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Abstract

In a graph G, the distance d(u, v) between a pair of vertices u and v is
the length of a shortest path joining them. The eccentricity e(u) of a vertex
u is the distance to a vertex farthest from u. The minimum eccentricity is
called the radius, r(G), of the graph and the maximum eccentricity is called
the diameter, d(G), of the graph. The super-radial graph R∗(G) based on G
has the vertex set as in G and two vertices u and v are adjacent in R∗(G) if
the distance between them in G is greater than or equal to d(G)− r(G) + 1
in G. If G is disconnected, then two vertices are adjacent in R∗(G) if they
belong to different components. A graph G is said to be a super-radial graph
if it is a super-radial graph R∗(H) of some graph H. The main objective of
this paper is to solve the graph equation R∗(H) = G for a given graph G.
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1. Introduction

The graphs considered are simple, non-trivial, undirected and finite. G = (V,E)
is a graph with vertex set V (G) and edge set E(G). In a graph G, the distance

d(u, v) between a pair of vertices u and v is the length of a shortest path joining
them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest
from u. The radius r(G) of G is defined by r(G) = min{e(u) : u ∈ V (G)} and
the diameter d(G) of G is defined by d(G) = max{e(u) : u ∈ V (G)}. A graph
G for which r(G) = d(G) is called a self-centered graph of radius r(G). A vertex
v is called an eccentric vertex of a vertex u if d(u, v) = e(u). A vertex v of G is
called an eccentric vertex of G if it is an eccentric vertex of some vertex of G. The
concept of antipodal graph was initially introduced by Singleton [21] and was
further expanded by Aravamudhan and Rajendran [2, 3]. The antipodal graph of
a graph G, denoted by A(G), is the graph on the same set of vertices as of G, two
vertices being adjacent if the distance between them is equal to the diameter of
G while G is connected and if G is disconnected, then two vertices are adjacent
in A(G) if they belong to different components of G. A graph G is said to be
antipodal if it is the antipodal graph of some graph H.

Aravamudhan and Rajendran [2, 3] have proved the following theorem. A
graph G is an antipodal graph if and only if it is the antipodal graph of its
complement G. In [4] the same authors observed that if H is a connected graph
with diam(H) > 2, then A(H) = A(H ′), where H ′ is the graph on the same
vertex set such that two vertices are adjacent in H ′ if the distance between them
in H is less than diam(H). This observation is still true when diam(H) = 2 (for
then H ′ = H) and when H is disconnected. In this case, the components of
H and H ′ consists of the same vertices and the edges of A(H) and A(H ′) are
exactly the edges joining vertices in different components. This extension leads to
another proof of the characterization of antipodal graphs which involves showing
that A(H ′) = H ′ by Johns [9].

Kathiresan and Marimuthu [14] introduced the radial graph R(G) of a graph
G on the same vertex set as G and two vertices u and v are adjacent in R(G) if
and only if the distance between them is equal to the radius. If G is disconnected,
then two vertices are adjacent in R(G) if they belong to different components of
G. A graph G is called a radial graph if R(H) = G for some graph H. Kathiresan
and Marimuthu [15] characterized graphs G with specified radius for its radial
graph.

In paper [20], the author defines a metric operator XP which unifies every
known digraph operator related to a distance property P. In Theorem 1 [20] the
author characterizes those digraphs G such that XP(G) = H for some digraph
G when P is both unitary and vertex free distance property. In particular, the
characterization of both antipodal and radial graphs arises from it.
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Kathiresan et al. [16] defined a graph G to be periodic if Rm(G) = G for some
m. If p is the least positive integer with this property, then G is called a periodic

graph with iso-period p. A graph G is said to be an eventually periodic graph if
there exist positive integers m and k > 0, such that Rm+i(G) = Ri(G), for all
i ≥ k. They proved that every graph is either periodic or eventually periodic. In
their paper they characterized all periodic graphs.

Akiyama et al. [1] defined the eccentric graph Ge of G on the same set
of vertices, by joining two vertices if and only if one of the two vertices has
the maximum possible distance from the other, that is d(u, v) = min{e(u), e(v)}.
Iqbalunnisa et al. [10] defined the super-eccentric graph J(G) of a graph G on the
same set of vertices of G and the adjacency relation between vertices is defined by
d(u, v) ≥ rad(G) while G is connected and when G is disconnected, two vertices
are adjacent in J(G) if they belong to different components of G. Kathiresan et

al. [18] have given a characterization of super-eccentric graphs.

For a digraph D, the antipodal digraph A(D) of D is the digraph which
V (A(D)) = V (D) and E(A(D)) = {(u, v) : u, v ∈ V (D) and dD(u, v) = d(D)}.
Johns and Sleno [8] obtained a characterization of antipodal digraphs. A digraph
D is self-antipodal if A(D) is isomorphic to D.

Kathiresan and Sumathi [17] extended the definition of radial graph to a
digraph D where the arc (u, v) is included in R(G) if d(u, v) is the radius of D.
According to them a digraph D is called a radial digraph if R(H) = D for some
digraph H.

Buckley [6] defined the eccentric digraph ED(G) of graph G to be the digraph
that has the same vertex set as G such that there is an arc from v to u provided
that u is an eccentric vertex of v. He examined eccentric digraphs of graphs.

Gimbert et al. [12] considered the behaviour of an iterated sequence of ec-
centric graphs or digraphs of a graph or a digraph. They concluded with several
open problems. Boland et al. [11] defined the eccentric digraph of a digraph.
They examined eccentric digraphs of digraphs for various families of digraphs
and they considered the behaviour of an iterated sequence of eccentric digraphs
of a digraph.

Huilgol et al. [19] considered an open problem, which is found in [11]. They
characterized graphs with specified maximum degree such that ED(G) = G.

Gimbert et al. [13] presented a characterization of eccentric digraphs, which in
the undirected case says that a graph G is eccentric if and only if its complement
graph G is either self-centered of radius two or it is the union of complete graphs.

