CHARACTERIZATION OF SUPER-RADIAL GRAPHS

KM. Kathiresan
Center for Research and Post Graduate Studies in Mathematics Ayya Nadar Janaki Ammal College
Sivakasi-626 124, Tamil Nadu, India
e-mail: kathir2esan@yahoo.com
G. Marimuthu
Department of Mathematics
The Madura College
Madurai-625 011, Tamil Nadu, India
e-mail: yellowmuthu@yahoo.com
AND
C. Parameswaran
Center for Research and Post Graduate Studies in Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi-626 124, Tamil Nadu, India
e-mail: parames65_c@yahoo.com

Abstract

In a graph G, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, $r(G)$, of the graph and the maximum eccentricity is called the diameter, $d(G)$, of the graph. The super-radial graph $R^{*}(G)$ based on G has the vertex set as in G and two vertices u and v are adjacent in $R^{*}(G)$ if the distance between them in G is greater than or equal to $d(G)-r(G)+1$ in G. If G is disconnected, then two vertices are adjacent in $R^{*}(G)$ if they belong to different components. A graph G is said to be a super-radial graph if it is a super-radial graph $R^{*}(H)$ of some graph H. The main objective of this paper is to solve the graph equation $R^{*}(H)=G$ for a given graph G.

Keywords: radius, diameter, super-radial graph.
2010 Mathematics Subject Classification: 05C12.

1. Introduction

The graphs considered are simple, non-trivial, undirected and finite. $G=(V, E)$ is a graph with vertex set $V(G)$ and edge set $E(G)$. In a graph G, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The radius $r(G)$ of G is defined by $r(G)=\min \{e(u): u \in V(G)\}$ and the diameter $d(G)$ of G is defined by $d(G)=\max \{e(u): u \in V(G)\}$. A graph G for which $r(G)=d(G)$ is called a self-centered graph of radius $r(G)$. A vertex v is called an eccentric vertex of a vertex u if $d(u, v)=e(u)$. A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. The concept of antipodal graph was initially introduced by Singleton [21] and was further expanded by Aravamudhan and Rajendran [2, 3]. The antipodal graph of a graph G, denoted by $A(G)$, is the graph on the same set of vertices as of G, two vertices being adjacent if the distance between them is equal to the diameter of G while G is connected and if G is disconnected, then two vertices are adjacent in $A(G)$ if they belong to different components of G. A graph G is said to be antipodal if it is the antipodal graph of some graph H.

Aravamudhan and Rajendran [2, 3] have proved the following theorem. A graph G is an antipodal graph if and only if it is the antipodal graph of its complement \bar{G}. In [4] the same authors observed that if H is a connected graph with $\operatorname{diam}(H)>2$, then $A(H)=A\left(H^{\prime}\right)$, where H^{\prime} is the graph on the same vertex set such that two vertices are adjacent in H^{\prime} if the distance between them in H is less than $\operatorname{diam}(H)$. This observation is still true when $\operatorname{diam}(H)=2$ (for then $H^{\prime}=H$) and when H is disconnected. In this case, the components of H and H^{\prime} consists of the same vertices and the edges of $A(H)$ and $A\left(H^{\prime}\right)$ are exactly the edges joining vertices in different components. This extension leads to another proof of the characterization of antipodal graphs which involves showing that $A\left(H^{\prime}\right)=\overline{H^{\prime}}$ by Johns [9].

Kathiresan and Marimuthu [14] introduced the radial graph $R(G)$ of a graph G on the same vertex set as G and two vertices u and v are adjacent in $R(G)$ if and only if the distance between them is equal to the radius. If G is disconnected, then two vertices are adjacent in $R(G)$ if they belong to different components of G. A graph G is called a radial graph if $R(H)=G$ for some graph H. Kathiresan and Marimuthu [15] characterized graphs G with specified radius for its radial graph.

In paper [20], the author defines a metric operator $X_{\mathcal{P}}$ which unifies every known digraph operator related to a distance property \mathcal{P}. In Theorem 1 [20] the author characterizes those digraphs G such that $X_{\mathcal{P}}(G)=H$ for some digraph G when \mathcal{P} is both unitary and vertex free distance property. In particular, the characterization of both antipodal and radial graphs arises from it.

Kathiresan et al. [16] defined a graph G to be periodic if $R^{m}(G)=G$ for some m. If p is the least positive integer with this property, then G is called a periodic graph with iso-period p. A graph G is said to be an eventually periodic graph if there exist positive integers m and $k>0$, such that $R^{m+i}(G)=R^{i}(G)$, for all $i \geq k$. They proved that every graph is either periodic or eventually periodic. In their paper they characterized all periodic graphs.

Akiyama et al. [1] defined the eccentric graph G_{e} of G on the same set of vertices, by joining two vertices if and only if one of the two vertices has the maximum possible distance from the other, that is $d(u, v)=\min \{e(u), e(v)\}$. Iqbalunnisa et al. [10] defined the super-eccentric graph $J(G)$ of a graph G on the same set of vertices of G and the adjacency relation between vertices is defined by $d(u, v) \geq \operatorname{rad}(G)$ while G is connected and when G is disconnected, two vertices are adjacent in $J(G)$ if they belong to different components of G. Kathiresan et al. [18] have given a characterization of super-eccentric graphs.

For a digraph D, the antipodal digraph $A(D)$ of D is the digraph which $V(A(D))=V(D)$ and $E(A(D))=\left\{(u, v): u, v \in V(D)\right.$ and $\left.d_{D}(u, v)=d(D)\right\}$. Johns and Sleno [8] obtained a characterization of antipodal digraphs. A digraph D is self-antipodal if $A(D)$ is isomorphic to D.

Kathiresan and Sumathi [17] extended the definition of radial graph to a digraph D where the arc (u, v) is included in $R(G)$ if $d(u, v)$ is the radius of D. According to them a digraph D is called a radial digraph if $R(H)=D$ for some digraph H.

Buckley [6] defined the eccentric digraph $E D(G)$ of graph G to be the digraph that has the same vertex set as G such that there is an arc from v to u provided that u is an eccentric vertex of v. He examined eccentric digraphs of graphs.

Gimbert et al. [12] considered the behaviour of an iterated sequence of eccentric graphs or digraphs of a graph or a digraph. They concluded with several open problems. Boland et al. [11] defined the eccentric digraph of a digraph. They examined eccentric digraphs of digraphs for various families of digraphs and they considered the behaviour of an iterated sequence of eccentric digraphs of a digraph.

Huilgol et al. [19] considered an open problem, which is found in [11]. They characterized graphs with specified maximum degree such that $E D(G)=G$.

Gimbert et al. [13] presented a characterization of eccentric digraphs, which in the undirected case says that a graph G is eccentric if and only if its complement graph \bar{G} is either self-centered of radius two or it is the union of complete graphs.

In [5], the $k^{t h}$ power G^{k} of the graph G has the same vertex set as G and vertices u and v are adjacent in G^{k} if the distance between them in G is at most k.

Motivated by these works, we introduce a new concept called super-radial graph $R^{*}(G)$ of a graph G on the same vertex set of G and two vertices u and v
are adjacent in $R^{*}(G)$ if and only if the distance between them is greater than or equal to $d(G)-r(G)+1$. If G is disconnected, then two vertices are adjacent in $R^{*}(G)$ if they belong to different components of G. A graph G is said to be a super-radial graph if there exists a graph H such that $R^{*}(H)=G$. In this paper, we have given a characterization for a graph to be a super-radial graph.

