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Abstract

A digraph D is k-transitive if the existence of a directed path (v0, v1, . . . ,
vk), of length k implies that (v0, vk) ∈ A(D). Clearly, a 2-transitive digraph
is a transitive digraph in the usual sense. Transitive digraphs have been
characterized as compositions of complete digraphs on an acyclic transitive
digraph. Also, strong 3 and 4-transitive digraphs have been characterized.

In this work we analyze the structure of strong k-transitive digraphs
having a cycle of length at least k. We show that in most cases, such digraphs
are complete digraphs or cycle extensions. Also, the obtained results are used
to prove some particular cases of the Laborde-Payan-Xuong Conjecture.
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1. Introduction

In this work, D = (V (D), A(D)) will denote a finite digraph without loops or
multiple arcs in the same direction, with vertex set V (D) and arc set A(D). For
general concepts and notation we refer the reader to [1] and [2], particularly we
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will use the notation of [2] for walks. If W = (x0, x1, . . . , xn) is a walk and i < j
then xiWxj will denote the subwalk (xi, xi+1, . . . , xj−1, xj) of W . Union of walks
will be denoted by concatenation or with ∪. For a vertex v ∈ V (D), we define the
out-neighborhood of v inD as the setN+

D (v) = {u ∈ V (D) : (v, u) ∈ A(D)}; when
there is no possibility of confusion we will omit the subscript D. The elements
of N+(v) are called the out-neighbors of v, and the out-degree of v, d+D(v), is the
number of out-neighbors of v. Definitions of in-neighborhood, in-neighbors and
in-degree of v are analogously given. We say that a vertex u reaches a vertex v
in D if a directed uv-directed path exists in D. An arc (u, v) ∈ A(D) is called
asymmetrical (resp. symmetrical) if (v, u) /∈ A(D) (resp. (v, u) ∈ A(D)).

If D is a digraph and X,Y ⊆ V (D), an XY -arc is an arc with initial vertex in
X and terminal vertex in Y . If X∩Y = ∅, X → Y will denote that (x, y) ∈ A(D)
for every x ∈ X and y ∈ Y . Again, if X and Y are disjoint, X ⇒ Y will denote
that there are no Y X-arcs in D. When X → Y and X ⇒ Y we will simply write
X 7→ Y . IfD1, D2 are subdigraphs ofD, we will abuse notation to writeD1 → D2

or D1D2-arc, instead of V (D1)→ V (D2) or V (D1)V (D2)-arc, respectively. Also,
if X = {v}, we will abuse notation to write v → Y or vY -arc instead of {v} → Y
or {v}Y -arc, respectively. Analogously, if Y = {v}.

A digraph is strongly connected (or strong) if for every u, v ∈ V (D), there
exists a uv-directed path, i.e., a directed path with initial vertex u and terminal
vertex v. A strong component (or component) of D is a maximal strong subdi-
graph of D. The condensation of D is the digraph D⋆ with V (D⋆) equal to the
set of all strong components of D, and (S, T ) ∈ A(D⋆) if and only if there is
an ST -arc in D. Clearly, D⋆ is an acyclic digraph (a digraph without directed
cycles), and thus, it has both vertices of out-degree equal to zero and vertices of
in-degree equal to zero. A terminal component of D is a strong component T of
D such that d+D⋆(T ) = 0. An initial component of D is a strong component S of
D such that d−D⋆(S) = 0. A strong component that is neither initial nor terminal
is called an intermediate component.

A biorientation of the graph G is a digraph D obtained from G by replacing
each edge {x, y} ∈ E(G) by either the arc (x, y) or the arc (y, x) or the pair of
arcs (x, y) and (y, x). A semicomplete digraph is a biorientation of a complete
graph. An orientation of a graph G is an asymmetrical biorientation of G; thus,
an oriented graph is an asymmetrical digraph. The complete biorientation of a
graph G is the digraph obtained by replacing each edge xy ∈ E(G) by the arcs
(x, y) and (y, x). A complete digraph is a complete biorientation of a complete
graph, and a complete bipartite digraph is a complete biorientation of a complete
bipartite graph. A digraph D is cyclically k-partite if there exists a partition
{V0, V1, . . . , Vk−1} of V (D) such that every arc of D is a ViVi+1-arc (mod k).

LetD be a digraph with vertex set V (D)={v1, v2, . . . , vn} andH1, H2, . . . , Hn

a family of vertex disjoint digraphs. The composition of digraphs D[H1,H2, . . . ,
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Hn] is the digraph having
⋃n

i=1 V (Hi) as its vertex set and arc set
⋃n

i=1A(Hi) ∪
{(u, v) : u ∈ V (Hi), v ∈ V (Hj), (vi, vj) ∈ A(D)}. If D = H[S1, S2, . . . , Sn] and
none of the digraphs S1, . . . , Sn has an arc, then D is an extension of H. The

dual (or converse) of D,
←−
D is the digraph with vertex set V (

←−
D) = V (D) and

such that (u, v) ∈ A(
←−
D) if and only if (v, u) ∈ A(D).

