A NOTE ON VERTEX COLORINGS OF PLANE GRAPHS ${ }^{1}$

Igor FABRICI ${ }^{a}$

Jochen Harant ${ }^{b}$
Stanislav Jendrol' ${ }^{a}$
AND
Roman Soták ${ }^{a}$
${ }^{a}$ Institute of Mathematics
P.J. Šafárik University

Košice, Slovak Republic
${ }^{b}$ Institut für Mathematik
Technische Universität
Ilmenau, Germany

Abstract

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V, let $c(v)$ denote the sum of the weight of $v \in V$ and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that $c(u) \neq c(v)$ for any two adjacent vertices u and v of G. We show that for every 2 -connected plane graph there is such a proper vertex coloring with weights in $\{1,2,3\}$. In a special case, the value 3 is improved to 2 .

Keywords: plane graph, vertex coloring.
2010 Mathematics Subject Classification: 05C10, 05C15.

[^0]
1. Introduction

We consider a simple, finite, and undirected graph G with vertex set V and edge set E. If G is plane, then F denotes the set of faces of G. The set $V \cup E$ and the set $V \cup E \cup F$ is the set of elements of G. For further notation and terminology, we refer to [7] and [10].

Colorings of a graph defined by weightings (labellings) of elements of that graph are popular topics in research. Here we will consider vertex colorings of G, this is a mapping c of V into the set of positive integers ([13]).

For each vertex $v \in V$, let $S(v)$ be a nonempty subset of the set of elements of G and $\mathcal{S}=\{S(v) \mid v \in V\}=\{S(v)\}$. For a positive integer k we consider a weighting of $\bigcup_{v \in V} S(v)$, this is a mapping w from $\bigcup_{v \in V} S(v)$ into the set of integers i with $1 \leq i \leq k$.

Furthermore, we define the corresponding vertex coloring c by $c(v)$ and $c(v)=$ $\sum_{x \in S(v)} w(x)$ for $v \in V$. The vertex coloring c is called irregular if $c(u) \neq c(v)$ for any two vertices u and v of G, and proper, if $c(u) \neq c(v)$ for any two adjacent vertices u and v of G, unless $S(u)=S(v)$.

Moreover, for fixed \mathcal{S}, let $k_{i}(\mathcal{S})$ and $k_{p}(\mathcal{S})$ be the minimum k such that there exists a corresponding irregular coloring and a corresponding proper coloring, respectively. If $S=\bigcup_{v \in V} S(v)$ is ordered and the k-th member of S gets the weight 2^{k}, then $k_{p}(\mathcal{S}) \leq k_{i}(\mathcal{S})<2^{|S|}$.

Note that $k_{i}(\{\{v\}\})=|V|$ and $k_{p}(\{\{v\}\})=\chi(G)$, where $\chi(G)$ is the chromatic number of $G([13])$.

Modifying the sets $S(v)$, next we will survey several coloring concepts considered so far. The case $\mathcal{S}=\left\{N_{V}(v)\right\}$, where $N_{V}(v)$ denotes the set of vertices adjacent to $v \in V$, was recently considered in [6] and [9]. The following result of Norin can be found there.

Theorem 1 [6]. Let G be a graph with chromatic number $\chi(G)=r$ and coloring number $\operatorname{col}(G)=k$. Let n_{1}, \ldots, n_{r} be pairwise coprime integers with $n_{i} \geq k$ for $i=1, \ldots, r$. Then $k_{p}\left(\left\{N_{V}(v)\right\}\right) \leq n_{1} n_{2} \cdots n_{r}$.
By taking $n_{1}=7, n_{2}=8, n_{3}=9$, and $n_{4}=11$, it follows from Theorem 1 that $k_{p}\left(\left\{N_{V}(v)\right\}\right) \leq 5544$ for a planar graph G. In [6], this bound is improved to 468. Moreover, it is shown there that $k_{p}\left(\left\{N_{V}(v)\right\}\right) \leq 36$ for a 3-colorable planar graph, that $k_{p}\left(\left\{N_{V}(v)\right\}\right) \leq 4$ for a planar graph of girth ≥ 13, and that $k_{p}\left(\left\{N_{V}(v)\right\}\right) \leq 2$ if G is a tree.

Recently [4], it was proved that $k_{p}\left(\left\{N_{V}[v]\right\}\right) \leq \Delta^{2}-\Delta+1$ for a graph with maximum degree Δ, where $N_{V}[v]=\{v\} \cup N_{V}(v)$ for $v \in V, k_{p}\left(\left\{N_{V}[v]\right\}\right) \leq \Delta-1$ if G is bipartite, and $k_{p}\left(\left\{N_{V}[v]\right\}\right) \leq 2$ if G is a tree.