The following notation can be found in [14].
Let $F_{11}, F_{12}, F_{22}, F_{23}, F_{24}, F_{3}$ denote the set of all connected graphs G for which $r(G)=d(G)=1, r(G)=1$ and $d(G)=2, r(G)=d(G)=2, r(G)=2$ and $d(G)=3, r(G)=2$ and $d(G)=4, r(G) \geq 3$, respectively. F_{4} denote the set of all disconnected graphs. For graph theoretic terminology we follow [5], which is devoted entirely to the area of distance in graphs.

The following results will be used throughout this article.
Theorem A [5]. If G is a simple graph with diameter at least 3 , then \bar{G} has diameter at most 3.
Theorem B [5]. If G is a simple graph with diameter at least 4, then \bar{G} has diameter at most 2.
Theorem C [5]. If G is a simple graph with radius at least 3 , then \bar{G} has radius at most 2.

Theorem D [23]. If G is a selfcentred graph with radius at least 3 , then \bar{G} is a self centered graph of radius 2 .
From the above theorems, we have the following.
If $G \in F_{11}$, then \bar{G} is a totaly disconnected graph and if $G \in F_{12}$, then \bar{G} has at least one isolated vertex. If $G \in F_{22}$, then \bar{G} is a member of $F_{22} \cup F_{23} \cup F_{24} \cup$ $F_{3} \cup F_{4}$. If $G \in F_{23}$, then \bar{G} is a member of $F_{22} \cup F_{23}$. If $G \in F_{24}$, then \bar{G} is a member of F_{22}. If $G \in F_{3}$, then $\bar{G} \in F_{22}$. If every component of G is non-trivial, then $\bar{G} \in F_{22}$. If G has at least one isolated vertex, then \bar{G} is a member of F_{12}.
Lemma $\mathbf{E}[23]$. Let u, v be two vertices of a graph G. Then $d_{G^{k}}(u, v)=\left\lceil\frac{d_{G}(u, v)}{k}\right\rceil$.

2. The Relation Between the Super-radial Operator and the Complement Operator

In this section we find a graph G for which $R^{*}(G)=H$ for a given graph H.
Proposition 1. For any graph G on p vertices, $R^{*}(G)=K_{p}$ if and only if either G is self-centered or $G=\overline{K_{p}}$.

Proof. If either G is self-centered or $G=\overline{K_{p}}$, then the result follows from the definition of $R^{*}(G)$. Suppose that G is connected and $r(G) \neq d(G)$. This shows
that $d(G)-r(G)+1 \geq 2$. Therefore $R^{*}(G) \subseteq \bar{G}$. This is a contradiction to the fact that $R^{*}(G)=K_{p}$. If G is a disconnected graph in which $\left|V\left(G_{i}\right)\right|=2$, for some $i^{\text {th }}$ component G_{i} of G, then $u v \notin E\left(R^{*}(G)\right)$ whenever u and v belong to $V\left(G_{i}\right)$. This implies that $R^{*}(G) \neq K_{p}$.

Proposition 2. For any graph G with $p \geq 3$ vertices, $R^{*}(G)=K_{1, p-1}$ if and only if G is disconnected with exactly two components out of which one is an isolated vertex.

Proof. If G is disconnected with exactly two components out of which one is an isolated vertex, then by the definition of $R^{*}(G), R^{*}(G)=K_{1, p-1}$.

Let v_{1} be the vertex of degree $p-1$ and $v_{2}, v_{3}, \ldots, v_{p}$ be the pendant vertices of $R^{*}(G)$. If G is connected, then $d_{G}\left(v_{1}, v_{i}\right) \geq d(G)-r(G)+1$ for all $i \neq 1$ and hence $d_{G}\left(v_{1}, v_{i}\right) \geq 2$. This is a contradiction to the fact that $R^{*}(G)=K_{1, p-1}$. If G is disconnected with more than two nontrivial components, then we arrive at a contradiction to the fact that $R^{*}(G)=K_{1, p-1}$. If G has exactly two nontrivial components, then $R^{*}(G)$ is a complete bipartite graph.

Therefore the above argument forces us to conclude that G is a disconnected graph with exactly two components out of which one is an isolated vertex.

Proposition 3. If G is a graph with $d(G) \geq r(G)+1$, then $R^{*}(G) \subseteq \bar{G}$.
Proof. By the definition of $R^{*}(G)$ and \bar{G}, we have $V\left(R^{*}(G)\right)=V(\bar{G})=V(G)$. $d(G) \geq r(G)+1$ implies that $d(G)-r(G)+1 \geq 2$. This shows that $R^{*}(G) \subseteq \bar{G}$.

Lemma 4. Let G be a graph of order p. Then $R^{*}(G)=\bar{G}$ if and only if G is a graph with $d(G)=r(G)+1$ or G is disconnected in which each component is complete.

Proof. If $d(G)=r(G)+1$, then $d(G)-r(G)+1=2$. Therefore $R^{*}(G) \subseteq \bar{G}$. Also, any two adjacent vertices in G are not adjacent in $R^{*}(G)$. Therefore $\bar{G} \subseteq R^{*}(G)$. Thus $R^{*}(G)=\bar{G}$.

If G is disconnected with each component complete, then by the definition, $R^{*}(G)=\bar{G}$.

If $d(G)<r(G)+1$, then G is self-centred and by Proposition $1, R^{*}(G)=$ $\bar{G}=K_{p}$. As a consequence $G=\overline{K_{p}}$, which is a contradiction to the fact that G is connected. This implies that $R^{*}(G)$ is a complete graph.

If $d(G)>r(G)+1$, then $d(G)-r(G)+1 \geq 3$ and hence $R^{*}(G) \subset \bar{G}$. Thus $d(G)=r(G)+1$.

Suppose that G has a non-complete component, say G_{1}. Then G_{1} has two non-adjacent vertices u and v. It follows from the definitions that $u v \in E(\bar{G})$ and $u v \notin E\left(R^{*}(G)\right)$.

Corollary 5. If $G \in F_{12}$, then $R^{*}(G)=\bar{G}$.
Proof. Since $G \in F_{12}, d(G)=r(G)+1$, by Lemma $4, R^{*}(G)=\bar{G}$.

Lemma 6. If $G \in F_{3}$ with $r(G)+2 \leq d(G) \leq 2 r(G)-1$, then $R^{*}(G) \in F_{22} \cup F_{23}$ and $\overline{R^{*}(G)} \in F_{t t+1}$ for some $t \geq 2$.

Proof. Suppose $R^{*}(G) \in F_{11}$. Then by Proposition 1, either G is self-centered or G is totally disconnected. This is a contradiction to $G \in F_{3}$ with $r(G)+$ $2 \leq d(G) \leq 2 r(G)-1$. Suppose $R^{*}(G) \in F_{12}$. Then $R^{*}(G)$ has at least one vertex u of eccentricity one. Then $d(u, v) \geq d(G)-r(G)+1 \geq 3$ in G for all $u \in V(G)-\{u\}$. Since G is connected, u has at least one adjacent vertex w in G. Therefore $d(u, w)=1$ in G. Then u is not adjacent to w in $R^{*}(G)$. Which is a contradiction to $R^{*}(G) \in F_{12}$. Therefore $R^{*}(G) \notin F_{12}$. Now we claim that $R^{*}(G)$ has at least one vertex of eccentricity two. Let u be any peripheral vertex. Then there exists a vertex v in G such that $d(u, v)=d(G)$ in G. Therefore u and v are adjacent in $R^{*}(G)$.

Consider the set $\bar{N}(u)=\{w: d(u, w) \leq d(G)-r(G)\}$ in G. Clearly in $R^{*}(G), u$ is not adjacent to any vertex of $\bar{N}(u)$.

