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Abstract

Let G be a vertex colored graph. The minimum number χ(G) of colors
needed for coloring of a graph G is called the chromatic number. Recently,
Adiga et al. [1] have introduced the concept of color energy of a graph
Ec(G) and computed the color energy of few families of graphs with χ(G)
colors. In this paper we derive explicit formulas for the color energies of
the unitary Cayley graph Xn, the complement of the colored unitary Cayley
graph (Xn)c and some gcd-graphs.
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1. Introduction

LetG be a finite group and S be a subset ofG such that S does not contain identity
of G. Assume S−1 = {s−1 : s ∈ S} = S. The Cayley graph X = Cay(G,S) is
an undirected graph having vertex set V (X) = G and edge set E(X) = {{a, b} :

1The first author is thankful to the university grants commission Goverment of India for the
financial support under the grant F.510/2/SAP-DRS/2011. The second and third authors are
thankful to DST for its financial support under the project SR/S4/MS 236/04.
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ab−1 ∈ S}, where a, b ∈ G . The Cayley graph X is a regular graph of degree
|S|. Its connected components are the right cosets of the subgroup generated by
S. Therefore, if S generates G, then X is a connected graph. More information
about Cayley graphs can be found in the books on algebraic graph theory by
Biggs [2] and by Godsil and Royle [3].

For a positive integer n > 1, the unitary Cayley graph Xn = Cay(Zn;Un),
where Un denotes the set of all units of the ring Zn. Two vertices a, b are adjacent
if, and only if, a−b ∈ Un. The unitary Cayley graph Xn is regular of degree φ(n),
where φ(n) is the Euler function. Unitary Cayley graphs are highly symmetric
and have some remarkable properties connecting graph theory and number theory.
These graphs have integral spectrum and play an important role in modeling
quantum spin networks supporting the perfect state of transfer. In fact, it is
proved in [6] that the eigenvalues of unitary Cayley graph Xn are

λi =
∑

1≤j<n, (j,n)=1
ωij = C(i, n), 0 ≤ i ≤ n− 1,

where ω denotes a complex primitive nth root of unity.

The arithmetic function C(i, n) is a Ramanujan sum [5], and

C(i, n) = φ(n)
µ
(

n
(i,n)

)

φ
(

n
(i,n)

) ,

where µ denotes the Möbius function.

The gcd-graphs arise as a generalization of unitary Cayley graphs studied by
Klotz and Sander in [6]. Let D be a set of positive, proper divisors of the integer
n > 1. Define the gcd-graph Xn(D) to have vertex set Zn = {0, 1, . . . , n− 1} and
edge set E(Xn(D)) = {{a, b} : a, b ∈ Zn, (a − b, n) ∈ D}. In [6], it was proved
that these graphs have integral spectrum.

Let G be a simple graph. The adjacency matrix of G is the n × n matrix
A = A(G), whose entries aij are given by aij = 1 if vi and vj are adjacent, aij = 0
otherwise. The eigenvalues of A(G) are the eigenvalues of G. The energy E(G)
of a graph G is the sum of the absolute values of the eigenvalues of A(G) [4].

Recently, Sampathkumar and Sriraj [9] have introduced a new matrix AL(G)
called L-matrix of a vertex labeled graph G = (V,E), whose elements are defined
as follows: If ℓ(vi) is the label of the vertex vi, then

aij =















2 if vi and vj are adjacent with ℓ(vi) = ℓ(vj),
1 if vi and vj are adjacent with ℓ(vi) 6= ℓ(vj),

−1 if vi and vj are non-adjacent with ℓ(vi) = ℓ(vj),
0 if vi = vj or vi and vj are non-adjacent with ℓ(vi) 6= ℓ(vj).
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A coloring of graphG is a coloring of its vertices such that no two adjacent vertices
receive the same color. The minimum number of colors needed for coloring of a
graph G is called chromatic number and denoted by χ(G).