Let $N_{E}(v)$ denote the set of edges incident with $v \in V$. Karoński, Łuczak, and Thomason posed the following conjecture for graphs having no component K_{2} 。

Conjecture 2 [16]. $k_{p}\left(\left\{N_{E}(v)\right\}\right) \leq 3$.
We remark that Conjecture 2 is true for 3-colorable graphs [16] and $k_{p}\left(\left\{N_{E}(v)\right\}\right) \leq$ 30 is shown in [1]. This bound is reduced to 16 in [2] and to 13 in [18]. The best known result is $k_{p}\left(\left\{N_{E}(v)\right\}\right) \leq 5$ by Kalkowski, Karoński, and Pfender [15].

Note that $k_{i}\left(\left\{N_{E}(v)\right\}\right)$ is called the irregularity strength of $G[8,11]$. The latest results and a survey about this topic can be found in [9].

The case $\mathcal{S}=\left\{\{v\} \cup N_{E}(v)\right\}$ was firstly introduced by Bača, Jendrol', Miller, and Ryan in [5]. Here, $k_{i}\left(\left\{\{v\} \cup N_{E}(v)\right\}\right)$ is called the total vertex irregularity strength. Motivated by [5] and [15], Przybyło and Woźniak posed the following conjecture.

Conjecture 3 [17]. $k_{p}\left(\left\{\{v\} \cup N_{E}(v)\right\}\right) \leq 2$.
In addition, Przybyło and Woźniak showed
Theorem 4 [17]. $k_{p}\left(\left\{\{v\} \cup N_{E}(v)\right\}\right) \leq \min \{11,1+\lfloor\chi(G) / 2\rfloor\}$.
It follows from Theorem 4 that Conjecture 3 is true for 3 -colorable graphs. The breakthrough is done by Kalkowski [6] showing that $k_{p}\left(\left\{\{v\} \cup N_{E}(v)\right\}\right) \leq 3$ by using the weights for the vertices in $\{1,2\}$ and the weights for the edges in $\{1,2,3\}$.

Motivated by the above mentioned conjectures and results and by the paper of Wang and Zhu [19], Jendrol' and Šugerek [12] introduced a concept for a 2connected plane graph G by considering $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right)$, where $N_{F}(v)$ denotes the set of faces of G incident with v. In [4], $k_{i}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right)$ is called the entire vertex irregularity strength.

Jendrol' and Šugerek formulated the following conjecture
Conjecture 5 [12]. If G is a 2-connected plane graph, then $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup\right.\right.$ $\left.\left.N_{F}(v)\right\}\right) \leq 2$.

In Section 2, we will show that $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right) \leq 3$ for each 2-connected plane graph G and that Conjecture 5 is true, if the subgraph of G spanned by the vertices of degree at least 4 is bipartite.

2. Results

Jendrol' and Šugerek proved
Theorem 6 [12]. If G is a 2 -connected plane graph, then $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup\right.\right.$ $\left.\left.N_{F}(v)\right\}\right) \leq \chi(G)$.

We will show

Theorem 7. If G is a 2 -connected plane graph, then $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right) \leq$ 3.

Proof. From the Four Color Theorem [3], we know that $\chi(G) \leq 4$. If $\chi(G) \leq 3$, then we are done by Theorem 6 .

Suppose $\chi(G)=4$ and let $f(v) \in\{1,2,3,4\}$ for $v \in V$ be a proper vertex coloring of G. Now we associate the following weights to the members of $S=$ $V \cup E \cup F$: put $w(v)=f(v)$ for $v \in V(G), w(e)=2$ for $e \in E$, and $w(\alpha)=2$ for $\alpha \in F$. Clearly, $c(v) \equiv f(v)(\bmod 4)$ for $v \in V$, hence, $c(u) \neq c(v)$ if u and v are adjacent vertices of G.

Next we gradually relabel vertices weighted with weight 4 . Therefore, let u and v be two adjacent vertices of G connected by the edge e with $w(u)=4$, $w(v) \leq 3$ and $w(e)=2$. We relabel u, v, and e as follows.

If $w(v)=2$ or 3 , then the new labels are $w^{*}(u)=3, w^{*}(v)=w(v)-1$, and $w^{*}(e)=3$. If $w(v)=1$, then $w^{*}(u)=1, w^{*}(v)=2$ and $w^{*}(e)=1$.