Let $w \in \bar{N}(u)$. Then $d(u, w) \leq d(G)-r(G)$ for all $w \in \bar{N}(u)$. Now $d(u, v) \leq$ $d(u, w)+d(w, v)$ in G. Therefore $d(G) \leq d(G)-r(G)+d(w, v)$ in G. Hence

$$
\begin{equation*}
d(w, v) \geq r(G) \text { in } G \tag{1}
\end{equation*}
$$

Futher $r(G)+2 \leq d(G) \leq 2 r(G)-1$, which implies,

$$
\begin{equation*}
d(G)-r(G)+1 \leq r(G) \text { in } G . \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
d(w, v) \geq r(G) \geq d(G)-r(G)+1 \text { in } G
$$

Hence by the definition, v is adjacent to all the vertices of $\bar{N}(u)$ in $R^{*}(G)$. Let d be the distance in $R^{*}(G)$. Therefore, $d(u, w)=d(u, v)+d(v, w)=1+1=2$ for all $w \in \bar{N}(u)$. Thus, $R^{*}(G)$ has a vertex of eccentricity two. Hence $R^{*}(G) \in$ $F_{22} \cup F_{23} \cup F_{24}$. Let $S=\{w: e(w)=d(G)$ in $G\}$. Clearly, $e(w)=2$ for all $w \in S$ in $R^{*}(G)$. Let $x \in V(G)-S$. Let $\bar{N}(x)=\{y: d(x, y) \leq d(G)-r(G)$ in $G\}$. Clearly, x is not adjacent to any vertex of $\bar{N}(x)$ in $R^{*}(G)$. Since $d(x, u) \geq$ $d(G)-r(G)+1, d(x, u)=1$ in $R^{*}(G)$ for all $u \notin \bar{N}(x)$. That is $x u \in E\left(R^{*}(G)\right)$.

Let $v^{\prime} \in S$. Then there exists a vertex $v^{\prime \prime} \in S$ such that

$$
\begin{equation*}
d\left(v^{\prime}, v^{\prime \prime}\right)=d(G) \text { in } G \tag{3}
\end{equation*}
$$

Clearly, $v^{\prime} v^{\prime \prime} \in E\left(R^{*}(G)\right)$. Suppose both v^{\prime} and $v^{\prime \prime}$ are in $\bar{N}(x)$ in G. Since $r(G)+2 \leq d(G) \leq 2 r(G)-1$,

$$
\begin{aligned}
d\left(v^{\prime}, v^{\prime \prime}\right) & \leq d\left(v^{\prime}, x\right)+d\left(x, v^{\prime \prime}\right) \\
& \leq d(G)-r(G)+d(G)-r(G), \\
d\left(v^{\prime}, v^{\prime \prime}\right) & \leq 2(d(G)-r(G))<d(G) \text { since } d<2 n .
\end{aligned}
$$

Therefore, $d\left(v^{\prime}, v^{\prime \prime}\right)<d(G)$ in G which is a contradiction to (3).
Hence among v^{\prime} and $v^{\prime \prime}$ at most one vertex can be in $\bar{N}(x)$ in G. Without loss of generality, $v^{\prime} \notin \bar{N}(x)$ in $G . x v^{\prime} \in E\left(R^{*}(G)\right)$. Let $w \in \bar{N}(x)$ in G. In $R^{*}(G), d(x, w) \leq d\left(x, v^{\prime}\right)+d\left(v^{\prime}, w\right) \leq 1+2$ (because $e\left(v^{\prime}\right)=2$). That is $d(x, w) \leq 3$ for all $w \in \bar{N}(x)$.

Suppose both $v^{\prime}, v^{\prime \prime} \notin \bar{N}(x)$. Then $d(x, w) \leq 3$ in $R^{*}(G)$ for all $w \in \bar{N}(x)$ in G. This is true for all $x \in V(G)-S$. Therefore $2 \leq e(u) \leq 3$ in $R^{*}(G)$ for all $u \in V\left(R^{*}(G)\right)$. That is $R^{*}(G) \notin F_{24}$ and $R^{*}(G) \in F_{22} \cup F_{23}$.
Claim. $\overline{R^{*}(G)} \in F_{t t+1}$ where $t \geq 2$.
By the definition of the $k^{t h}$ power of a graph G, we have $d_{G^{k}}(u, v)=\left\lceil\frac{d_{G}(u, v)}{k}\right\rceil$. Hence $G^{k}=\overline{R^{*}(G)}$ where $k=d(G)-r(G) . r(G) \leq e(u) \leq d(G)$ for all u in G implies $\left\lceil\frac{r(G)}{d(G)-r(G)}\right\rceil \leq e_{\overline{R^{*}(G)}}(u) \leq\left\lceil\frac{d(G)}{d(G)-r(G)}\right\rceil$ for all $u \in V\left(\overline{R^{*}(G)}\right)$. Since $\frac{d(G)}{d(G)-r(G)}=1+\frac{r(G)}{d(G)-r(G)},\left\lceil\frac{d(G)}{d(G)-r(G)}\right\rceil=1+\left\lceil\frac{r(G)}{d(G)-r(G)}\right\rceil$.

Let $t=\left\lceil\frac{r(G)}{d(G)-r(G)}\right\rceil$, since $r(G) \geq 3$ and $r(G)+2 \leq d(G) \leq 2 r(G)-1, t \geq 2$. Therefore $t \leq e_{\overline{R^{*}(G)}}(u) \leq 1+t$ for all $u \in V\left(\overline{R^{*}(G)}\right)$. Suppose u and v are antipodal vertices of G. Then $d(u, v)=d(G)$.

$$
d_{G^{k}}(u, v)=\left\lceil\frac{d_{G}(u, v)}{k}\right\rceil=\left\lceil\frac{d(G)}{d(G)-r(G)}\right\rceil=1+\left\lceil\frac{r(G)}{d(G)-r(G)}\right\rceil=1+t, t \geq 2 .
$$

That is $d_{G^{k}}(u, v)=1+t, t \geq 2$. Suppose $e(u)=1+t, t \geq 2$. w is any central vertex of G. Then $d(w, u)=r(G)=d(w, v)$

$$
d_{G^{k}}(w, u)=\left\lceil\frac{d_{G}(w, u)}{d(G)-r(G)}\right\rceil=\left\lceil\frac{r(G)}{d(G)-r(G)}\right\rceil=t .
$$

That is $\overline{R^{*}(G)} \in F_{t t+1}$ where $t \geq 2$. Hence the proof.

Figure 1. A graph G, its super-radial graph $R^{*}(G)$ and its complement $\overline{R^{*}(G)}$ with eccentricities.

Note that there is no characterization of G for which $R(G)=G$. But we have the following.

3. Characterization of Super-Radial Graphs

The concept of super-radial graph does not fall into any one of the cases in the metric operator X_{p} defined by [20]. The property defined by the super-radial graph operator is vertex free but no unitary, so it does not fall into Theorem 1 in [20]. This motivate us to characterize all super-radial graphs.

Proposition 7. For any graph $G, R^{*}(G)=G$ if and only if either $G \in F_{11}$ or $G \in F_{23}$ with $G=\bar{G}$.

Proof. If $G \in F_{11}$, then $R^{*}(G)=G$. If $G \in F_{23}$ with $G=\bar{G}$, then by Lemma 4, $R^{*}(G)=\bar{G} . G=\bar{G}$ implies that $R^{*}(G)=G$. Suppose $R^{*}(G)=G$. If $G \in F_{23}$ with $G \neq \bar{G}$, then by Lemma $4, R^{*}(G)=\bar{G}$, but by our assumption $R^{*}(G)=G$ implies $G=\bar{G}$, which is a contradiction to $G \neq \bar{G}$.