In [5], the kth power Gk of the graph G has the same vertex set as G and
vertices u and v are adjacent in Gk if the distance between them in G is at most
k.

Motivated by these works, we introduce a new concept called super-radial

graph R∗(G) of a graph G on the same vertex set of G and two vertices u and v
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are adjacent in R∗(G) if and only if the distance between them is greater than
or equal to d(G)− r(G) + 1. If G is disconnected, then two vertices are adjacent
in R∗(G) if they belong to different components of G. A graph G is said to be a
super-radial graph if there exists a graph H such that R∗(H) = G. In this paper,
we have given a characterization for a graph to be a super-radial graph.

The following notation can be found in [14].

Let F11, F12, F22, F23, F24, F3 denote the set of all connected graphs G for
which r(G) = d(G) = 1, r(G) = 1 and d(G) = 2, r(G) = d(G) = 2, r(G) = 2 and
d(G) = 3, r(G) = 2 and d(G) = 4, r(G) ≥ 3, respectively. F4 denote the set of
all disconnected graphs. For graph theoretic terminology we follow [5], which is
devoted entirely to the area of distance in graphs.

The following results will be used throughout this article.

Theorem A [5]. If G is a simple graph with diameter at least 3, then G has

diameter at most 3.

Theorem B [5]. If G is a simple graph with diameter at least 4, then G has

diameter at most 2.

Theorem C [5]. If G is a simple graph with radius at least 3, then G has radius

at most 2.

Theorem D [23]. If G is a selfcentred graph with radius at least 3, then G is a

self centered graph of radius 2.

From the above theorems, we have the following.

If G ∈ F11, then G is a totaly disconnected graph and if G ∈ F12, then G has
at least one isolated vertex. If G ∈ F22, then G is a member of F22 ∪ F23 ∪ F24 ∪
F3 ∪ F4. If G ∈ F23, then G is a member of F22 ∪ F23. If G ∈ F24, then G is a
member of F22. If G ∈ F3, then G ∈ F22. If every component of G is non-trivial,
then G ∈ F22. If G has at least one isolated vertex, then G is a member of F12.

Lemma E [23]. Let u, v be two vertices of a graph G. Then dGk(u, v) =
⌈

dG(u,v)
k

⌉

.

2. The Relation Between the Super-radial Operator and the

Complement Operator

In this section we find a graph G for which R∗(G) = H for a given graph H.

Proposition 1. For any graph G on p vertices, R∗(G) = Kp if and only if either

G is self-centered or G = Kp.

Proof. If either G is self-centered or G = Kp, then the result follows from the
definition of R∗(G). Suppose that G is connected and r(G) 6= d(G). This shows
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that d(G) − r(G) + 1 ≥ 2. Therefore R∗(G) ⊆ G. This is a contradiction to the
fact that R∗(G) = Kp. If G is a disconnected graph in which |V (Gi)| = 2, for
some ith component Gi of G, then uv /∈ E(R∗(G)) whenever u and v belong to
V (Gi). This implies that R∗(G) 6= Kp.

Proposition 2. For any graph G with p ≥ 3 vertices, R∗(G) = K1,p−1 if and

only if G is disconnected with exactly two components out of which one is an

isolated vertex.

Proof. If G is disconnected with exactly two components out of which one is an
isolated vertex, then by the definition of R∗(G), R∗(G) = K1,p−1.

Let v1 be the vertex of degree p−1 and v2, v3, . . . , vp be the pendant vertices
of R∗(G). If G is connected, then dG(v1, vi) ≥ d(G) − r(G) + 1 for all i 6= 1 and
hence dG(v1, vi) ≥ 2. This is a contradiction to the fact that R∗(G) = K1,p−1. If
G is disconnected with more than two nontrivial components, then we arrive at
a contradiction to the fact that R∗(G) = K1,p−1. If G has exactly two nontrivial
components, then R∗(G) is a complete bipartite graph.

Therefore the above argument forces us to conclude that G is a disconnected
graph with exactly two components out of which one is an isolated vertex.

Proposition 3. If G is a graph with d(G) ≥ r(G) + 1, then R∗(G) ⊆ G.

Proof. By the definition of R∗(G) and G, we have V (R∗(G)) = V (G) = V (G).
d(G) ≥ r(G) + 1 implies that d(G) − r(G) + 1 ≥ 2. This shows that
R∗(G) ⊆ G.

Lemma 4. Let G be a graph of order p. Then R∗(G) = G if and only if G is

a graph with d(G) = r(G) + 1 or G is disconnected in which each component is

complete.

Proof. If d(G) = r(G)+1, then d(G)−r(G)+1 = 2. Therefore R∗(G) ⊆ G. Also,
any two adjacent vertices in G are not adjacent in R∗(G). Therefore G ⊆ R∗(G).
Thus R∗(G) = G.

If G is disconnected with each component complete, then by the definition,
R∗(G) = G.

If d(G) < r(G) + 1, then G is self-centred and by Proposition 1, R∗(G) =
G = Kp. As a consequence G = Kp, which is a contradiction to the fact that G
is connected. This implies that R∗(G) is a complete graph.

If d(G) > r(G) + 1, then d(G) − r(G) + 1 ≥ 3 and hence R∗(G) ⊂ G. Thus
d(G) = r(G) + 1.

Suppose that G has a non-complete component, say G1. Then G1 has two
non-adjacent vertices u and v. It follows from the definitions that uv ∈ E(G) and
uv 6∈ E(R∗(G)).
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Corollary 5. If G ∈ F12, then R∗(G) = G.

Proof. Since G ∈ F12, d(G) = r(G) + 1, by Lemma 4, R∗(G) = G.

Lemma 6. If G ∈ F3 with r(G)+2 ≤ d(G) ≤ 2r(G)−1, then R∗(G) ∈ F22∪F23

and R∗(G) ∈ Ftt+1 for some t ≥ 2.