Note that $c(v) \equiv f(v)(\bmod 4)$ for each $v \in V$ after this relabeling and that each edge incident with a remaining vertex of weight 4 still has weight 2 (i.e. the relabelling can proceed).

Conjecture 5 is true for every 2-connected bipartite plane graph, see Theorem 6. We prove the next theorem supporting Conjecture 5, too.

Theorem 8. Let G be a 2-connected plane graph and H be the subgraph of G induced by all vertices of degree at least 4. If H is empty or bipartite, then $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right) \leq 2$ and there is a corresponding vertex coloring c such that the weights of all faces of G equal 2 .

Proof. Case 1: H is the empty graph. If G is isomorphic to K_{4}, then the assertion is easily checked.

Hence, we may assume that $\chi(G) \leq 3$. Using Theorem 4, we may assume that there is a coloring c^{\prime} realizing $k_{p}\left(\left\{\{v\} \cup N_{E}(v)\right\}\right) \leq 2$. We extend c^{\prime} to a coloring c realizing $k_{p}\left(\left\{\{v\} \cup N_{E}(v) \cup N_{F}(v)\right\}\right) \leq 2$ by the additional weights $w(\alpha)=2$ for every face $\alpha \in F$. Note that all vertices of G have degree 2 or 3 and that $c(v)=c^{\prime}(v)+2 d$ for a vertex $v \in V$ of degree d. Hence, $c(u) \neq c(v)$ for any two adjacent vertices $u, v \in V$ of the same degree.

It remains to consider adjacent vertices $u, v \in V$ of degree 2 and 3 , respectively. Let e be the edge connecting u and v. Since $w(\alpha)=2$ for every face $\alpha \in F, c(u) \leq w(e)+8$ and $c(v) \geq w(e)+9$ and we are done in Case 1.

Case 2: H is a non-empty graph. Let $V(H)$ and $E(H)$ denote the vertex set and the edge set of H, respectively. Let the graph G^{\prime} be obtained from G by simultaneously replacing each vertex $v \in V(H)$ of degree d as follows. Since G is embedded into the plane, let $e_{1}, \ldots, e_{d} \in E$ be the edges of E incident
with v in clockwise order. Delete v, add the cycle on $\left\{v_{1}, \ldots, v_{d}\right\}$ with edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{d-1} v_{d}, v_{d} v_{1}\right\}$, and let e_{i} be incident with v_{i} for $i=1, \ldots, d$. Although v is replaced by v_{i}, the edge e_{i} is considered to be an edge of G and an edge of G^{\prime} as well $(i=1, \ldots, d)$, thus, $E \subset E\left(G^{\prime}\right)$. A vertex in $V \backslash V(H)$ is also considered to be a vertex of G^{\prime}, hence, $V \backslash V(H) \subset V\left(G^{\prime}\right)$. Obviously, $G^{\prime}=\left(V\left(G^{\prime}\right), E\left(G^{\prime}\right), F\left(G^{\prime}\right)\right)$ is a plane 2-connected graph of maximum degree 3 .

By Case $1, G^{\prime}$ admits a weighting w^{\prime} with $S^{\prime}(v)=\{v\} \cup N_{E\left(G^{\prime}\right)}(v) \cup N_{F\left(G^{\prime}\right)}(v)$ for $v \in V\left(G^{\prime}\right)$ and $k_{p}\left(\left\{\{v\} \cup N_{E\left(G^{\prime}\right)}(v) \cup N_{F\left(G^{\prime}\right)}(v) \mid v \in V\left(G^{\prime}\right)\right\}\right) \leq 2$ for the corresponding vertex coloring c^{\prime} and $w^{\prime}(\alpha)=2$ for every face $\alpha \in F\left(G^{\prime}\right)$. We will define step by step a weight $w(x) \in\{1,2\}$ for all $x \in S=V \cup E \cup F$ as follows.

For each face $\alpha \in F$ we put $w(\alpha)=2$. If $v \in V \backslash V(H)$ and $e \in E \backslash E(H)$, then let $w(v)=w^{\prime}(v)$ and $w(e)=w^{\prime}(e)$, respectively. Note that the weight $w(x)$ is already defined for all $x \in S(v)=\{v\} \cup N_{E}(v) \cup N_{F}(v)$, if $v \in V \backslash V(H)$, hence, $c(u) \neq c(v)$ for two adjacent vertices of $V \backslash V(H)$.