Now let $G \in \mathcal{A}=F_{12} \cup F_{22} \cup F_{24} \cup F_{3} \cup F_{4}$. If $G \in F_{12} \cup F_{22} \cup F_{24}$, then by Proposition 1, Proposition 3 and Corollary $5, R^{*}(G)=\bar{G}$ or $R^{*}(G)=K_{p}$ or $R^{*}(G) \in F_{4}$. Since by assumption $R^{*}(G)=G$, either $G=K_{p}$ or $G \in F_{4}$, which is a contradiction to $G \in F_{12} \cup F_{22} \cup F_{24}$. If $G \in F_{3}$ with G being a self-centered graph, then $R^{*}(G)=K_{p}$. That is $G=K_{p}$, which is a contradiction to $G \in F_{3}$. If $G \in F_{3}$ with $d(G)=r(G)+1$, then by Lemma $4, R^{*}(G)=\bar{G}$. But by our assumption $R^{*}(G)=G, G=\bar{G}$. Since $G \in F_{3}, d(\bar{G}) \leq 2$, which is contradiction to $G=\bar{G}$,

Suppose $G \in F_{3}$ with $r(G)+2 \leq d(G) \leq 2 r(G)-1$, then by Lemma 6 , $R^{*}(G) \in F_{22} \cup F_{23}$. Since by our assumption $R^{*}(G)=G, G \in F_{22} \cup F_{23}$, which is a contradiction to $G \in F_{3}$. Suppose $G \in F_{3}$ with $d(G)=2 r(G)$. Then by definition the center vertex in G is isolated in $R^{*}(G)$. Therefore $R^{*}(G) \in F_{4}$. By our assumption $R^{*}(G)=G, G \in F_{4}$, which is a contradiction to $G \in F_{3}$. Suppose $G \in F_{4}$. Then $R^{*}(G) \in F_{11} \cup F_{12} \cup F_{22}$. By our assumption $R^{*}(G)=G, G \in$ $F_{11} \cup F_{12} \cup F_{22}$, which is a contradiction to $G \in F_{4}$. Therefore if $R^{*}(G)=G$ then either $G \in F_{11}$ or $G \in F_{23}$ with $G=\bar{G}$.

Motivated by the above proposition we state the following open problem.
Problem 8. Discuss the behaviour of the iterated sequence $G, R^{*}(G)$, $R^{*}\left(R^{*}(G)\right), \ldots$.

Corollary 9. A self-centered graph G is self super-radial if and only if $G \in F_{11}$.
Proof. Let G be a self-centered graph. Suppose $G \in F_{11}$. Then $R^{*}(G)=K_{p}=$ G. Therefore G is self super-radial graph. Conversely, suppose G is self superradial graph. Then there exists a graph G such that $R^{*}(G)=G$. Now we claim that $G \in F_{11}$. Suppose $G \in F_{i i}$ where $i \geq 2$. Then by definition, $R^{*}(G)=K_{p}$, also by assumption $R^{*}(G)=G, G=K_{p}$, which is a contradiction to $G \in F_{i i}, i \geq 2$. Hence $G \in F_{11}$.
Lemma 10. If G is a disconnected graph, then each component of $\overline{R^{*}(G)}$ is complete.

Proof. Since G is a disconnected graph, by definition $R^{*}(G)$ is connected. Suppose u and v are two vertices of a component G_{i} of G. If $u v \in E\left(G_{i}\right)$, then $u v \notin E\left(R^{*}(G)\right)$ and $u v \in E\left(\overline{R^{*}(G)}\right)$.

Also, if $u v \notin E\left(G_{i}\right)$, then $u v \notin E\left(R^{*}(G)\right)$ and $u v \in E\left(\overline{R^{*}(G)}\right)$.
Therefore for any two vertices in a component G_{i} of G that are either adjacent or nonadjacent in G, that vertices are not adjacent in $R^{*}(G)$. But in $\overline{R^{*}(G)}$, the above two vertices are adjacent. This is true for any pair of vertices in the component G_{i} of G. Hence G_{i} is complete in $\overline{R^{*}(G)}$.

Lemma 11. Let $G \in F_{12}$.
(i) If each component of \bar{G} is complete, then G is super-radial.
(ii) If at least one component of \bar{G} is not complete, then G is not super-radial.

Proof. (i) Since each component of \bar{G} is complete, by Lemma 4, $R^{*}(G)=\overline{\bar{G}}=G$. That is $R^{*}(\bar{G})=G$. Therefore G is super-radial.
(ii) Since $G \in F_{12}$ by Corollary $5, R^{*}(G)=\bar{G}, \bar{G}$ is disconnected. Suppose \bar{G} has at least one component which is not complete. Then by definition of superradial $R^{*}(\bar{G}) \subset G$. Therefore neither $R^{*}(G)=G$ nor $R^{*}(\bar{G})=G$. Let H be a graph such that $R^{*}(H)=G$, which is not isomorphic to G and \bar{G}.

Suppose H is a self-centered graph, then by Proposition 1, $R^{*}(H)=K_{p}, G=$ K_{p}, which is a contradiction to $G \in F_{12}$. Suppose $H \in F_{23} \cup F_{24}$. Then $R^{*}(H) \in$ $F_{22} \cup F_{23} \cup F_{4}$. By our assumption $R^{*}(H)=G, G \in F_{22} \cup F_{23} \cup F_{4}$, which is a contradiction to $G \in F_{12}$.

Suppose $H \in F_{3}$ with $d(H)=r(H)+1$, then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G, G=\bar{H}, \bar{G}=H$. Since $G \in F_{12}, \bar{G}$ is disconnected, H is disconnected which is a contradiction to $H \in F_{3}$. Suppose $H \in F_{3}$ with $d(H)=$ $2 r(H)$, then by definition $R^{*}(H) \in F_{4}$. By our assumption $R^{*}(H)=G, G \in F_{4}$ which is a contradiction to $G \in F_{12}$.

Suppose $H \in F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$, by Lemma $6, R^{*}(H) \in$ $F_{22} \cup F_{23}$. By our assumption $R^{*}(H)=G, G \in F_{22} \cup F_{23}$, which is a contradiction to $G \in F_{12}$.

Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. If $R^{*}(H) \in F_{11} \cup F_{22}$, by our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{22}$, which is a contradiction to $G \in F_{12}$. If $R^{*}(H) \in F_{12}$, then by Lemma 10, each component of $\overline{R^{*}(H)}$ is complete. By our assumption $R^{*}(H)=G, \overline{R^{*}(H)}=\bar{G}$, each component of \bar{G} is complete, which is a contradiction to our hypothesis \bar{G} has at least one non complete component. Therefore $R^{*}(H) \notin F_{12}$. By all the above arguments there is no graph H such that $R^{*}(H)=G$.

Hence G is not super-radial graph.
Lemma 12. Let $G \in F_{22}$.
(i) If $\bar{G} \in F_{22}$, then G is not a super-radial graph.
(ii) If $\bar{G} \in F_{23}$, then G is a super-radial graph.
(iii) If $\bar{G} \in F_{24}$, then G is not a super-radial graph.
(iv) If $\bar{G} \in F_{3}$, then G is a super-radial graph if and only if $d(\bar{G})=r(\bar{G})+1$.
(v) If $\bar{G} \in F_{4}$, then G is a super-radial graph if and only if each component of \bar{G} is complete.

Proof. (i) Since $\bar{G} \in F_{22}$, by Proposition $1, R^{*}(G)=K_{p}$. Let H be a graph such that $R^{*}(H)=G$, which is not isomorphic to \bar{G}. Suppose that $H \in A=$ $F_{11} \cup F_{12} \cup F_{22} \cup F_{23} \cup F_{24} \cup F_{3} \cup F_{4}$. If $H \in F_{11}$, then by Proposition 1, $R^{*}(H)=$ K_{p}. If $H \in F_{12}$, then by Corollary $5, R^{*}(H)=\bar{H}$. But \bar{H} is disconnected and $R^{*}(H)=G, G=\bar{H}, G$ is disconnected, which is a contradiction to $G \in F_{22}$. Therefore $H \notin F_{12}$.