Proof. Suppose R∗(G) ∈ F11. Then by Proposition 1, either G is self-centered
or G is totally disconnected. This is a contradiction to G ∈ F3 with r(G) +
2 ≤ d(G) ≤ 2r(G) − 1. Suppose R∗(G) ∈ F12. Then R∗(G) has at least one
vertex u of eccentricity one. Then d(u, v) ≥ d(G) − r(G) + 1 ≥ 3 in G for all
u ∈ V (G) − {u}. Since G is connected, u has at least one adjacent vertex w in
G. Therefore d(u,w) = 1 in G. Then u is not adjacent to w in R∗(G). Which is a
contradiction to R∗(G) ∈ F12. Therefore R∗(G) /∈ F12. Now we claim that R∗(G)
has at least one vertex of eccentricity two. Let u be any peripheral vertex. Then
there exists a vertex v in G such that d(u, v) = d(G) in G. Therefore u and v are
adjacent in R∗(G).

Consider the set N(u) = {w : d(u,w) ≤ d(G) − r(G)} in G. Clearly in
R∗(G), u is not adjacent to any vertex of N(u).

Let w ∈ N(u). Then d(u,w) ≤ d(G)− r(G) for all w ∈ N(u). Now d(u, v) ≤
d(u,w) + d(w, v) in G. Therefore d(G) ≤ d(G)− r(G) + d(w, v) in G. Hence

(1) d(w, v) ≥ r(G) in G.

Futher r(G) + 2 ≤ d(G) ≤ 2r(G)− 1, which implies,

(2) d(G)− r(G) + 1 ≤ r(G) in G.

From (1) and (2),
d(w, v) ≥ r(G) ≥ d(G)− r(G) + 1 in G.

Hence by the definition, v is adjacent to all the vertices of N(u) in R∗(G). Let
d be the distance in R∗(G). Therefore, d(u,w) = d(u, v) + d(v, w) = 1 + 1 = 2
for all w ∈ N(u). Thus, R∗(G) has a vertex of eccentricity two. Hence R∗(G) ∈
F22 ∪ F23 ∪ F24. Let S = {w : e(w) = d(G) in G}. Clearly, e(w) = 2 for all
w ∈ S in R∗(G). Let x ∈ V (G) − S. Let N(x) = {y : d(x, y) ≤ d(G) − r(G) in
G}. Clearly, x is not adjacent to any vertex of N(x) in R∗(G). Since d(x, u) ≥
d(G)− r(G) + 1, d(x, u) = 1 in R∗(G) for all u /∈ N(x). That is xu ∈ E(R∗(G)).

Let v′ ∈ S. Then there exists a vertex v′′ ∈ S such that

(3) d(v′, v′′) = d(G) in G.
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Clearly, v′v′′ ∈ E(R∗(G)). Suppose both v′ and v′′ are in N(x) in G. Since
r(G) + 2 ≤ d(G) ≤ 2r(G)− 1,

d(v′, v′′) ≤ d(v′, x) + d(x, v′′)

≤ d(G)− r(G) + d(G)− r(G),

d(v′, v′′) ≤ 2(d(G)− r(G)) < d(G) since d < 2n.

Therefore, d(v′, v′′) < d(G) in G which is a contradiction to (3).

Hence among v′ and v′′ at most one vertex can be in N(x) in G. Without
loss of generality, v′ /∈ N(x) in G. xv′ ∈ E(R∗(G)). Let w ∈ N(x) in G. In
R∗(G), d(x,w) ≤ d(x, v′)+d(v′, w) ≤ 1+2 (because e(v′) = 2). That is d(x,w) ≤ 3
for all w ∈ N(x).

Suppose both v′, v′′ /∈ N(x). Then d(x,w) ≤ 3 in R∗(G) for all w ∈ N(x) in
G. This is true for all x ∈ V (G) − S. Therefore 2 ≤ e(u) ≤ 3 in R∗(G) for all
u ∈ V (R∗(G)). That is R∗(G) /∈ F24 and R∗(G) ∈ F22 ∪ F23.

Claim. R∗(G) ∈ Ftt+1 where t ≥ 2.

By the definition of the kth power of a graph G, we have dGk(u, v) =
⌈

dG(u,v)
k

⌉

.

Hence Gk = R∗(G) where k = d(G) − r(G). r(G) ≤ e(u) ≤ d(G) for all u in

G implies
⌈

r(G)
d(G)−r(G)

⌉

≤ e
R∗(G)

(u) ≤
⌈

d(G)
d(G)−r(G)

⌉

for all u ∈ V (R∗(G)). Since

d(G)
d(G)−r(G) = 1 + r(G)

d(G)−r(G) ,
⌈

d(G)
d(G)−r(G)

⌉

= 1 +
⌈

r(G)
d(G)−r(G)

⌉

.

Let t =
⌈

r(G)
d(G)−r(G)

⌉

, since r(G) ≥ 3 and r(G)+ 2 ≤ d(G) ≤ 2r(G)− 1, t ≥ 2.

Therefore t ≤ e
R∗(G)

(u) ≤ 1 + t for all u ∈ V (R∗(G)). Suppose u and v are

antipodal vertices of G. Then d(u, v) = d(G).

dGk(u, v) =
⌈

dG(u,v)
k

⌉

=
⌈

d(G)
d(G)−r(G)

⌉

= 1 +
⌈

r(G)
d(G)−r(G)

⌉

= 1 + t, t ≥ 2.

That is dGk(u, v) = 1 + t, t ≥ 2. Suppose e(u) = 1 + t, t ≥ 2. w is any central
vertex of G. Then d(w, u) = r(G) = d(w, v)

dGk(w, u) =
⌈

dG(w,u)
d(G)−r(G)

⌉

=
⌈

r(G)
d(G)−r(G)

⌉

= t.

That is R∗(G) ∈ Ftt+1 where t ≥ 2. Hence the proof.
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Figure 1. A graph G, its super-radial graph R∗(G) and its complement R∗(G) with
eccentricities.

Note that there is no characterization of G for which R(G) = G. But we have
the following.

