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Abstract

Given an integer valued weighting of all elements of a 2-connected plane
graph G with vertex set V , let c(v) denote the sum of the weight of v ∈ V and
of the weights of all edges and all faces incident with v. This vertex coloring
of G is proper provided that c(u) 6= c(v) for any two adjacent vertices u and
v of G. We show that for every 2-connected plane graph there is such a
proper vertex coloring with weights in {1, 2, 3}. In a special case, the value
3 is improved to 2.
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1. Introduction

We consider a simple, finite, and undirected graph G with vertex set V and edge
set E. If G is plane, then F denotes the set of faces of G. The set V ∪E and the
set V ∪E ∪ F is the set of elements of G. For further notation and terminology,
we refer to [7] and [10].

Colorings of a graph defined by weightings (labellings) of elements of that
graph are popular topics in research. Here we will consider vertex colorings of G,
this is a mapping c of V into the set of positive integers ([13]).

For each vertex v ∈ V , let S(v) be a nonempty subset of the set of elements
of G and S = {S(v) | v ∈ V } = {S(v)}. For a positive integer k we consider
a weighting of

⋃
v∈V S(v), this is a mapping w from

⋃
v∈V S(v) into the set of

integers i with 1 ≤ i ≤ k.
Furthermore, we define the corresponding vertex coloring c by c(v) and c(v) =∑

x∈S(v)w(x) for v ∈ V . The vertex coloring c is called irregular if c(u) 6= c(v)
for any two vertices u and v of G, and proper, if c(u) 6= c(v) for any two adjacent
vertices u and v of G, unless S(u) = S(v).

Moreover, for fixed S, let ki(S) and kp(S) be the minimum k such that there
exists a corresponding irregular coloring and a corresponding proper coloring,
respectively. If S =

⋃
v∈V S(v) is ordered and the k-th member of S gets the

weight 2k, then kp(S) ≤ ki(S) < 2|S|.
Note that ki({{v}}) = |V | and kp({{v}}) = χ(G), where χ(G) is the chro-

matic number of G ([13]).
Modifying the sets S(v), next we will survey several coloring concepts con-

sidered so far. The case S = {NV (v)}, where NV (v) denotes the set of vertices
adjacent to v ∈ V , was recently considered in [6] and [9]. The following result of
Norin can be found there.

Theorem 1 [6]. Let G be a graph with chromatic number χ(G) = r and coloring

number col(G) = k. Let n1, . . . , nr be pairwise coprime integers with ni ≥ k for

i = 1, . . . , r. Then kp({NV (v)}) ≤ n1n2 · · ·nr.

By taking n1 = 7, n2 = 8, n3 = 9, and n4 = 11, it follows from Theorem 1
that kp({NV (v)}) ≤ 5544 for a planar graph G. In [6], this bound is improved
to 468. Moreover, it is shown there that kp({NV (v)}) ≤ 36 for a 3-colorable
planar graph, that kp({NV (v)}) ≤ 4 for a planar graph of girth ≥ 13, and that
kp({NV (v)}) ≤ 2 if G is a tree.

Recently [4], it was proved that kp({NV [v]}) ≤ ∆2 − ∆ + 1 for a graph with
maximum degree ∆, where NV [v] = {v}∪NV (v) for v ∈ V , kp({NV [v]}) ≤ ∆− 1
if G is bipartite, and kp({NV [v]}) ≤ 2 if G is a tree.

Let NE(v) denote the set of edges incident with v ∈ V . Karoński,  Luczak,
and Thomason posed the following conjecture for graphs having no component
K2.
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Conjecture 2 [16]. kp({NE(v)}) ≤ 3.

We remark that Conjecture 2 is true for 3-colorable graphs [16] and kp({NE(v)}) ≤
30 is shown in [1]. This bound is reduced to 16 in [2] and to 13 in [18]. The best
known result is kp({NE(v)}) ≤ 5 by Kalkowski, Karoński, and Pfender [15].

Note that ki({NE(v)}) is called the irregularity strength of G [8, 11]. The
latest results and a survey about this topic can be found in [9].

The case S = {{v}∪NE(v)} was firstly introduced by Bača, Jendrol’, Miller,
and Ryan in [5]. Here, ki({{v} ∪ NE(v)}) is called the total vertex irregularity

strength. Motivated by [5] and [15], Przyby lo and Woźniak posed the following
conjecture.