If H is a self-centered graph, then by Proposition $1, R^{*}(H)=K_{p}$. Let $H \in$ F_{23} with $\bar{H} \in F_{23}$. Suppose $H=\bar{H}$, by Lemma $4, R^{*}(H)=\bar{H}$ which implies $R^{*}(H)=H$. But by assumption $R^{*}(H)=G, H=G, G \in F_{23}$, which is a contradiction to $G \in F_{22}$.

Suppose $H \neq \bar{H}$, by Lemma $4, R^{*}(H)=\bar{H}$. Since $R^{*}(H)=G, \bar{H}=G$, which implies $H=\bar{G}, \bar{G} \in F_{23}$, which is a contradiction to $\bar{G} \in F_{22}$. Let $H \in F_{23}$ with $\bar{H} \in F_{22}$. Since $H \in F_{23}$, by Lemma $4, R^{*}(H)=\bar{H}$. Since by assumption $R^{*}(H)=G, G=\bar{H}$, implies $\bar{G}=H$, which is a contradiction to our assumption $H \neq \bar{G}$. Therefore $H \notin F_{23}$.

Suppose that $H \in F_{24}$. By Proposition $3, R^{*}(H) \subseteq \bar{H}$. Also any vertex v such that $e(v)=2$ in H is not adjacent to any vertex in $R^{*}(H)$. Hence $R^{*}(H)$ is disconnected. Also by assumption $R^{*}(H)=G$ implies G is disconnected, which is a contradiction to $G \in F_{22}$. Therefore $H \notin F_{24}$.

Suppose that $H \in F_{3}$. If $H \in F_{3}$ with $d(H)=r(H)+1$, then by Lemma 4, $R^{*}(H)=\bar{H}$. By our assumption, $R^{*}(H)=G$ implies $G=\bar{H}, \bar{G}=H$, which is a contradiction to our assumption $H \neq \bar{G}$. If $H \in F_{3}$ with $d(H)=2 r(H)$ then by Proposition 3, $R^{*}(H) \subseteq \bar{H}$. Also any vertex v such that $e(v)=r(H)$ in H is not adjacent to any vertex in $R^{*}(H)$. Hence $R^{*}(H)$ is disconnected. Also by assumption $R^{*}(H)=G$ implies G is disconnected which is a contradiction to $G \in F_{22}$.

If $H \in F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$, then by Lemma $6, R^{*}(H) \in$ $F_{22} \cup F_{23}$. Suppose $R^{*}(H) \in F_{23}$. Since $R^{*}(H)=G, G \in F_{23}$, which is a contradiction to $G \in F_{22}$. Therefore $R^{*}(H) \notin F_{23}$. Suppose $R^{*}(H) \in F_{22}$. By hypothesis we have $G \in F_{22}$. If $R^{*}(H)=G$, then $\overline{R *(H)}=\bar{G}$. But by Lemma $6, \overline{R^{*}(H)} \notin F_{22}$, which implies $\bar{G} \notin F_{22}$, which is a contradiction to $\bar{G} \in F_{22}$. Hence by the above arguments we conclude that there is no graph $H \in F_{3}$ such that $R^{*}(H)=G$.

If $H \in F_{4}$, then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. If $R^{*}(H) \in F_{11} \cup F_{12}$, then by our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{12}$, which is a contradiction to $G \in F_{22}$. Therefore, $R^{*}(H) \notin F_{11} \cup F_{12}$. If $R^{*}(H) \in F_{22}$ and by our assumption $R^{*}(H)=G$, then $\overline{R^{*}(H)}=\bar{G}$. Since $H \in F_{4}, \overline{R^{*}(H)} \in F_{4}$. Therefore, $\bar{G} \in F_{4}$, which is a contradiction to $\bar{G} \in F_{22}$. Therefore $H \notin F_{4}$.

Hence by all the above arguments, we conclude that there is no graph H such that $R^{*}(H)=G$. Therefore $G \in F_{22}$ with $\bar{G} \in F_{22}, G$ is not a super-radial graph.
(ii) Since $\bar{G} \in F_{23}$, by Lemma $4, R^{*}(\bar{G})=\overline{\bar{G}}=G$. That is, $R^{*}(\bar{G})=G$. Hence G is a super-radial graph.
(iii) Since $G \in F_{22}$, by Proposition $1, R^{*}(G)=K_{p}$. Since $\bar{G} \in F_{24}$, by Proposition $3, R^{*}(\bar{G}) \subseteq \overline{\bar{G}}=G$. But any vertex v such that $e(v)=2$ in G is not adjacent to any vertex in $R^{*}(\bar{G})$. Hence $R^{*}(\bar{G})$ is disconnected.

Let H be a graph such that $R^{*}(H)=G$ which is not isomorphic to G and \bar{G}. Suppose that $H \in \mathcal{A}=F_{11} \cup F_{12} \cup F_{22} \cup F_{23} \cup F_{24} \cup F_{3} \cup F_{4}$. If H is a self-centered graph, then $R^{*}(H)=K_{p}$. By our assumption $R^{*}(H)=G, G=K_{p}$, which is a contradiction to $G \in F_{22}$. If $H \in F_{12}$, then by Corollary $5, R^{*}(H)=\bar{H}$. But \bar{H} is disconnected and $R^{*}(H)=G, G=\bar{H}, G$ is disconnected, which is a contradiction to $G \in F_{22}$. Therefore $H \notin F_{12}$. Suppose $H \in F_{23}$ with $\bar{H} \in F_{23}$. If $H=\bar{H}$, by Lemma $4, R^{*}(H)=\bar{H}$ implies $R^{*}(H)=H$. But by assumption $R^{*}(H)=G, H=G$. Hence, $H \in F_{23}$ implies $G \in F_{23}$ which is a contradiction to $G \in F_{22}$.

If $H \neq \bar{H}$, then by Lemma $4, R^{*}(H)=\bar{H}$. Since $R^{*}(H)=G, \bar{H}=G$ which implies $H=\bar{G}$. Since $H \in F_{23}, \bar{G} \in F_{23}$, which is a contradiction to $\bar{G} \in F_{24}$. Let $H \in F_{23}$ with $\bar{H} \in F_{22}$. Since $H \in F_{23}$, by Lemma $4, R^{*}(H)=\bar{H}$. Since by our assumption $R^{*}(H)=G, G=\bar{H}$ implies $\bar{G}=H$, which is a contradiction to our assumption $\bar{G} \neq H$. Therefore $H \notin F_{23}$.

Suppose that $H \in F_{24}$. By Proposition $3, R^{*}(H) \subseteq \bar{H}$. But any vertex v such that $e(v)=2$ in H is not adjacent to any vertex in $R^{*}(H)$. That is $R^{*}(H)$ is disconnected. By our assumption $R^{*}(H)=G$ implies G is disconnected, which is a contradiction to $G \in F_{22}$. Therefore $H \notin F_{24}$.

If $H \in F_{3}$ with $d(H)=r(H)+1$, then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption, $R^{*}(H)=G$ implies $G=\bar{H}, \bar{G}=H$, which is a contradiction to our assumption $H \neq \bar{G}$. If $H \in F_{3}$ with $d(H)=2 r(H)$, then by Proposition 3, $R^{*}(H) \subseteq \bar{H}$. But any vertex v such that $e(v)=r(H)$ in H is not adjacent to any vertex in $R^{*}(H)$. That is $R^{*}(H)$ is disconnected. By our assumption $R^{*}(H)=G$, implies G is disconnected, which is a contradiction to $G \in F_{22}$. If $H \in F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$, then by Lemma $6, R^{*}(H) \in F_{22} \cup F_{23}$. Suppose $R^{*}(H) \in F_{23}$. Since $R^{*}(H)=G, G \in F_{23}$, which is a contradiction to $G \in F_{22}$. Therefore $R^{*}(H) \notin F_{23}$.