If we consider the vertex colored graph, then entries of the matrix AL(G) are
as follows: If c(vi) is the color of vi, then

aij =







1 if vi and vj are adjacent with c(vi) 6= c(vj),
−1 if vi and vj are non-adjacent with c(vi) = c(vj),
0 if vi = vj or vi and vj are non-adjacent with c(vi) 6= c(vj).

The matrix thus obtained is the L-matrix of the colored graph and is G denoted
by Ac(G). The eigenvalues of Ac(G) are called color eigenvalues. If G is colored
with χ(G) colors, then L-matrix of the colored graph G is denoted by Aχ(G).
Recently in [1], Adiga, Sampathkumar, Sriraj, Shrikanth have studied the energy
of the vertex colored graph, which is defined as follows. The energy of a graph
with respect to a given coloring is the sum of the absolute values of the color
eigenvalues of G and is called the energy of a colored graph or color energy of a
graph.

If we use n different colors to the vertices of a graph of order n, then the color
energy is the same as the energy of a graph. So color energy may be considered
as a generalization of energy of a graph. It is possible that color energy that we
are considering in this paper has similar applications in chemistry as well as in
some other areas.

Recently, llić [7] obtained an explicit formula for the energy of unitary Cayley
graph Xn and also energy of the complement of Xn. The open problem posed
by llić [7] about calculating energy of an arbitary integral circulant graph is
completely solved by Mollahajiaghaei in [8].

Motivated by these investigations we establish formulas for color energies of
the unitary Cayley graph Xn and the complement of the colored unitary Cayley
graph Xn. We also derive an explicit formula for energy of the colored gcd-graph
Xn(D), where n = pα1

1 pα2
2 . . . pi−1

αi−1pi
1pi+1

αi+1 . . . pk
αk and D = {1, pi}.

2. Color Energy of Unitary Cayley Graphs

Let Xn = (Zn;Un) be the unitary Cayley graph and Eχ(Xn) denote the color
energy of Xn with χ(Xn) colors. In [6], Klotz and Sander proved the following
theorem:

Theorem 1. If p is the smallest prime divisor of n, then χ(Xn) = p.

In general, an optimal coloring with χ(G) colors is not unique. So the color
energy Eχ(G) may be different for different optimal colorings. But the unitary
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Cayley graph Xn has a unique optimal coloring, thus its color energy with respect
to minimum number of colors is unique.

Theorem 2. The unitary Cayley graph Xn has a unique optimal coloring and
the color energy of Xn with respect to minimum number of colors is unique.

Proof. Let Xn be a unitary Cayley graph whose vertices are labeled by
0, 1, 2, . . . , n−1. Let p be the smallest prime divisor of n. Then χ(Xn) = p. Now
we color Xn using p colors say c1, c2, . . . , cp. Consider the vertices 0, 1, 2, . . . , p−1.
Let i, j ∈ {0, 1, 2, . . . , p − 1}, where i < j. Since gcd(j − i, n) = 1, i and j are
adjacent so we cannot give the same color to i and j. Similarly, the vertices
ip, ip+ 1, . . . , (i+ 1)p− 1, i = 1, 2, 3, . . . , (n

p
− 1) must receive different colors.

Suppose color of the vertex 0 is c1 then color of the vertex p must be
equal c1 because p and i are adjacent for each i = 1, 2, 3, . . . , p − 1. On simi-
lar lines the color of the vertices 2p, 3p, . . . , (n

p
− 1)p must be c1. Thus the

vertices 0, p, 2p, 3p, . . . , (n
p
− 1)p receive the color c1. Similarly, the colors of

the vertices 1, p + 1, 2p + 1, . . . , (n
p
− 1)p + 1, must be the same. In general

i, i+ p, i+ 2p, . . . , i+ (n
p
− 1)p, i = 0, 1, . . . , (p− 1) must receive the same color.