Conjecture 3 [17]. kp({{v} ∪NE(v)}) ≤ 2.

In addition, Przyby lo and Woźniak showed

Theorem 4 [17]. kp({{v} ∪NE(v)}) ≤ min{11, 1 + ⌊χ(G)/2⌋}.

It follows from Theorem 4 that Conjecture 3 is true for 3-colorable graphs. The
breakthrough is done by Kalkowski [6] showing that kp({{v} ∪ NE(v)}) ≤ 3
by using the weights for the vertices in {1, 2} and the weights for the edges in
{1, 2, 3}.

Motivated by the above mentioned conjectures and results and by the paper
of Wang and Zhu [19], Jendrol’ and Šugerek [12] introduced a concept for a 2-
connected plane graph G by considering kp({{v}∪NE(v)∪NF (v)}), where NF (v)
denotes the set of faces of G incident with v. In [4], ki({{v} ∪NE(v) ∪NF (v)})
is called the entire vertex irregularity strength.

Jendrol’ and Šugerek formulated the following conjecture

Conjecture 5 [12]. If G is a 2-connected plane graph, then kp({{v} ∪NE(v) ∪
NF (v)}) ≤ 2.

In Section 2, we will show that kp({{v}∪NE(v)∪NF (v)}) ≤ 3 for each 2-connected
plane graph G and that Conjecture 5 is true, if the subgraph of G spanned by
the vertices of degree at least 4 is bipartite.

2. Results

Jendrol’ and Šugerek proved

Theorem 6 [12]. If G is a 2-connected plane graph, then kp({{v} ∪ NE(v) ∪
NF (v)}) ≤ χ(G).

We will show
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Theorem 7. If G is a 2-connected plane graph, then kp({{v}∪NE(v)∪NF (v)}) ≤
3.

Proof. From the Four Color Theorem [3], we know that χ(G) ≤ 4. If χ(G) ≤ 3,
then we are done by Theorem 6.

Suppose χ(G) = 4 and let f(v) ∈ {1, 2, 3, 4} for v ∈ V be a proper vertex
coloring of G. Now we associate the following weights to the members of S =
V ∪E ∪ F : put w(v) = f(v) for v ∈ V (G), w(e) = 2 for e ∈ E, and w(α) = 2 for
α ∈ F . Clearly, c(v) ≡ f(v) (mod 4) for v ∈ V , hence, c(u) 6= c(v) if u and v are
adjacent vertices of G.

Next we gradually relabel vertices weighted with weight 4. Therefore, let u
and v be two adjacent vertices of G connected by the edge e with w(u) = 4,
w(v) ≤ 3 and w(e) = 2. We relabel u, v, and e as follows.

If w(v) = 2 or 3, then the new labels are w∗(u) = 3, w∗(v) = w(v) − 1, and
w∗(e) = 3. If w(v) = 1, then w∗(u) = 1, w∗(v) = 2 and w∗(e) = 1.

Note that c(v) ≡ f(v) (mod 4) for each v ∈ V after this relabeling and that
each edge incident with a remaining vertex of weight 4 still has weight 2 (i.e. the
relabelling can proceed).

Conjecture 5 is true for every 2-connected bipartite plane graph, see Theorem 6.
We prove the next theorem supporting Conjecture 5, too.

Theorem 8. Let G be a 2-connected plane graph and H be the subgraph of G
induced by all vertices of degree at least 4. If H is empty or bipartite, then

kp({{v} ∪ NE(v) ∪ NF (v)}) ≤ 2 and there is a corresponding vertex coloring c
such that the weights of all faces of G equal 2.

Proof. Case 1: H is the empty graph. If G is isomorphic to K4, then the
assertion is easily checked.

Hence, we may assume that χ(G) ≤ 3. Using Theorem 4, we may assume
that there is a coloring c′ realizing kp({{v} ∪ NE(v)}) ≤ 2. We extend c′ to a
coloring c realizing kp({{v} ∪ NE(v) ∪ NF (v)}) ≤ 2 by the additional weights
w(α) = 2 for every face α ∈ F . Note that all vertices of G have degree 2 or 3 and
that c(v) = c′(v) + 2d for a vertex v ∈ V of degree d. Hence, c(u) 6= c(v) for any
two adjacent vertices u, v ∈ V of the same degree.