Suppose $R^{*}(H) \in F_{22}$. By hypothesis we have $G \in F_{22}$. If $R^{*}(H)=G$ then $\overline{R^{*}(H)}=\bar{G}$. By Lemma $6, \overline{R^{*}(H)} \notin F_{22} \cup F_{24}$, which implies $\bar{G} \notin F_{22} \cup F_{24}$. In particular, $\bar{G} \notin F_{24}$, which is a contradiction to $\bar{G} \in F_{24}$. Hence we conclude that there is no graph $H \in F_{3}$ such that $R^{*}(H)=G$.
If $H \in F_{4}$, then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. If $R^{*}(H) \in F_{11} \cup F_{12}$, by our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{12}$, which is a contradiction to $G \in F_{22}$. If $R^{*}(H) \in F_{22}$
and by our assumption $R^{*}(H)=G$, then $\overline{R^{*}(H)}=\bar{G}$. By Lemma $10, \overline{R^{*}(H)} \in F_{4}$ and implies $\bar{G} \in F_{4}$, which is a contradiction to $\bar{G} \in F_{24}$. Therefore $H \notin F_{4}$.

Hence by all the above arguments, we conclude that there is no graph H such that $R^{*}(H)=G$. Therefore, if $G \in F_{22}$ with $\bar{G} \in F_{24}$ is not a super-radial graph.
(iv) Suppose $\bar{G} \in F_{3}$ with $d(\bar{G})=r(\bar{G})+1$. By Lemma $4, R^{*}(\bar{G})=\overline{\bar{G}}=G$. That is $R^{*}(\bar{G})=G$. Therefore G is a super-radial graph. Conversely, suppose G is a super-radial graph. Then there exists a graph H such that $R^{*}(H)=G$. Suppose H is self-centered graph, then $R^{*}(H)=K_{p}$. Suppose $H \in F_{12} \cup F_{23}$, then by Lemma $4, R^{*}(H)=\bar{H}$.

By our assumption $R^{*}(H)=G$, implies $G=\bar{H}$ implies $\bar{G}=H$. Therefore $\bar{G} \in F_{12} \cup F_{23}$, which is a contradiction to $\bar{G} \in F_{3}$. Suppose $H \in F_{24}$, then $R^{*}(H) \in F_{4}$. By our assumption $R^{*}(H)=G, G \in F_{4}$, which is a contradiction to $G \in F_{22}$. Suppose $H \in F_{3}$ with $d(H)=r(H)+1$. Then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G$ implies $\bar{H}=G$ implies, $H=\bar{G}$. That is $R^{*}(\bar{G})=$ G with $d(\bar{G})=r(\bar{G})+1$.

Suppose $H \in F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$. By Lemma $6, R^{*}(H) \in$ $F_{22} \cup F_{23}$. By our assumption $R^{*}(H)=G$ implies $G \in F_{22} \cup F_{23}$. Assuming $R^{*}(H) \in F_{23}$ implies $G \in F_{23}$, which is a contradiction to $G \in F_{22}$. If $R^{*}(H) \in F_{22}$ then by Lemma $6, \overline{R^{*}(H)} \in F_{t t+1}$. Since $R^{*}(H)=G, \overline{R^{*}(H)}=\bar{G}, \bar{G} \in F_{t t+1}$. That is $d(\bar{G})=r(\bar{G})+1$ which is a contradiction to our assumption $r(\bar{G})+2 \leq$ $d(\bar{G}) \leq 2 r(\bar{G})-1$. Therefore $H \notin F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$.

If $H \in F_{3}$ with $d(H)=2 r(H)$, then $R^{*}(H) \in F_{4}$. By our assumption $R^{*}(H)=G$ implies $G \in F_{4}$, which is a contradiction to $G \in F_{22}$. Suppose $H \in F_{4}$ then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. Since $G \in F_{22}$ and $R^{*}(H)=G$ implies $R^{*}(H) \in F_{22}$. Then $\overline{R^{*}(H)} \in F_{4}$, which implies $\bar{G} \in F_{4}$, which is a contradiction to $\bar{G} \in F_{3}$. By all the above argument, there is no graph H such that $R^{*}(H) \in G$. Therefore, if $\bar{G} \in F_{3}$, then G is a super-radial graph if and only if $d(\bar{G})=r(\bar{G})+1$.
(v) Since $G \in F_{22}$, by Proposition $1, R^{*}(G)=K_{p}$. Suppose $\bar{G} \in F_{4}$ with each component of \bar{G} is complete. Then by Lemma $4, R^{*}(\bar{G})=\overline{\bar{G}}=G$. That is $R^{*}(\bar{G})=G$. Hence G is a super-radial graph. Conversely, suppose G is a superradial graph. Then there exists a graph H such that $R^{*}(H)=G$. Since $G \in F_{22}$, by Proposition $1, R^{*}(G)=K_{p}$. Therefore $H \neq G$.

Suppose $\bar{G} \in F_{4}$ with at least one non complete componen, then $R^{*}(\bar{G}) \subset G$. Therefore $H \neq \bar{G}$. Suppose $\bar{G} \in F_{4}$ with each component of \bar{G} is complete. Then by Lemma $4, R^{*}(\bar{G})=\overline{\bar{G}}=G$. That is $R^{(\bar{G})}=G$. By our assumption $R^{*}(H)=G$ implies $R^{*}(H)=R^{*}(\bar{G})$ implies $H=\bar{G}$.

Suppose H is a self-centered graph. Then by Proposition $1, R^{*}(H)=K_{p}, G=$ K_{p}, which is a contradiction to $G \in F_{22}$. Suppose H satisfies $d(H)=r(H)+1$, then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G, G=\bar{H}$ implies $\bar{G}=H$. But \bar{G} is disconnected, H is disconnected, which is a contradiction to
$d(H)=r(H)+1$.
Suppose H satisfies $d(H)=2 r(H)$. Then $R^{*}(H) \in F_{4}$. By our assumption $G \in F_{4}$ which is a contradiction to $G \in F_{22}$. Suppose H with $r(H)+2 \leq d(H) \leq$ $2 r(H)-1$. Then by Lemma $6, R^{*}(H) \in F_{22} \cup F_{23}$. If $R^{*}(H) \in F_{23}$, then by our assumption $G \in F_{23}$ which is a contradiction to $G \in F_{22}$. If $R^{*}(H) \in F_{22}$, then by Lemma $6, \overline{R^{*}(H)} \in F_{t t+1}$. By our assumption $R^{*}(H)=G$ implies $\overline{R^{*}(H)}=\bar{G}$. Therefore $\bar{G} \in F_{t t+1}$ which is a contradiction to $\bar{G} \in F_{4}$.

Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. Since by our assumption, $R^{*}(H)=G, G \in F_{11} \cup F_{12} \cup F_{22}$. By hypothesis $G \in F_{22}$ which implies $G \notin$ $F_{11} \cup F_{12}$. Suppose $R^{*}(H) \in F_{22}$ and $G \in F_{22}$. But $H \neq \bar{G}$ implies $\bar{H} \neq G$. That is $R^{*}(H) \neq \bar{H}$. By Lemma $4, d(H) \neq r(H)+1$ or H is disconnected in which at least one component is non complete. Therefore, if $\bar{G} \in F_{4}$ then each component of \bar{G} is complete if and only if G is a super-radial graph.

Lemma 13. Let $G \in F_{23}$.
(i) If $\bar{G} \in F_{22}$, then G is not a super-radial graph.
(ii) If $\bar{G} \in F_{23}$, then G is a super-radial graph.