3. Characterization of Super-radial Graphs

The concept of super-radial graph does not fall into any one of the cases in the
metric operator Xp defined by [20]. The property defined by the super-radial
graph operator is vertex free but no unitary, so it does not fall into Theorem 1
in [20]. This motivate us to characterize all super-radial graphs.
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Proposition 7. For any graph G,R∗(G) = G if and only if either G ∈ F11 or

G ∈ F23 with G = G.

Proof. If G ∈ F11, then R∗(G) = G. If G ∈ F23 with G = G, then by Lemma 4,
R∗(G) = G. G = G implies that R∗(G) = G. Suppose R∗(G) = G. If G ∈ F23

with G 6= G, then by Lemma 4, R∗(G) = G, but by our assumption R∗(G) = G
implies G = G, which is a contradiction to G 6= G.

Now let G ∈ A = F12 ∪ F22 ∪ F24 ∪ F3 ∪ F4. If G ∈ F12 ∪ F22 ∪ F24, then
by Proposition 1, Proposition 3 and Corollary 5, R∗(G) = G or R∗(G) = Kp or
R∗(G) ∈ F4. Since by assumption R∗(G) = G, either G = Kp or G ∈ F4, which
is a contradiction to G ∈ F12 ∪ F22 ∪ F24. If G ∈ F3 with G being a self-centered
graph, then R∗(G) = Kp. That is G = Kp, which is a contradiction to G ∈ F3.
If G ∈ F3 with d(G) = r(G) + 1, then by Lemma 4, R∗(G) = G. But by our
assumption R∗(G) = G,G = G. Since G ∈ F3, d(G) ≤ 2, which is contradiction
to G = G,

Suppose G ∈ F3 with r(G) + 2 ≤ d(G) ≤ 2r(G) − 1, then by Lemma 6,
R∗(G) ∈ F22 ∪ F23. Since by our assumption R∗(G) = G,G ∈ F22 ∪ F23, which
is a contradiction to G ∈ F3. Suppose G ∈ F3 with d(G) = 2r(G). Then by
definition the center vertex in G is isolated in R∗(G). Therefore R∗(G) ∈ F4. By
our assumption R∗(G) = G,G ∈ F4, which is a contradiction to G ∈ F3. Suppose
G ∈ F4. Then R∗(G) ∈ F11 ∪ F12 ∪ F22. By our assumption R∗(G) = G,G ∈
F11 ∪F12 ∪F22, which is a contradiction to G ∈ F4. Therefore if R∗(G) = G then
either G ∈ F11 or G ∈ F23 with G = G.

Motivated by the above proposition we state the following open problem.

Problem 8. Discuss the behaviour of the iterated sequence G,R∗(G),
R∗(R∗(G)), . . . .

Corollary 9. A self-centered graph G is self super-radial if and only if G ∈ F11.

Proof. Let G be a self-centered graph. Suppose G ∈ F11. Then R∗(G) = Kp =
G. Therefore G is self super-radial graph. Conversely, suppose G is self super-
radial graph. Then there exists a graph G such that R∗(G) = G. Now we claim
that G ∈ F11. Suppose G ∈ Fii where i ≥ 2. Then by definition, R∗(G) = Kp, also
by assumption R∗(G) = G,G = Kp, which is a contradiction to G ∈ Fii, i ≥ 2.
Hence G ∈ F11.

Lemma 10. If G is a disconnected graph, then each component of R∗(G) is

complete.

Proof. Since G is a disconnected graph, by definition R∗(G) is connected. Sup-
pose u and v are two vertices of a component Gi of G. If uv ∈ E(Gi), then
uv /∈ E(R∗(G)) and uv ∈ E(R∗(G)).



838 KM. Kathiresan, G. Marimuthu and C. Parameswaran

Also, if uv /∈ E(Gi), then uv /∈ E(R∗(G)) and uv ∈ E(R∗(G)).
Therefore for any two vertices in a component Gi of G that are either adjacent

or nonadjacent in G, that vertices are not adjacent in R∗(G). But in R∗(G), the
above two vertices are adjacent. This is true for any pair of vertices in the
component Gi of G. Hence Gi is complete in R∗(G).

Lemma 11. Let G ∈ F12.

(i) If each component of G is complete, then G is super-radial.

(ii) If at least one component of G is not complete, then G is not super-radial.

Proof. (i) Since each component of G is complete, by Lemma 4, R∗(G) = G = G.
That is R∗(G) = G. Therefore G is super-radial.

(ii) Since G ∈ F12 by Corollary 5, R∗(G) = G, G is disconnected. Suppose G
has at least one component which is not complete. Then by definition of super-
radial R∗(G) ⊂ G. Therefore neither R∗(G) = G nor R∗(G) = G. Let H be a
graph such that R∗(H) = G, which is not isomorphic to G and G.

Suppose H is a self-centered graph, then by Proposition 1, R∗(H) = Kp, G =
Kp, which is a contradiction to G ∈ F12. Suppose H ∈ F23 ∪ F24. Then R∗(H) ∈
F22 ∪ F23 ∪ F4. By our assumption R∗(H) = G,G ∈ F22 ∪ F23 ∪ F4, which is a
contradiction to G ∈ F12.

Suppose H ∈ F3 with d(H) = r(H) + 1, then by Lemma 4, R∗(H) = H. By
our assumption R∗(H) = G, G = H,G = H. Since G ∈ F12, G is disconnected, H
is disconnected which is a contradiction to H ∈ F3. Suppose H ∈ F3 with d(H) =
2r(H), then by definition R∗(H) ∈ F4. By our assumption R∗(H) = G,G ∈ F4

which is a contradiction to G ∈ F12.
Suppose H ∈ F3 with r(H) + 2 ≤ d(H) ≤ 2r(H)− 1, by Lemma 6, R∗(H) ∈

F22∪F23. By our assumption R∗(H) = G, G ∈ F22∪F23, which is a contradiction
to G ∈ F12.