It remains to consider adjacent vertices u, v ∈ V of degree 2 and 3, respec-
tively. Let e be the edge connecting u and v. Since w(α) = 2 for every face
α ∈ F , c(u) ≤ w(e) + 8 and c(v) ≥ w(e) + 9 and we are done in Case 1.

Case 2: H is a non-empty graph. Let V (H) and E(H) denote the vertex
set and the edge set of H, respectively. Let the graph G′ be obtained from G
by simultaneously replacing each vertex v ∈ V (H) of degree d as follows. Since
G is embedded into the plane, let e1, . . . , ed ∈ E be the edges of E incident
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with v in clockwise order. Delete v, add the cycle on {v1, . . . , vd} with edge
set {v1v2, v2v3, . . . , vd−1vd, vdv1}, and let ei be incident with vi for i = 1, . . . , d.
Although v is replaced by vi, the edge ei is considered to be an edge of G and
an edge of G′ as well (i = 1, . . . , d), thus, E ⊂ E(G′). A vertex in V \ V (H)
is also considered to be a vertex of G′, hence, V \ V (H) ⊂ V (G′). Obviously,
G′ = (V (G′), E(G′), F (G′)) is a plane 2-connected graph of maximum degree 3.

By Case 1, G′ admits a weighting w′ with S′(v) = {v}∪NE(G′)(v)∪NF (G′)(v)
for v ∈ V (G′) and kp({{v} ∪ NE(G′)(v) ∪ NF (G′)(v) | v ∈ V (G′)}) ≤ 2 for the
corresponding vertex coloring c′ and w′(α) = 2 for every face α ∈ F (G′). We will
define step by step a weight w(x) ∈ {1, 2} for all x ∈ S = V ∪ E ∪ F as follows.

For each face α ∈ F we put w(α) = 2. If v ∈ V \ V (H) and e ∈ E \ E(H),
then let w(v) = w′(v) and w(e) = w′(e), respectively. Note that the weight w(x)
is already defined for all x ∈ S(v) = {v}∪NE(v)∪NF (v), if v ∈ V \V (H), hence,
c(u) 6= c(v) for two adjacent vertices of V \ V (H).

Furthermore, let w(e) = 2 for all e ∈ E(H). It remains to define w(v)
for v ∈ V (H) and, finally, to show that c(u) 6= c(v) for two adjacent vertices
u∈V \V (H) and v∈V (H). Therefore, consider an arbitrary component (a bipar-
tite graph) K of H and let v0 be a fixed vertex of K. If v ∈ V (K), then let dist(v)
be the distance of v to v0 in K. Note that dist(v0) = 0 and that dist(u) 6= dist(v)
for any two adjacent vertices u, v ∈ V (K), otherwise we have an odd cycle in K.

We put w(v0) = 2 and determine c(v0). Consider u ∈ V (K) with dist(u) > 0
and let w(v) and, hence, also c(v) be already defined for all v ∈ V (K) with
dist(v) < dist(u).

Since w(x) is defined for x ∈ S(u) \ {u}, let t ∈ {1, 2} be chosen such that
t +

∑
x∈S(u)\{u}w(x) 6≡ (c(v0) + dist(u)) (mod 2) and put w(u) = t. Note that

the colors c(x) of all vertices x of K having the same value of dist(x) are of the
same parity. Thus, we may assume now that w(v) is defined for all v ∈ V (H)
and that c(u) 6= c(v) for any two adjacent vertices u, v ∈ V (H).

Eventually, let u ∈ V \ V (H) and v ∈ V (H) be connected by the edge e
and it remains to show that c(u) 6= c(v). Since the degree of u is at most 3,
c(u) =

∑
x∈S(u)w(x) ≤ w(e) + 12. Let v have degree d ≥ 4 in G. If v = v0 then

w(v0) = 2. If v 6= v0, then at least one edge of H is incident with v and such
an edge has weight 2. In both cases, it follows c(v) ≥ 2d + (d− 1) + 2 + w(e) =
3d + 1 + w(e) ≥ w(e) + 13, since w(α) = 2 for each face α ∈ F .
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[9] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs , Inform. Pro-
cess. Lett. 109 (2009) 1078–1081.
doi:10.1016/j.ipl.2009.05.011

[10] R. Diestel, Graph Theory (Springer, 2000).

[11] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strenght ,
J. Graph Theory 41 (2002) 120–137.
doi:10.1002/jgt.10056
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