This shows that the matrix Aχ(Xn) will not alter for different optimal color-
ings. Hence, the color energy of Xn with respect to minimum number of colors
is unique. This completes the proof.

Now we determine the color energy of a unitary Cayley graph with minimum
number of colors.

Theorem 3. Let Xn be the unitary Cayley graph colored with p colors, where p
is the smallest prime divisor of n. Then

Eχ(Xn) = 2ω(n)φ(n) + 2
n

p
φ(p)− 2

∑

d|n
µ(d)=−1

φ(d),

where ω(n) is the number of distinct prime divisors of n.

Proof. Let Xn = (Zn;Un) be the unitary Cayley graph colored with p colors,
where p is the smallest prime divisor of n. We color the vertices 0, 1, 2, . . . , n− 1
with colors c1, c2, . . . , cp as follows: Color the vertices kp, kp + 1, kp + 2, . . . ,

(k + 1)p− 1 with c1, c2, c3, . . . , cp respectively for k = 0, 1, 2, . . . ,
(

n
p
− 1
)

. Then

Aχ(Xn) is a circulant matrix with first row equal to (a0, a1, a2, . . . , an−1), where

ak =















0 if k = 0,
1 if 1 ≤ k ≤ n− 1, (k, n) = 1,

−1 if k = p, 2p, . . . , n− p,
0 otherwise.
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It is well-known that for a circulant matrix of order n, the eigenvalues are given
by the formula

λm =
∑n−1

k=0
ake

2πimk
n , m = 0, 1, . . . , (n− 1).

Let ω = e
2πi
n , then we have

λm =
∑n−1

k=0
akω

mk, m = 0, 1, . . . , (n− 1)

=
∑n−1

k=1
(k,n)=1

ωmk −
∑

n
p
−1

ℓ=1
ωℓpm

= C(m,n)−
∑

n
p
−1

ℓ=1
ωℓpm.

We have λ0 =
n−1
∑

k=0

ak. Note that ak = 1 if 1 ≤ k ≤ (n − 1), (k, n) = 1, ak = −1

if k = p, 2p . . . , n− p and 0 otherwise. Thus the number of terms that are equal
to 1 in the above sum is φ(n) and the number of terms that are equal to −1 is
(

n
p
− 1
)

and other terms are zero. Hence,

λ0 = φ(n)−

(

n

p
− 1

)

,

using definition of Ramanujan’s sum we have

λm = C(m,n)−

(

n

p
− 1

)

for m =
n

p
,
2n

p
, . . . ,

(p− 1)n

p
,

and

λm = C(m,n) + 1, for 1 ≤ m ≤ n− 1 and m 6=
n

p
,
2n

p
, . . . ,

(p− 1)n

p
.

Thus

Eχ(Xn) =
∑n−1

m=0
|λm|

= |λ0|+
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

|λm|+
∑

1≤m≤(n−1)

m 6=n
p
, 2n
p
,...,

(p−1)n
p

|λm|

= φ(n)−

(

n

p
− 1

)

+
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n)−

(

n

p
− 1

)∣

∣

∣

∣

+
∑

1≤m≤(n−1)

m 6=n
p
, 2n
p
,...,

(p−1)n
p

|C(m,n) + 1|.

(1)
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Now we express the last two sums in terms of Euler function φ(n). Consider

∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n)−

(

n

p
− 1

)∣

∣

∣

∣

=
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

∣

∣

φ(n)
µ
(

n
(n,m)

)

φ
(

n
(n,m)

) −

(

n

p
− 1

)

∣

∣

∣

∣

∣

∣

=
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

φ(n)
µ(p)

φ(p)
−

(

n

p
− 1

)
∣

∣

∣

∣

= φ(n) +

(

n

p
− 1

)

φ(p).