Suppose H ∈ F4. Then R∗(H) ∈ F11∪F12∪F22. If R
∗(H) ∈ F11∪F22, by our

assumption R∗(H) = G,G ∈ F11 ∪ F22, which is a contradiction to G ∈ F12. If
R∗(H) ∈ F12, then by Lemma 10, each component of R∗(H) is complete. By our
assumption R∗(H) = G,R∗(H) = G, each component of G is complete, which is
a contradiction to our hypothesis G has at least one non complete component.
Therefore R∗(H) /∈ F12. By all the above arguments there is no graph H such
that R∗(H) = G.

Hence G is not super-radial graph.

Lemma 12. Let G ∈ F22.
(i) If G ∈ F22, then G is not a super-radial graph.

(ii) If G ∈ F23, then G is a super-radial graph.

(iii) If G ∈ F24, then G is not a super-radial graph.



Characterization of Super-radial Graphs 839

(iv) If G ∈ F3, then G is a super-radial graph if and only if d(G) = r(G) + 1.

(v) If G ∈ F4, then G is a super-radial graph if and only if each component of

G is complete.

Proof. (i) Since G ∈ F22, by Proposition 1, R∗(G) = Kp. Let H be a graph
such that R∗(H) = G, which is not isomorphic to G. Suppose that H ∈ A =
F11 ∪F12 ∪F22 ∪F23 ∪F24 ∪F3 ∪F4. If H ∈ F11, then by Proposition 1, R∗(H) =
Kp. If H ∈ F12, then by Corollary 5, R∗(H) = H. But H is disconnected and
R∗(H) = G,G = H, G is disconnected, which is a contradiction to G ∈ F22.
Therefore H /∈ F12.

If H is a self-centered graph, then by Proposition 1, R∗(H) = Kp. Let H ∈
F23 with H ∈ F23. Suppose H = H, by Lemma 4, R∗(H) = H which implies
R∗(H) = H. But by assumption R∗(H) = G,H = G,G ∈ F23, which is a
contradiction to G ∈ F22.

Suppose H 6= H, by Lemma 4, R∗(H) = H. Since R∗(H) = G,H = G,
which implies H = G,G ∈ F23, which is a contradiction to G ∈ F22. Let H ∈ F23

with H ∈ F22. Since H ∈ F23, by Lemma 4, R∗(H) = H. Since by assumption
R∗(H) = G,G = H, implies G = H, which is a contradiction to our assumption
H 6= G. Therefore H 6∈ F23.

Suppose that H ∈ F24. By Proposition 3, R∗(H) ⊆ H. Also any vertex v
such that e(v) = 2 in H is not adjacent to any vertex in R∗(H). Hence R∗(H) is
disconnected. Also by assumption R∗(H) = G implies G is disconnected, which
is a contradiction to G ∈ F22. Therefore H /∈ F24.

Suppose that H ∈ F3. If H ∈ F3 with d(H) = r(H) + 1, then by Lemma 4,
R∗(H) = H. By our assumption, R∗(H) = G implies G = H,G = H, which is
a contradiction to our assumption H 6= G. If H ∈ F3 with d(H) = 2r(H) then
by Proposition 3, R∗(H) ⊆ H. Also any vertex v such that e(v) = r(H) in H
is not adjacent to any vertex in R∗(H). Hence R∗(H) is disconnected. Also by
assumption R∗(H) = G implies G is disconnected which is a contradiction to
G ∈ F22.

If H ∈ F3 with r(H) + 2 ≤ d(H) ≤ 2r(H) − 1, then by Lemma 6, R∗(H) ∈
F22∪F23. Suppose R

∗(H) ∈ F23. Since R
∗(H) = G,G ∈ F23, which is a contradic-

tion to G ∈ F22. Therefore R
∗(H) /∈ F23. Suppose R

∗(H) ∈ F22. By hypothesis we
have G ∈ F22. If R

∗(H) = G, then R ∗ (H) = G. But by Lemma 6, R∗(H) /∈ F22,
which implies G /∈ F22, which is a contradiction to G ∈ F22. Hence by the above
arguments we conclude that there is no graph H ∈ F3 such that R∗(H) = G.

If H ∈ F4, then R∗(H) ∈ F11 ∪ F12 ∪ F22. If R∗(H) ∈ F11 ∪ F12,, then
by our assumption R∗(H) = G, G ∈ F11 ∪ F12, which is a contradiction to
G ∈ F22. Therefore, R

∗(H) 6∈ F11 ∪ F12. If R
∗(H) ∈ F22 and by our assumption

R∗(H) = G, then R∗(H) = G. Since H ∈ F4, R∗(H) ∈ F4. Therefore, G ∈ F4,
which is a contradiction to G ∈ F22. Therefore H /∈ F4.
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Hence by all the above arguments, we conclude that there is no graph H such
that R∗(H) = G. Therefore G ∈ F22 with G ∈ F22, G is not a super-radial graph.

(ii) Since G ∈ F23, by Lemma 4, R∗(G) = G = G. That is, R∗(G) = G.
Hence G is a super-radial graph.

(iii) Since G ∈ F22, by Proposition 1, R∗(G) = Kp. Since G ∈ F24, by

Proposition 3, R∗(G) ⊆ G = G. But any vertex v such that e(v) = 2 in G is not
adjacent to any vertex in R∗(G). Hence R∗(G) is disconnected.

Let H be a graph such that R∗(H) = G which is not isomorphic to G and
G. Suppose that H ∈ A = F11 ∪ F12 ∪ F22 ∪ F23 ∪ F24 ∪ F3 ∪ F4. If H is a
self-centered graph, then R∗(H) = Kp. By our assumption R∗(H) = G,G = Kp,
which is a contradiction to G ∈ F22. If H ∈ F12, then by Corollary 5, R∗(H) = H.
But H is disconnected and R∗(H) = G,G = H, G is disconnected, which is a
contradiction to G ∈ F22. Therefore H /∈ F12. Suppose H ∈ F23 with H ∈ F23.
If H = H, by Lemma 4, R∗(H) = H implies R∗(H) = H. But by assumption
R∗(H) = G,H = G. Hence, H ∈ F23 implies G ∈ F23 which is a contradiction to
G ∈ F22.