Furthermore, let $w(e)=2$ for all $e \in E(H)$. It remains to define $w(v)$ for $v \in V(H)$ and, finally, to show that $c(u) \neq c(v)$ for two adjacent vertices $u \in V \backslash V(H)$ and $v \in V(H)$. Therefore, consider an arbitrary component (a bipartite graph) K of H and let v_{0} be a fixed vertex of K. If $v \in V(K)$, then let $\operatorname{dist}(v)$ be the distance of v to v_{0} in K. Note that $\operatorname{dist}\left(v_{0}\right)=0$ and that $\operatorname{dist}(u) \neq \operatorname{dist}(v)$ for any two adjacent vertices $u, v \in V(K)$, otherwise we have an odd cycle in K.

We put $w\left(v_{0}\right)=2$ and determine $c\left(v_{0}\right)$. Consider $u \in V(K)$ with $\operatorname{dist}(u)>0$ and let $w(v)$ and, hence, also $c(v)$ be already defined for all $v \in V(K)$ with $\operatorname{dist}(v)<\operatorname{dist}(u)$.

Since $w(x)$ is defined for $x \in S(u) \backslash\{u\}$, let $t \in\{1,2\}$ be chosen such that $t+\sum_{x \in S(u) \backslash\{u\}} w(x) \not \equiv\left(c\left(v_{0}\right)+\operatorname{dist}(u)\right)(\bmod 2)$ and put $w(u)=t$. Note that the colors $c(x)$ of all vertices x of K having the same value of dist (x) are of the same parity. Thus, we may assume now that $w(v)$ is defined for all $v \in V(H)$ and that $c(u) \neq c(v)$ for any two adjacent vertices $u, v \in V(H)$.

Eventually, let $u \in V \backslash V(H)$ and $v \in V(H)$ be connected by the edge e and it remains to show that $c(u) \neq c(v)$. Since the degree of u is at most 3, $c(u)=\sum_{x \in S(u)} w(x) \leq w(e)+12$. Let v have degree $d \geq 4$ in G. If $v=v_{0}$ then $w\left(v_{0}\right)=2$. If $v \neq v_{0}$, then at least one edge of H is incident with v and such an edge has weight 2. In both cases, it follows $c(v) \geq 2 d+(d-1)+2+w(e)=$ $3 d+1+w(e) \geq w(e)+13$, since $w(\alpha)=2$ for each face $\alpha \in F$.

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertexcoloring edge-weigtings, Combinatorica 27 (2007) 1-12.
doi:10.1007/s00493-007-0041-6
[2] L. Addario-Berry, K. Dalaland and B.A. Reed, Degree constrainted subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174. doi:10.1016/j.dam.2007.05.059
[3] K. Appel and W. Haken, Every planar map is four-colorable, I. Discharging, Illinois J. Math. 21 (1977) 429-490.
[4] M. Axenovich, J. Harant, J. Przybyło, R. Soták and M. Voigt, A note on adjacent vertex distinguishing colorings number of graphs, Electron. J. Combin. (submitted).
[5] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388. doi:10.1016/j.disc.2005.11.075
[6] T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki and W. Żelazny, Additive colorings of planar graphs, Graphs Combin. 30 (2014) 1087-1098. doi:10.1007/s00373-013-1331-y
[7] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[8] G. Chartrand, M.S. Jacobson, L. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[9] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078-1081.
doi:10.1016/j.ipl.2009.05.011
[10] R. Diestel, Graph Theory (Springer, 2000).
[11] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strenght, J. Graph Theory 41 (2002) 120-137. doi:10.1002/jgt. 10056
[12] S. Jendrol' and P. Šugerek, A note on face coloring entire weightings of plane graphs, Discuss. Math. Graph Theory 34 (2014) 421-426.
doi:10.7151/dmgt. 1738
[13] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, 1995).
[14] M. Kalkowski, A note on 1, 2-conjecture, Electron. J. Combin. (to appear).
[15] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002
[16] M. Karoński and T. Luczak, A. Thomason, Edge weights and vertex colors, J. Combin. Theory (B) 91 (2004) 151-157.
doi:10.1016/j.jctb.2003.12.001
[17] J. Przybyło and M. Woźniak, On 1, 2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101-108.
[18] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 1-7.
doi:10.1007/s11461-008-0009-8
[19] W. Wang and X. Zhu, Entire coloring of plane graphs, J. Combin. Theory (B) 101 (2011) 490-501.
doi:10.1016/j.jctb.2011.02.006
Received 7 May 2013
Revised 13 January 2014
Accepted 13 January 2014

[^0]: ${ }^{1}$ This work was supported by the Slovak Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Slovak VEGA grant No. 1/0652/12.