(2)

We have

∑n

m=1
|C(m,n) + 1| =

∑n

m=1

∣

∣

∣

∣

∣

∣

φ(n)
µ
(

n
(n,m)

)

φ
(

n
(n,m)

) + 1

∣

∣

∣

∣

∣

∣

=
∑

d|n
φ
(n

d

)

∣

∣

∣

∣

∣

φ(n)
µ
(

n
d

)

φ
(

n
d

) + 1

∣

∣

∣

∣

∣

=
∑

d|n

µ(n
d )=1

∣

∣

∣
φ(n) + φ

(n

d

)∣

∣

∣

+
∑

d|n

µ(n
d )=−1

∣

∣

∣
−φ(n) + φ

(n

d

)
∣

∣

∣
+
∑

d|n

µ(n
d )=0

φ
(n

d

)

= 2ω(n)φ(n) +
∑

d|n
µ(d)=1

φ(d)−
∑

d|n
µ(d)=−1

φ(d)

+
∑

d|n
µ(d)=0

φ(d) = 2ω(n)φ(n) + n− 2
∑

d|n
µ(d)=−1

φ(d).

Thus

∑

1≤m≤(n−1)

m 6=n
p
, 2n
p
,...,

(p−1)n
p

|C(m,n) + 1|

=
∑n

m=1
|C(m,n) + 1| −

∑

m= n,n
p
, 2n
p
,...,

(p−1)n
p

|C(m,n) + 1|

= 2ω(n)φ(n) + n− 2

(

∑

d|n
µ(d)=−1

φ(d)

)

− 2φ(n) + φ(p)− 1.

(3)
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Substituting (2) and (3) in (1) we obtain,

Eχ(Xn) = 2ω(n)φ(n) + 2
n

p
φ(p)− 2

∑

d|n
µ(d)=−1

φ(d).

Corollary 4. If n = pα, then Eχ(Xpα) = 4φ(pα)− 2φ(p).

3. Complement of Colored Unitary Cayley Graph and Its Color

Energy

Recently Adiga et al. [1] have introduced the concept of complement of the
colored graph and matrix of the complement colored graph, which are defined as
follows.

Definition. Let G = (V,E) be a colored graph. Then the complement of colored
graph G, denoted by Gc, has same vertex set and same coloring of G with the
following properties:
(i) vi and vj are adjacent in Gc, if vi and vj are non-adjacent in G with

c(vi) 6= c(vj).

(ii) vi and vj are non-adjacent in Gc, if vi and vj are non-adjacent in G with
c(vi) = c(vj).

(iii) vi and vj are non-adjacent in Gc, if vi and vj are adjacent in G.

Remark 5. In the above definition the color complement Gc of a graph G with
respect to a proper vertex coloring c of G is defined such that c is also a proper
vertex coloring of Gc. Therefore, the matrix Ac(Gc) is well defined. We simplify
the notation of Ac(Gc) to A(Gc).

Thus the matrix A(Gc) = [aij ], where

aij =







1 if vi and vj are adjacent in Gc with c(vi) 6= c(vj),

−1 if vi and vj are non-adjacent in Gc with c(vi) = c(vj),
0 otherwise.

Theorem 6. If (Xn)c is the complement of the colored unitary Cayley graph
Xn which is colored with minimum number of colors and p is the smallest prime
divisor of n, then

E(Xn)c = (2ω(n) − 2)φ(n) + 2(n− p+ 1)− 2
∑

d|n
µ(d)=1

φ(d),

where ω(n) is the number of distinct prime divisors n.
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Proof. Let (Xn)c be the complement of the colored unitary Cayley graph Xn.
Then A(Xn)c is a circulant matrix with first row equal to (a0, a1, a2, . . . , an−1),
where

ak =















0 if k = 0,
0 if 1 ≤ k ≤ n− 1, (k, n) = 1,

−1 if k = p, 2p, . . . , n− p,
1 otherwise.

Thus the color eigenvalues of (Xn)c are given by

λm =
∑n−1

k=0
ake

2πimk
n , m = 0, 1, . . . , (n− 1).