If H 6= H, then by Lemma 4, R∗(H) = H. Since R∗(H) = G, H = G which
implies H = G. Since H ∈ F23, G ∈ F23, which is a contradiction to G ∈ F24. Let
H ∈ F23 with H ∈ F22. Since H ∈ F23, by Lemma 4, R∗(H) = H. Since by our
assumption R∗(H) = G,G = H implies G = H, which is a contradiction to our
assumption G 6= H. Therefore H /∈ F23.

Suppose that H ∈ F24. By Proposition 3, R∗(H) ⊆ H. But any vertex v such
that e(v) = 2 in H is not adjacent to any vertex in R∗(H). That is R∗(H) is
disconnected. By our assumption R∗(H) = G implies G is disconnected, which
is a contradiction to G ∈ F22. Therefore H /∈ F24.

If H ∈ F3 with d(H) = r(H) + 1, then by Lemma 4, R∗(H) = H. By our
assumption, R∗(H) = G implies G = H, G = H, which is a contradiction to
our assumption H 6= G. If H ∈ F3 with d(H) = 2r(H), then by Proposition 3,
R∗(H) ⊆ H. But any vertex v such that e(v) = r(H) in H is not adjacent to any
vertex in R∗(H). That is R∗(H) is disconnected. By our assumption R∗(H) = G,
implies G is disconnected, which is a contradiction to G ∈ F22. If H ∈ F3 with
r(H) + 2 ≤ d(H) ≤ 2r(H) − 1, then by Lemma 6, R∗(H) ∈ F22 ∪ F23. Suppose
R∗(H) ∈ F23. Since R∗(H) = G,G ∈ F23, which is a contradiction to G ∈ F22.
Therefore R∗(H) /∈ F23.

Suppose R∗(H) ∈ F22. By hypothesis we have G ∈ F22. If R
∗(H) = G then

R∗(H) = G. By Lemma 6, R∗(H) /∈ F22 ∪ F24, which implies G /∈ F22 ∪ F24. In
particular, G /∈ F24, which is a contradiction to G ∈ F24. Hence we conclude that
there is no graph H ∈ F3 such that R∗(H) = G.

If H ∈ F4, then R∗(H) ∈ F11∪F12∪F22. If R
∗(H) ∈ F11∪F12, by our assumption

R∗(H) = G, G ∈ F11 ∪ F12, which is a contradiction to G ∈ F22. If R
∗(H) ∈ F22
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and by our assumption R∗(H) = G, then R∗(H) = G. By Lemma 10, R∗(H) ∈ F4

and implies G ∈ F4, which is a contradiction to G ∈ F24. Therefore H /∈ F4.

Hence by all the above arguments, we conclude that there is no graph H such
that R∗(H) = G. Therefore, if G ∈ F22 with G ∈ F24 is not a super-radial graph.

(iv) Suppose G ∈ F3 with d(G) = r(G) + 1. By Lemma 4, R∗(G) = G = G.
That is R∗(G) = G. Therefore G is a super-radial graph. Conversely, suppose
G is a super-radial graph. Then there exists a graph H such that R∗(H) = G.
Suppose H is self-centered graph, then R∗(H) = Kp. Suppose H ∈ F12 ∪ F23,
then by Lemma 4, R∗(H) = H.

By our assumption R∗(H) = G, implies G = H implies G = H. Therefore
G ∈ F12 ∪ F23, which is a contradiction to G ∈ F3. Suppose H ∈ F24, then
R∗(H) ∈ F4. By our assumption R∗(H) = G,G ∈ F4, which is a contradiction to
G ∈ F22. Suppose H ∈ F3 with d(H) = r(H)+1. Then by Lemma 4, R∗(H) = H.
By our assumption R∗(H) = G implies H = G implies, H = G. That is R∗(G) =
G with d(G) = r(G) + 1.

Suppose H ∈ F3 with r(H) + 2 ≤ d(H) ≤ 2r(H)− 1. By Lemma 6, R∗(H) ∈
F22 ∪ F23. By our assumption R∗(H) = G implies G ∈ F22 ∪ F23. Assuming
R∗(H) ∈ F23 impliesG ∈ F23, which is a contradiction toG ∈ F22. If R

∗(H) ∈ F22

then by Lemma 6, R∗(H) ∈ Ftt+1. Since R∗(H) = G,R∗(H) = G,G ∈ Ftt+1.
That is d(G) = r(G) + 1 which is a contradiction to our assumption r(G) + 2 ≤
d(G) ≤ 2r(G)− 1. Therefore H /∈ F3 with r(H) + 2 ≤ d(H) ≤ 2r(H)− 1.

If H ∈ F3 with d(H) = 2r(H), then R∗(H) ∈ F4. By our assumption
R∗(H) = G implies G ∈ F4, which is a contradiction to G ∈ F22. Suppose
H ∈ F4 then R∗(H) ∈ F11 ∪ F12 ∪ F22. Since G ∈ F22 and R∗(H) = G implies
R∗(H) ∈ F22. Then R∗(H) ∈ F4, which implies G ∈ F4, which is a contradiction
to G ∈ F3. By all the above argument, there is no graph H such that R∗(H) ∈ G.
Therefore, if G ∈ F3, then G is a super-radial graph if and only if d(G) = r(G)+1.

(v) Since G ∈ F22, by Proposition 1, R∗(G) = Kp. Suppose G ∈ F4 with

each component of G is complete. Then by Lemma 4, R∗(G) = G = G. That is
R∗(G) = G. Hence G is a super-radial graph. Conversely, suppose G is a super-
radial graph. Then there exists a graph H such that R∗(H) = G. Since G ∈ F22,
by Proposition 1, R∗(G) = Kp. Therefore H 6= G.