Proof. (i) Since $G \in F_{23}$, by Lemma 4, $R^{*}(G)=\bar{G}$. Since $\bar{G} \in F_{22}$, by Proposition $1, R^{*}(\bar{G})=K_{p}$. Let H be a graph such that $R^{*}(H)=G$, which is not isomorphic to G and \bar{G}. If H is a self-centered graph then by Proposition $1, R^{*}(H)=K_{p}, G=K_{p}$, which is a contradiction to $G \in F_{23}$. Suppose H with $d(H)=r(H)+1$, then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G, G=\bar{H}$ implies $\bar{G}=H$ which is a contradiction to $H \neq \bar{G}$.

Suppose H with $d(H)=2 r(H)$. Then $R^{*}(H) \in F_{4}$. By our assumption $R^{*}(H)=G, G \in F_{4}$, which is a contradiction. Suppose H with $r(H)+2 \leq$ $d(H) \leq 2 r(H)-1$. Then by Lemma $6, R^{*}(H) \in F_{22} \cup F_{23}$. By our assumption $R^{*}(H)=G, G \in F_{22} \cup F_{23}$. If $R^{*}(H) \in F_{22}$, then $G \in F_{22}$, a contradiction to $G \in F_{23}$. If $R^{*}(H) \in F_{23}$, then $G \in F_{23}$. Suppose $R^{*}(H)=G$ implies $\overline{R^{*}(H)}=\bar{G}$. Since by Lemma $6, \overline{R^{*}(H)} \in F_{t t+1}$ implies $\bar{G} \in F_{t t+1}$, which is a contradiction to $\bar{G} \in F_{22}$. Therefore $H \notin F_{3}$ with $r(H)+2 \leq d(H) \leq 2 r(H)-1$.

Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. Since by our assumption, $R^{*}(H)=G$, which implies $G \in F_{11} \cup F_{12} \cup F_{22}$, which is a contradiction to $G \in F_{23}$. Hence there is no graph H such that $R^{*}(H)=G$. Therefore if $G \in F_{23}$ with $\bar{G} \in F_{22}$, then G is not a super-radial graph.
(ii) Since $G \in F_{23}$, by Lemma $4, R^{*}(G)=\bar{G}$. Since $\bar{G} \in F_{23}$, by Lemma 4 , $R^{*}(\bar{G})=\overline{\bar{G}}=G$. Hence G is a super-radial graph.

Lemma 14. If $G \in F_{24}$, then G is not a super-radial graph.
Proof. Since $G \in F_{24}, \bar{G} \in F_{22}$. Since $G \in F_{24}$, by definition $R^{*}(G) \in F_{4}$. Let H be a graph such that $R^{*}(H)=G$, which is not isomorphic to G. Suppose H is a
self-centered graph. Then by Proposition $1, R^{*}(H)=K_{p}$ and by our assumption $G=K_{p}$, which is a contradiction to $G \in F_{24}$. Suppose H with $d(H)=r(H)+1$. Then by Lemma $4, R^{*}(H)=\bar{H}$ and by our assumption $G=\bar{H}$ it implies $\bar{G}=H$. Since $d(H)=r(H)+1$ implies $d(\bar{G})=r(\bar{G})+1$, which is a contradiction to $\bar{G} \in F_{22}$.

Suppose H with $d(H)=2 r(H)$. Then $R^{*}(H) \in F_{4}$ and by our assumption $G \in F_{4}$, which is a contradiction to $G \in F_{24}$. Suppose H with $r(H)+2 \leq d(H) \leq$ $2 r(H)-1$. Then by Lemma $6, R^{*}(H) \in F_{22} \cup F_{23}$. By our assumption, $R^{*}(G)=G$ implies $G \in F_{22} \cup F_{23}$, which is a contradiction to $G \in F_{24}$. Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. By our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{12} \cup F_{22}$, which is a contradiction to $G \in F_{24}$. Hence there is no graph H such that $R^{*}(H)=G$. Therefore $G \in F_{24}$ is not a super-radial graph.

Lemma 15. If $G \in F_{3}$, then G is not a super-radial graph.
Proof. Suppose $G \in F_{3}$ is a super-radial graph. Then there exists a graph H such that $R^{*}(H)=G$. If $H \in F_{11} \cup F_{12} \cup F_{22} \cup F_{23} \cup F_{24}$, then by previous argument $R^{*}(H) \in F_{11} \cup F_{22} \cup F_{23} \cup F_{4}$. By our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{22} \cup F_{23} \cup$ F_{4}, which is a contradiction to $G \in F_{3}$. Therefore $H \notin F_{11} \cup F_{12} \cup F_{22} \cup F_{23} \cup F_{24}$. Suppose $H \in F_{3}$ with $d(H)=r(H)+1$. Then by Lemma $4, R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G$ implies $G=\bar{H}$, which implies $\bar{G}=H$. Since $H \in F_{3}$ with $d(H)=r(H)+1, d(H) \geq 4$ and by Theorem B, $d(\bar{H}) \leq 2$. Since $G=\bar{H}, d(G) \leq 2$, which is a contradiction to $G \in F_{3}$.

Suppose $H \in F_{3}$ with H is self-centered graph. Then $R^{*}(H)=K_{p}$. By our assumption $R^{*}(H)=G, G=K_{p}$, which is a contradiction to $G \in F_{3}$. Suppose $H \in F_{3}$ with $d(H)=2 r(H)$. Then $R^{*}(H) \in F_{4}$. By our assumption $R^{*}(H)=$ $G, G \in F_{4}$, which is a contradiction to $G \in F_{3}$. Suppose $H \in F_{3}$ with $r(H)+2 \leq$ $d(H) \leq 2 r(H)-1$. Then by Lemma $6, R^{*}(H) \in F_{22} \cup F_{23}$. By our assumption $R^{*}(H)=G, G \in F_{22} \cup F_{23}$, which is a contradiction to $G \in F_{3}$. Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. By our assumption $R^{*}(H)=G, G \in F_{11} \cup F_{12} \cup F_{22}$, which is a contradiction to $G \in F_{3}$. By all the above arguments, there exists no graph H such that $R^{*}(H)=G$. Hence $G \in F_{3}$ is not a super-radial graph.
Lemma 16. If $G \in F_{4}$ and $\bar{G} \in F_{11} \cup F_{22}$, then G is not a super-radial graph.
Proof. Since $\bar{G} \in F_{11} \cup F_{22}$, then $R^{*}(\bar{G})=K_{p}$. Suppose there exists a graph H such that $R^{*}(H)=G$, which is not isomorphic to \bar{G}.

Case (i). Suppose H is a self-centered graph. Then by Proposition 1, $R^{*}(H)=K_{p}$. By our assumption $R^{*}(H)=G, G=K_{p}$, which is a contradiction to $G \in F_{4}$.

Case (ii). Suppose H with $d(H)=r(H)+1$. Then by Lemma 4, $R^{*}(H)=\bar{H}$. By our assumption $R^{*}(H)=G, G=\bar{H}$ implies $\bar{G}=H$. By hypothesis $\bar{G} \in$ $F_{11} \cup F_{22}$ implies $H \in F_{11} \cup F_{22}$, which is a contradiction to $d(H)=r(H)+1$.

Case (iii). Suppose H with $r(H)+2 \leq d(H) \leq 2 r(H)-1$. Then by Lemma 6 , $\left.R^{*} H\right) \in F_{22} \cup F_{23}$. By our assumption $R^{*}(H)=G$ implies $G \in F_{22} \cup F_{23}$, which is a contradiction to $G \in F_{4}$.

Case (iv). Suppose H with $d(H)=2 r(H)$. Then $d(H)-r(H)+1=2 r(H)-$ $r(H)+1=r(H)+1$. Clearly, every vertex with eccentricity $r(H)$ in H is isolated vertex in $R^{*}(H)$. Therefore, $R^{*}(H) \in F_{4}$.