Let ω = e
2πi
n , then we have

λm =
∑n−1

k=0
akω

mk, m = 0, 1, . . . , (n− 1).

Thus we have

λm =
∑n−1

k=1
(k,n) 6=1

k 6=p,2p,...,
(

n
p
−1

)

p

ωmk −
∑

n
p
−1

ℓ=1
ωℓpm,

=
∑n−1

k=1
ωmk −

∑

(k,n)=1
ωmk − 2

∑

n
p
−1

ℓ=1
ωℓpm.

From the definition of Euler’s function we have

λ0 = (n− 1)− φ(n)− 2

(

n

p
− 1

)

.

Using definition of Ramanujan’s sum

λm = −1− C(m,n)− 2

(

n

p
− 1

)

, m =
n

p
,
2n

p
, . . . ,

(p− 1)n

p

and

λm = 1− C(m,n), 1 ≤ m ≤ n− 1 and m 6=
n

p
,
2n

p
, . . . ,

(p− 1)n

p
.

Thus

E(Xn)c =
∑n−1

m=0
|λm|

=

∣

∣

∣

∣

(n− 1)− φ(n)− 2

(

n

p
− 1

)∣

∣

∣

∣

+
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

1 + C(m,n) + 2

(

n

p
− 1

)∣

∣

∣

∣

+
∑

1≤m≤(n−1)

m 6=n
p
, 2n
p
,...,

(p−1)n
p

|1− C(m,n)| .

(4)
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Consider
∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

1 + C(m,n) + 2

(

n

p
− 1

)
∣

∣

∣

∣

= φ(p)

∣

∣

∣

∣

1 +
φ(n)µ(p)

φ(p)
+ 2

(

n

p
− 1

)∣

∣

∣

∣

=

∣

∣

∣

∣

φ(p)− φ(n) + 2

(

n

p
− 1

)

φ(p)

∣

∣

∣

∣

= φ(p)

(

2n

p
− 1

)

− φ(n).

(5)

We have
∑n−1

m=1
m 6= n, n

p
, 2n
p
,...,

(p−1)n
p

|1− C(m,n)|

=
∑n

m=1
|1− C(m,n)| −

∑

m = n,n
p
, 2n
p
,...,

(p−1)n
p

|1− C(m,n)|

=
∑

d|n

∣

∣

∣
φ
(n

d

)

− φ(n)µ
(n

d

)
∣

∣

∣
− φ(p)− 2φ(n) + 1

=
∑

d|n

µ(n
d )=1

∣

∣

∣
φ
(n

d

)

− φ(n)
∣

∣

∣
+
∑

d|n
µ(n

d
)=−1

∣

∣

∣
φ
(n

d

)

+ φ(n)
∣

∣

∣

+
∑

d|n
µ(n

d
)=0

φ
(n

d

)

− φ(p)− 2φ(n) + 1

= 2ω(n)φ(n) +
∑

d|n
φ(d)− 2

(

∑

d|n
µ(d)=1

φ(d)

)

− φ(p)− 2φ(n) + 1.

(6)

Substituting (5) and (6) in (4) and after some simplifications, we obtain

E(Xn)c = (2ω(n) − 2)φ(n) + 2(n− p+ 1)− 2
∑

d|n
µ(d)=1

φ(d).

Corollary 7. If n = pα, then E(Xpα)c = 2(pα − p).

Remark 8. Eχ(Xpα) > E(Xpα)c.

4. Color Energy of Some gcd-graphs

Klotz and Sander extended the class of unitary Cayley graphs. Let D be a set
of positive, proper divisors of the integer n > 1. We recall the definition of the
gcd-graph. Define the gcd-graph Xn(D) to have vertex set Zn = {0, 1, . . . , n− 1}
and edge set E(Xn(D)) = {{a, b} : a, b ∈ Zn, (a− b, n) ∈ D}. So [10] proved that
a circulant graph is integral if, and only if, it is a gcd-graph.
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Theorem 9. Let n = p1
α1p2

α2 . . . pk
αk and Xn(D) be the gcd-graph, where D =

{1, pi}, i > 1, αi = 1. If p (= p1) is the smallest prime divisor of n, then the
gcd-graph Xn(D) has a unique optimal coloring.