Suppose G ∈ F4 with at least one non complete componen, then R∗(G) ⊂ G.
Therefore H 6= G. Suppose G ∈ F4 with each component of G is complete. Then

by Lemma 4, R∗(G) = G = G. That is R(G) = G. By our assumption R∗(H) = G
implies R∗(H) = R∗(G) implies H = G.

SupposeH is a self-centered graph. Then by Proposition 1, R∗(H) = Kp, G =
Kp, which is a contradiction to G ∈ F22. Suppose H satisfies d(H) = r(H) + 1,
then by Lemma 4, R∗(H) = H. By our assumption R∗(H) = G, G = H implies
G = H. But G is disconnected, H is disconnected, which is a contradiction to
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d(H) = r(H) + 1.
Suppose H satisfies d(H) = 2r(H). Then R∗(H) ∈ F4. By our assumption

G ∈ F4 which is a contradiction to G ∈ F22. Suppose H with r(H)+ 2 ≤ d(H) ≤
2r(H) − 1. Then by Lemma 6, R∗(H) ∈ F22 ∪ F23. If R

∗(H) ∈ F23, then by our
assumption G ∈ F23 which is a contradiction to G ∈ F22. If R

∗(H) ∈ F22, then by
Lemma 6, R∗(H) ∈ Ftt+1. By our assumption R∗(H) = G implies R∗(H) = G.
Therefore G ∈ Ftt+1 which is a contradiction to G ∈ F4.

Suppose H ∈ F4. Then R∗(H) ∈ F11 ∪ F12 ∪ F22. Since by our assumption,
R∗(H) = G, G ∈ F11 ∪ F12 ∪ F22. By hypothesis G ∈ F22 which implies G /∈
F11 ∪ F12. Suppose R∗(H) ∈ F22 and G ∈ F22. But H 6= G implies H 6= G. That
is R∗(H) 6= H. By Lemma 4, d(H) 6= r(H) + 1 or H is disconnected in which at
least one component is non complete. Therefore, if G ∈ F4 then each component
of G is complete if and only if G is a super-radial graph.

Lemma 13. Let G ∈ F23.
(i) If G ∈ F22, then G is not a super-radial graph.

(ii) If G ∈ F23, then G is a super-radial graph.

Proof. (i) Since G ∈ F23, by Lemma 4, R∗(G) = G. Since G ∈ F22, by Propo-
sition 1, R∗(G) = Kp. Let H be a graph such that R∗(H) = G, which is
not isomorphic to G and G. If H is a self-centered graph then by Proposi-
tion 1, R∗(H) = Kp, G = Kp, which is a contradiction to G ∈ F23. Suppose
H with d(H) = r(H) + 1, then by Lemma 4, R∗(H) = H. By our assumption
R∗(H) = G,G = H implies G = H which is a contradiction to H 6= G.

Suppose H with d(H) = 2r(H). Then R∗(H) ∈ F4. By our assumption
R∗(H) = G,G ∈ F4, which is a contradiction. Suppose H with r(H) + 2 ≤
d(H) ≤ 2r(H) − 1. Then by Lemma 6, R∗(H) ∈ F22 ∪ F23. By our assumption
R∗(H) = G,G ∈ F22 ∪ F23. If R

∗(H) ∈ F22, then G ∈ F22, a contradiction to
G ∈ F23. If R

∗(H) ∈ F23, then G ∈ F23. Suppose R
∗(H) = G implies R∗(H) = G.

Since by Lemma 6, R∗(H) ∈ Ftt+1 implies G ∈ Ftt+1, which is a contradiction to
G ∈ F22. Therefore H /∈ F3 with r(H) + 2 ≤ d(H) ≤ 2r(H)− 1.

Suppose H ∈ F4. Then R∗(H) ∈ F11 ∪ F12 ∪ F22. Since by our assumption,
R∗(H) = G, which implies G ∈ F11 ∪ F12 ∪ F22, which is a contradiction to
G ∈ F23. Hence there is no graph H such that R∗(H) = G. Therefore if G ∈ F23

with G ∈ F22, then G is not a super-radial graph.

(ii) Since G ∈ F23, by Lemma 4, R∗(G) = G. Since G ∈ F23, by Lemma 4,

R∗(G) = G = G. Hence G is a super-radial graph.

Lemma 14. If G ∈ F24, then G is not a super-radial graph.

Proof. Since G ∈ F24, G ∈ F22. Since G ∈ F24, by definition R∗(G) ∈ F4. Let H
be a graph such that R∗(H) = G, which is not isomorphic to G. Suppose H is a
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self-centered graph. Then by Proposition 1, R∗(H) = Kp and by our assumption
G = Kp, which is a contradiction to G ∈ F24. Suppose H with d(H) = r(H) + 1.
Then by Lemma 4, R∗(H) = H and by our assumption G = H it implies G = H.
Since d(H) = r(H) + 1 implies d(G) = r(G) + 1, which is a contradiction to
G ∈ F22.

Suppose H with d(H) = 2r(H). Then R∗(H) ∈ F4 and by our assumption
G ∈ F4, which is a contradiction to G ∈ F24. Suppose H with r(H)+2 ≤ d(H) ≤
2r(H)−1. Then by Lemma 6, R∗(H) ∈ F22∪F23. By our assumption, R∗(G) = G
implies G ∈ F22∪F23, which is a contradiction to G ∈ F24. Suppose H ∈ F4. Then
R∗(H) ∈ F11∪F12∪F22. By our assumption R∗(H) = G,G ∈ F11∪F12∪F22, which
is a contradiction to G ∈ F24. Hence there is no graph H such that R∗(H) = G.
Therefore G ∈ F24 is not a super-radial graph.

Lemma 15. If G ∈ F3, then G is not a super-radial graph.

