 2 for every face a € F(G'). We will
define step by step a weight w(z) € {1,2} forallz € S =V UE U F as follows.

For each face o € F we put w(a) =2. f v e V\V(H) and e € E\ E(H),
then let w(v) = w'(v) and w(e) = w'(e), respectively. Note that the weight w(x)
is already defined for all z € S(v) = {v} UNg(v)UNE(v), if v € V\V(H), hence,
c(u) # ¢(v) for two adjacent vertices of V' \ V(H).

Furthermore, let w(e) = 2 for all e € E(H). It remains to define w(v)
for v € V(H) and, finally, to show that c(u) # c(v) for two adjacent vertices
ueV\V(H) and ve V(H). Therefore, consider an arbitrary component (a bipar-
tite graph) K of H and let vy be a fixed vertex of K. If v € V(K), then let dist(v)
be the distance of v to vp in K. Note that dist(vg) = 0 and that dist(u) # dist(v)
for any two adjacent vertices u,v € V(K), otherwise we have an odd cycle in K.

We put w(vg) = 2 and determine ¢(vg). Consider u € V(K) with dist(u) > 0
and let w(v) and, hence, also c¢(v) be already defined for all v € V(K) with
dist(v) < dist(u).

Since w(x) is defined for x € S(u) \ {u}, let ¢t € {1,2} be chosen such that
t+ X esfuy (@) Z (c(vo) + dist(u)) (mod 2) and put w(u) = t. Note that
the colors ¢(z) of all vertices x of K having the same value of dist(x) are of the
same parity. Thus, we may assume now that w(v) is defined for all v € V(H)
and that c(u) # ¢(v) for any two adjacent vertices u,v € V(H).

Eventually, let w € V' \ V(H) and v € V(H) be connected by the edge e
and it remains to show that c(u) # c(v). Since the degree of w is at most 3,
c(u) =3 es w(@) < wle) +12. Let v have degree d > 4 in G. If v = vg then
w(vy) = 2. If v # vg, then at least one edge of H is incident with v and such
an edge has weight 2. In both cases, it follows c¢(v) > 2d+ (d — 1) + 2 + w(e) =
3d+ 1+ w(e) > w(e) + 13, since w(a) = 2 for each face o € F. ]
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