Proof. Let Xn(D) be the gcd-graph where D = {1, pi}, i > 1 and αi = 1 whose
vertices are labelled by 0, 1, 2, . . . , (n − 1). Let p (= p1) be the smallest prime
divisor of n. Now we color Xn(D) using p colors say c1, c2, . . . , cp. Using similar
arguments as in the proof of Theorem 2, the vertices i, i+p, i+2p, . . . , i+(n

p
−1)p,

i = 0, 1, . . . , (p−1) must receive the same color. Also observe that, if x and y are
two vertices of Xn(D) such that gcd(x − y, n) = pi, then x and y must receive
different colors. For, if x and y receive the same color then p|(x − y) and hence
p|pi which is a contradiction.

Theorem 10. Let n = p1
α1p2

α2 . . . pk
αk and Xn(D) be the gcd-graph, where

D = {1, pi}, i > 1, αi = 1. If p (= p1) is the smallest prime divisor of n and
Xn(D) be colored with p colors, then

Eχ[Xn(D)] = n−
n

pi
+ 2ω(n)−1

(

φ(n) + φ

(

n

pi

))

+
n

p
φ(p)−

n

p
+
∑

ℓ|
(

n
pi

) µ

(

n

ℓpi

)

φ

(

n

ℓpi

)

.

Proof. Let Xn(D) be the gcd-graph, where D = {1, pi}. We color the ver-
tices 0, 1, 2, . . . , n − 1 with colors c1, c2, . . . , cp as follows. Color the vertices
kp, kp + 1, kp + 2, . . . , (k + 1)p − 1 with c1, c2, c3, . . . , cp respectively for k =

0, 1, 2, . . . ,
(

n
p
− 1
)

. Then Aχ[Xn(D)] is a circulant matrix with first row equal

to (a0, a1, a2, . . . , an−1), where

ak =















1 if (k, n) = 1,
1 if (k, n) = pi,

−1 if k = p, 2p, . . . , n− p,
0 otherwise.

Thus the color eigenvalues of Xn(D) are given by

λm =
∑n−1

k=0
akω

mk, m = 0, 1, . . . , (n− 1).

Let ω = e
2πi
n . Then we have,

λm =
∑n−1

k=1
(k,n)=1

ωmk +
∑n−1

k=1
(k,n)=pi

ωmk −
∑

n
p
−1

ℓ=1
ωℓpm, m = 0, 1, . . . , (n− 1)

= C(m,n) + C

(

m,
n

pi

)

−
∑

n
p
−1

ℓ=1
ωℓpm.
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We note that

λm=







































φ(n) + φ
(

n
pi

)

−
(

n
p
− 1
)

, m = 0,

C(m,n) + C
(

m, n
pi

)

+ 1, 1 ≤ m ≤ n− 1,

m 6= n
p
, 2n

p
, . . . , (p−1)n

p
,

C(m,n) + C
(

m, n
pi

)

−
(

n
p
− 1
)

, 1 ≤ m ≤ n− 1,

m = n
p
, 2n

p
, . . . , (p−1)n

p
.

Observe that

(7) |λ0| = φ(n) + φ

(

n

pi

)

−

(

n

p
− 1

)

,

and

∑

m=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n) + C

(

m,
n

pi

)

−

(

n

p
− 1

)∣

∣

∣

∣

= φ(n) + φ

(

n

pi

)

+ φ(p)

(

n

p
− 1

)

.