Proof. Suppose G ∈ F3 is a super-radial graph. Then there exists a graph H
such that R∗(H) = G. IfH ∈ F11∪F12∪F22∪F23∪F24, then by previous argument
R∗(H) ∈ F11∪F22∪F23∪F4. By our assumption R∗(H) = G,G ∈ F11∪F22∪F23∪
F4, which is a contradiction to G ∈ F3. Therefore H /∈ F11∪F12∪F22∪F23∪F24.
Suppose H ∈ F3 with d(H) = r(H) + 1. Then by Lemma 4, R∗(H) = H. By our
assumption R∗(H) = G implies G = H, which implies G = H. Since H ∈ F3 with
d(H) = r(H)+1, d(H) ≥ 4 and by Theorem B, d(H) ≤ 2. Since G = H, d(G) ≤ 2,
which is a contradiction to G ∈ F3.

Suppose H ∈ F3 with H is self-centered graph. Then R∗(H) = Kp. By our
assumption R∗(H) = G,G = Kp, which is a contradiction to G ∈ F3. Suppose
H ∈ F3 with d(H) = 2r(H). Then R∗(H) ∈ F4. By our assumption R∗(H) =
G,G ∈ F4, which is a contradiction to G ∈ F3. Suppose H ∈ F3 with r(H) + 2 ≤
d(H) ≤ 2r(H) − 1. Then by Lemma 6, R∗(H) ∈ F22 ∪ F23. By our assumption
R∗(H) = G,G ∈ F22 ∪ F23, which is a contradiction to G ∈ F3. Suppose H ∈ F4.
Then R∗(H) ∈ F11∪F12∪F22. By our assumption R∗(H) = G,G ∈ F11∪F12∪F22,
which is a contradiction to G ∈ F3. By all the above arguments, there exists no
graph H such that R∗(H) = G. Hence G ∈ F3 is not a super-radial graph.

Lemma 16. If G ∈ F4 and G ∈ F11 ∪ F22, then G is not a super-radial graph.

Proof. Since G ∈ F11 ∪ F22, then R∗(G) = Kp. Suppose there exists a graph H
such that R∗(H) = G, which is not isomorphic to G.

Case (i). Suppose H is a self-centered graph. Then by Proposition 1,
R∗(H) = Kp. By our assumption R∗(H) = G,G = Kp, which is a contradic-
tion to G ∈ F4.

Case (ii). Suppose H with d(H) = r(H)+1. Then by Lemma 4, R∗(H) = H.
By our assumption R∗(H) = G, G = H implies G = H. By hypothesis G ∈
F11 ∪ F22 implies H ∈ F11 ∪ F22, which is a contradiction to d(H) = r(H) + 1.
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Case (iii). Suppose H with r(H)+2 ≤ d(H) ≤ 2r(H)−1. Then by Lemma 6,
R∗H) ∈ F22 ∪ F23. By our assumption R∗(H) = G implies G ∈ F22 ∪ F23, which
is a contradiction to G ∈ F4.

Case (iv). Suppose H with d(H) = 2r(H). Then d(H) − r(H) + 1 = 2r(H) −
r(H)+1 = r(H)+1. Clearly, every vertex with eccentricity r(H) in H is isolated
vertex in R∗(H). Therefore, R∗(H) ∈ F4.

In R∗(H), every isolated vertex in R∗(H) is adjacent to all the vertices of
R∗(H). Therefore, R∗(H) ∈ F12. By our assumption R∗(H) = G. R∗(H) = G
implies G ∈ F12, which is a contradiction to G ∈ F11 ∪ F22.

Case (v). Suppose H ∈ F4. Then R∗(H) ∈ F11∪F12∪F22. By our assumption
R∗(H) = G implies G ∈ F11 ∪ F12 ∪ F22 which is a contradiction to G ∈ F4.

Hence by all the above arguments, G ∈ F4 and G ∈ F11 ∪ F22 is not a
super-radial graph.

Theorem 17. A connected graph G is super-radial graph if and only if G has

any one of the following properties.

(i) G ∈ F11,

(ii) G ∈ F12 with each component of G being complete,

(iii) G ∈ F22 with G ∈ F23,

(iv) G ∈ F22 and G ∈ F3 with d(G) = r(G) + 1,

(v) G ∈ F22 and G ∈ F4 with each component of G being complete,

(iv) G ∈ F23 with G ∈ F23.

Proof. As the following table exhausts all the possibilities, we get the theorem.

By Lemma/ G is super-

G G Proposition radial

1 F11 F4 8 Yes

2 F12 Each component of G is 12(i) Yes
complete.
At least one component 12(ii) No

of G is not complete.

3 F22 F22 13(i) No
F23 13(ii) Yes
F24 13(iii) No

F3 with d(G) = r(G) + 1 13(iv) Yes

F3 with d(G) 6= r(G) + 1 13(iv) No
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F4 with each 13(v) Yes

component of G beingcomplete
F4 with at least one 13(v) No

component of G being non complete

4 F23 F22 14(i) No
F23 14(ii) Yes

5 F24 F22 15 No

6 F3 16 No

Theorem 18. A disconnected graph G is a super-radial graph if and only if

G ∈ F12.

Proof. Since G is disconnected, G ∈ F11 ∪ F12 ∪ F22. If G ∈ F11 ∪ F22, then
by Lemma 16, G is not a super-radial graph. If G ∈ F12, then by Lemma 4,

R∗(G) = G = G. That is R∗(G) = G. Hence G is a super-radial graph.

The following examples show that the notion of super-radial graph is independent
of radial graph, antipodal graph, eccentric graph and super-eccentric graph.

s s

s

ss

Figure 2. Super-radial graph but not antipodal graph.

r rr r r

Figure 3. Antipodal graph but not super-radial graph.

r

rr

r

r

Figure 4. Super-radial graph but not eccentric graph.
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r

r r

r r

Figure 5. Eccentric graph but not super-radial graph.

r r r r

r

Figure 6. Super-radial graph but not radial graph.

r

r

rr

Figure 7. Radial graph but not super-radial graph.

r

rr

r

r

Figure 8. Super-radial graph but not super-eccentric graph.

s s

s s

Figure 9. Super-eccentric graph but not super-radial graph.
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