In $\overline{R^{*}(H)}$, every isolated vertex in $R^{*}(H)$ is adjacent to all the vertices of $R^{*}(H)$. Therefore, $\overline{R^{*}(H)} \in F_{12}$. By our assumption $R^{*}(H)=G . \overline{R^{*}(H)}=\bar{G}$ implies $\bar{G} \in F_{12}$, which is a contradiction to $\bar{G} \in F_{11} \cup F_{22}$.

Case (v). Suppose $H \in F_{4}$. Then $R^{*}(H) \in F_{11} \cup F_{12} \cup F_{22}$. By our assumption $R^{*}(H)=G$ implies $G \in F_{11} \cup F_{12} \cup F_{22}$ which is a contradiction to $G \in F_{4}$.

Hence by all the above arguments, $G \in F_{4}$ and $\bar{G} \in F_{11} \cup F_{22}$ is not a super-radial graph.

Theorem 17. A connected graph G is super-radial graph if and only if G has any one of the following properties.
(i) $G \in F_{11}$,
(ii) $G \in F_{12}$ with each component of \bar{G} being complete,
(iii) $G \in F_{22}$ with $\bar{G} \in F_{23}$,
(iv) $G \in F_{22}$ and $\bar{G} \in F_{3}$ with $d(\bar{G})=r(\bar{G})+1$,
(v) $G \in F_{22}$ and $\bar{G} \in F_{4}$ with each component of \bar{G} being complete,
(iv) $G \in F_{23}$ with $\bar{G} \in F_{23}$.

Proof. As the following table exhausts all the possibilities, we get the theorem.

	G	\bar{G}	By Lemma/ Proposition	G is superradial
1	F_{11}	F_{4}	8	Yes
2	F_{12}	Each component of \bar{G} is complete.	12(i)	Yes
		At least one component of \bar{G} is not complete.	12(ii)	No
3	F_{22}	F_{22}	13(i)	No
		F_{23}	13(ii)	Yes
		F_{24}	13(iii)	No
		F_{3} with $d(\bar{G})=r(\bar{G})+1$	13(iv)	Yes
		F_{3} with $d(\bar{G}) \neq r(\bar{G})+1$	13(iv)	No

		F_{4} with each component of \bar{G} beingcomplete	$13(\mathrm{v})$	Yes
	F_{4} with at least one component of \bar{G} being non complete	$13(\mathrm{v})$	No	
4	F_{23}	F_{22}	$14(\mathrm{i})$	No
	F_{23}	$14(\mathrm{ii})$	Yes	
5	F_{24}	F_{22}	15	No
6	F_{3}		16	No

Theorem 18. A disconnected graph G is a super-radial graph if and only if $\bar{G} \in F_{12}$.

Proof. Since G is disconnected, $\bar{G} \in F_{11} \cup F_{12} \cup F_{22}$. If $\bar{G} \in F_{11} \cup F_{22}$, then by Lemma $16, G$ is not a super-radial graph. If $\bar{G} \in F_{12}$, then by Lemma 4 , $R^{*}(\bar{G})=\overline{\bar{G}}=G$. That is $R^{*}(\bar{G})=G$. Hence G is a super-radial graph.

The following examples show that the notion of super-radial graph is independent of radial graph, antipodal graph, eccentric graph and super-eccentric graph.

Figure 2. Super-radial graph but not antipodal graph.

Figure 3. Antipodal graph but not super-radial graph.

Figure 4. Super-radial graph but not eccentric graph.

Figure 5. Eccentric graph but not super-radial graph.

Figure 6. Super-radial graph but not radial graph.

Figure 7. Radial graph but not super-radial graph.

Figure 8. Super-radial graph but not super-eccentric graph.

Figure 9. Super-eccentric graph but not super-radial graph.

Acknowledgement

The authors wish to thank the anonymous referee for various suggestions for improving the paper.

References

[1] J. Akiyama, K. Ando and D. Avis, Eccentric graphs, Discrete Math. 56 (1985) 1-6. doi:10.1016/0012-365X(85)90188-8
[2] R. Aravamuthan and B. Rajendran, Graph equations involving antipodal graphs, presented at the Seminar on Combinatorics and Applications held at ISI, Calcutta during 14-17 December (1982), 40-43.
[3] R. Aravamuthan and B. Rajendran, On antipodal graphs, Discrete Math. 49 (1984) 193-195. doi:10.1016/0012-365X(84)90117-1
[4] R. Aravamuthan and B. Rajendran, A note on antipodal graphs, Discrete Math. 58 (1986) 303-305. doi:10.1016/0012-365X(86)90148-2
[5] F. Buckley and F. Harary, Distance in Graphs (Addition-Wesley, Reading, 1990).
[6] F. Buckley, The eccentric digraphs of a graph, Congr. Numer. 149 (2001) 65-76.
[7] E. Prisner, Graph Dynamics (Longman, London, 1995).
[8] G. Johns and K. Sleno, Antipodal graphs and digraphs, Internat. J. Math. Soc. 16 (1993) 579-586. doi:10.1155/S0161171293000717
[9] G. Johns, A simple proof of the characterization of antipodal graphs, Discrete Math. 128 (1994) 399-400. doi:10.1016/0012-365X(94)90131-7
[10] Iqbalunnisa, T.N. Janakiraman and N. Srinivasan, On antipodal eccentric and supereccentric graph of a graph, J. Ramanujan Math. Soc. 4(2) (1989) 145-161.
[11] J. Boland, F. Buckley and M. Miller, Eccentric digraphs, Discrete Math. 286 (2004) 25-29.
doi:10.1016/j.disc.2003.11.041
[12] J. Gimbert, M. Miller, F. Ruskey and J. Ryan, Iterations of eccentric digraphs, Bull. Inst. Combin. Appl. 45 (2005) 41-50.
[13] J. Gimbert, N. Lopez, M. Miller and J. Ryan, Characterization of eccentric digraphs, Discrete Math. 306 (2006) 210-219. doi:10.1016/j.disc.2005.11.015
[14] KM. Kathiresan and G. Marimuthu, A study on radial graphs, Ars Combin. 96 (2010) 353-360.
[15] KM. Kathiresan and G. Marimuthu, Further results on radial graphs, Discuss. Math. Graph Theory 30 (2010) 75-83. doi:10.7151/dmgt. 1477
[16] KM. Kathiresan, G. Marimuthu and S. Arockiaraj, Dynamics of radial graphs, Bull. Inst. Combin. Appl. 57 (2009) 21-28.
[17] KM. Kathiresan and R. Sumathi, Radial digraphs, Kragujevac J. Math. 34 (2010) 161-170.
[18] KM. Kathiresan, S. Arockiaraj and C. Parameswaran, Characterization of supereccentric graphs, submitted.
[19] M.I. Huilgol, S.A.S. Ulla and A.R. Sunilchandra, On eccentric digraphs of graphs, Appl. Math. 2 (2011) 705-710. doi:10.4236/am.2011.26093
[20] N. López, A generalization of digraph operators related to distance properties in digraphs, Bulletin of the ICA 60 (2010) 49-61.
[21] R.R. Singleton, There is no irregular Moore graph, Amer. Math. Monthly 75 (1968) 42-43.
doi:10.2307/2315106
[22] D.B. West, Introduction to Graph Theory (Prentice-Hall of India, New Delhi, 2003).
[23] X. An and B. Wu, The Wiener index of the $k^{\text {th }}$ power of a graph, Appl. Math. Lett. 21 (2008) 436-440.
doi:10.1016/j.aml.2007.03.025
Received 25 June 2013
Revised 28 October 2013
Accepted 4 December 2013