(8)

Further,

∑n
m=1

m 6=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n) + C

(

m,
n

pi

)

+ 1

∣

∣

∣

∣

=
∑n

m=1

∣

∣

∣

∣

C(m,n) + C

(

m,
n

pi

)

+ 1

∣

∣

∣

∣

−
∑

m= n, n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n) + C

(

m,
n

pi

)

+ 1

∣

∣

∣

∣

=
∑n

m=1

∣

∣

∣

∣

∣

∣

1 +
φ(n)µ

(

n
(m,n)

)

φ
(

n
(m,n)

) +
φ(n/pi)µ

(

n
(pim,n)

)

φ
(

n
(pim,n)

)

∣

∣

∣

∣

∣

∣

− 2φ(n)− 2φ

(

n

pi

)

+ φ(p)− 1.

But, (m, pi) = 1 or pi. If (m, pi) = 1, then (mpi, n) = pi(m,n) and if (m, pi) = pi,
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then (m,n) = (mpi, n). Thus the above sum is equal to

∑n

m=1
(m,pi)=1

∣

∣

∣

∣

∣

∣

1 +
φ(n)µ

(

n
(m,n)

)

φ
(

n
(m,n)

) +
φ
(

n
pi

)

µ
(

n
(pim,n)

)

φ
(

n
(pim,n)

)

∣

∣

∣

∣

∣

∣

+
∑n

m=1
(m,pi)=pi

∣

∣

∣

∣

∣

∣

1 +
φ(n)µ

(

n
(m,n)

)

φ
(

n
(m,n)

) +
φ
(

n
pi

)

µ
(

n
(pim,n)

)

φ
(

n
(pim,n)

)

∣

∣

∣

∣

∣

∣

− 2φ(n)− 2φ

(

n

pi

)

+ φ(p)− 1.

(9)

After some simplification the first sum is equal to

∑

d|n
d 6=pi,2pi,...,

n
pi

pi

φ
(n

d

)

∣

∣

∣

∣

∣

∣

φ(n)µ
(

n
d

)

φ
(

n
d

) +
φ
(

n
pi

)

µ
(

n
pid

)

φ
(

n
pid

) + 1

∣

∣

∣

∣

∣

∣

=
∑

d|n
d 6=pi,2pi,...,

n
pi

pi

∣

∣

∣

∣

φ(n)µ
(n

d

)

+ φ(n)µ

(

n

pid

)

+ φ
(n

d

)

∣

∣

∣

∣

=
∑

d|n
d 6=pi,2pi,...,

n
pi

pi

φ
(n

d

)

= n−
n

pi
.

(10)

The second sum is equal to

∑n

m=1
(m,pi)=pi

∣

∣

∣

∣

∣

∣

1 +
φ(n)µ

(

n
(m,n)

)

φ
(

n
(m,n)

) +
φ
(

n
pi

)

µ
(

n
(m,n)

)

φ
(

n
(m,n)

)

∣

∣

∣

∣

∣

∣

=
∑

n
pi

ℓ=1

∣

∣

∣

∣

∣

∣

µ
(

n
(ℓpi,n)

)

φ
(

n
(ℓpi,n)

)

(

φ(n) + φ

(

n

pi

))

+ 1

∣

∣

∣

∣

∣

∣

=
∑

ℓ| n
pi

φ

(

n

ℓpi

)

∣

∣

∣

∣

∣

∣

µ
(

n
(ℓpi)

)

φ
(

n
(ℓpi)

)

(

φ(n) + φ

(

n

pi

))

+ 1

∣

∣

∣

∣

∣

∣

=
∑

ℓ| n
pi

µ

(

n

pi

)(

φ(n) + φ

(

n

pi

))

+ φ

(

n

ℓpi

)

=
∑

ℓ| n
pi

φ(n) + φ

(

n

pi

)

+ µ

(

n

ℓpi

)

φ

(

n

ℓpi

)

= 2ω(n)−1(φ(n) + φ

(

n

pi

)

) +
∑

ℓ| n
pi

µ

(

n

ℓpi

)

φ

(

n

ℓpi

)

.

(11)
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Substituting (10) and (11) in (9) we get

∑n
m=1

m 6=n
p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C(m,n) + C

(

m,
n

pi

)

+ 1

∣

∣

∣

∣

= n−
n

pi
+ 2(2ω(n)−2 − 1)

(

φ(n) + φ

(

n

pi

))

+ φ(p)− 1 +
∑

ℓ|
(

n
pi

) µ

(

n

ℓpi

)

φ

(

n

ℓpi

)

.

(12)

Adding (7), (8) and (12) and simplifying we obtain

Eχ[Xn(D)] = n−
n

pi
+ 2ω(n)−1

(

φ(n) + φ

(

n

pi

))

+
n

p
φ(p)

−
n

p
+
∑

ℓ|
(

n
pi

) µ

(

n

ℓpi

)

φ

(

n

ℓpi

)

.

This completes the proof.

Theorem 11. Let n = p1p2 . . . pk be a square-free number and Xn(D) be the
gcd-graph, where D = {pi, pj}. If p (= p1) 6= pi, pj is the smallest prime divisor
of n and Xn(D) can be colored with p colors, then

Eχ[Xn(D)] = φ

(

n

pi

)

+ φ

(

n

pj

)

−

(

n

p
− 1

)

+
∑n

m=1
m=n

p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C

(

m,
n

pi

)

+ C

(

m,
n

pj

)

−

(

n

p
− 1

)∣

∣

∣

∣

+
∑n

m=1
m 6=n

p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C

(

m,
n

pi

)

+ C

(

m,
n

pj

)

+ 1

∣

∣

∣

∣

.

Proof. Let Xn(D) be the gcd-graph, where D = {pi, pj}. We color the ver-
tices 0, 1, 2, . . . , n − 1 with colors c1, c2, . . . , cp as follows: Color the vertices
kp, kp + 1, kp + 2, . . . , (k + 1)p − 1 with c1, c2, c3, . . . , cp respectively for k =

0, 1, 2, . . . ,
(

n
p
− 1
)

. Then Aχ[Xn(D)] is a circulant matrix with first row equal

to (a0, a1, a2, . . . , an−1), where

ak =















1 if (k, n) = pi,
1 if (k, n) = pj ,

−1 if k = p, 2p, . . . , n− p,
0 otherwise.
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The color eigenvalues of Xn(D) are given by

λm =
∑n−1

k=0
akω

mk, m = 0, 1, . . . , (n− 1)

=
∑n−1

k=1
(k,n)=pi

ωmk +
∑n−1

k=1
(k,n)=pj

ωmk −
∑

n
p
−1

ℓ=1
ωℓpm

= C

(

m,
n

pi

)

+ C

(

m,
n

pj

)

−
∑

n
p
−1

ℓ=1
ωℓpm.

Thus we have

λm=



























φ
(

n
pi

)

+ φ
(

n
pj

)

−
(

n
p
− 1
)

m = 0,

C
(

m, n
pi

)

+ C
(

m, n
pj

)

+ 1 (1 ≤ m ≤ n− 1) and

m 6= n
p
, 2n

p
, . . . , (p−1)n

p
.

C
(

m, n
pi

)

+ C
(

m, n
pj

)

−
(

n
p
− 1
)

m = n
p
, 2n

p
, . . . , (p−1)n

p
.

Therefore,

Eχ[Xn(D)] = φ

(

n

pi

)

+ φ

(

n

pj

)

−

(

n

p
− 1

)

+
∑n

m=1
m=n

p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C

(

m,
n

pi

)

+ C

(

m,
n

pj

)

−

(

n

p
− 1

)
∣

∣

∣

∣

+
∑n

m=1
m 6=n

p
, 2n
p
,...,

(p−1)n
p

∣

∣

∣

∣

C

(

m,
n

pi

)

+ C

(

m,
n

pj

)

+ 1

∣

∣

∣

∣

.
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