We will often consider cycles with set of vertices Zn, the ring of integers
modulo n. Let us recall that for any integer r ∈ Zn, we have r+Zn = {r+m : m ∈
Zn}, and rZn = {rm : m ∈ Zn}

A classical result states that a digraphD, with an acyclic orderingD1, . . . , Dp

of its strong components, is transitive if and only if each Di is a complete
digraph for 1 ≤ i ≤ n, the digraph T obtained from D by contraction of
D1, . . . , Dp followed by deletion of multiple arcs is a transitive digraph and
D = T [D1, D2, . . . , Dp], where p = |V (T )|. Using this characterization theo-
rem it can be proved, e.g., that every transitive digraph has a (k, l)-kernel for
every pair of integers k ≥ 2, l ≥ 1; or that the Laborde-Payan-Xuong conjecture
holds for every transitive digraph. The family of k-transitive digraphs was intro-
duced in [3]. Recently, strong 3-transitive digraphs have been characterized in [5].
A strong 3-transitive digraph is either complete, complete bipartite or a directed
3-cycle with none, one or two symmetrical arcs. Also, a thorough description
of the interaction between strong components of 3-transitive digraphs has been
given, so the structure of 3-transitive digraphs is very well determined by now.
Additional work on the subject includes [6], where strong 4-transitive digraphs
are characterized.

As usual, (a, b) will denote the greatest common divisor of a and b.

In [6] it was conjectured that if k − 1 is a prime and D a strong k-transitive
digraph such that |V (D)| ≥ k + 1, D contains an n-directed cycle with n ≥ k,
(n, k − 1) = 1, and D is not a symmetrical (k + 1)-cycle, then D is a complete
digraph. In [8], R. Wang proved this conjecture to be true. Further observations
of the results in [5] and [6] brought us to think that every strong k-transitive
digraph that has a “large enough” directed cycle is either a complete digraph or an
n-cycle extension where n is a divisor of k−1. Considering that every digraph of
order less than or equal to k is a k-transitive digraph, we aim to characterize the k-
transitive digraphs of order greater than k. Towards the general characterization,
our principal results are condensed in the following theorems.

Theorem 1. Let k be an integer, k ≥ 2. Let D be a strong k-transitive digraph.

Suppose that D contains a cycle of length n such that (n, k−1) = d and n ≥ k+1.
Then the following hold.

(1) If d = 1, then D is a complete digraph.

(2) If d ≥ 2, then D is either a complete digraph, a complete bipartite digraph,

or a d-cycle extension.
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Theorem 2. Let k be an integer, k ≥ 2. Let D be a strong k-transitive digraph

of order at least k + 1. If D contains a cycle of length k, then D is a complete

digraph.

Theorems 1 and 2 for k = 3 and k = 4 are immediate consequences of the results
in [5] and [6], respectively. The case k = 2 is trivial since every strong transitive
digraph is complete. This work will focus on the results for the case k ≥ 5.

So, in Section 2 we will prove some preliminary results concerning the exis-
tence of cycles in k-transitive digraphs. The principal result of the section states
that if an n-cycle exists in a k-transitive digraph D with n ≥ k + 2, then D
has a (k − 1)-cycle, a k-cycle or a (k + 1)-cycle. In Section 3, the necessary
lemmas for Theorem 1 are proved. Finally, we devote Section 4 to prove some
consequences of Theorem 1, including the Laborde-Payan-Xoung Conjecture for
particular cases of k-transitive digraphs.

2. Basic Tools

The following pair of propositions can be found in [6] and will be very useful
through this work.

Proposition 3. Let k ≥ 2 be an integer, D a k-transitive digraph and C =
(v0, v1, . . . , vn−1, v0) a directed cycle in D with n ≥ k. If v ∈ V (D) \ V (C)
and (v, x1, . . . , xm−1, v0) is a vv0-directed path in D, then v → S = {vi : i ∈
(k − 1)Zn + (k −m)}.

Proposition 4. Let k ≥ 2 be an integer, D a k-transitive digraph and C an n-
cycle with n ≥ k and (n, k−1) = 1. If v ∈ V (D)\V (C) is such that a vC-directed

path exists in D, then v → C.

Through the following lemmas we will prove that if a cycle C of a k-transitive
digraph has length at least k + 2, then we can find a shorter cycle in D[V (C)].
This will be done by considering all the possibilities for the length of C.

The following lemma will be used to prove Lemma 7.

Lemma 5. Let k, i, j, r be integers such that 0 ≤ j < i, k = r(i + 1) + i − j
and D be a k-transitive digraph. We define x0 = 2j + 1 and, for s ≥ 0, xs+1 =
2xs + 3. If C = (0, 1, . . . , n − 1, 0) is an n-cycle in D such that n = k + i, then
(0, 2i− x0) ∈ A(D). Also, if xs + 1 < i, then (0, 2i− xs+1) ∈ A(D).

Proof. Let V (C) = Zn and A(C) = {(0, 1), (1, 2), . . . , (n − 1, 0)}. By the k-
transitivity of D, we have that (j, j + k) ∈ A(D) for any j ∈ V (C), which also
implies (j, j − i) ∈ A(D).
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Clearly, P =
⋃r−1

m=0

(

(k−(m−1)i−m, k−mi−m)∪(k−mi−m)C(k−(m−1)i−
(m+1))∪(k−(m−1)i−(m+1), k−mi−(m+1))

)

∪(k−(r−1)i−r, k−ri−r)∪(k−
ri−r)C(k− (r−1)i−r− j−1) is a directed path in D. The length of each of the
segments of the union is 2+k−(m−1)i−(m+1)−(k−mi−m) = i+1 and the length
of the last segment of P (outside the union) is 1+k−(r−1)i−r−j−1−(k−ri−r) =
i− j. Since there are r segments in the first part of P , ℓ(P ) = r(i+1)+ i− j = k.
Let us recall that D is k-transitive, hence (0, k− (r−1)i−r− j−1) ∈ A(D). But
k−(r−1)i−r−j−1 = r(i+1)+i−j−(r−1)i−r−j−1 = 2i−(2j+1) = 2i−x0.
Thus, (0, 2i−x0) ∈ A(D), which can be used as the basis of induction to proceed
inductively on s.

If (0, 2i−xs) ∈ A(D) and xs+1 < i, we will prove that (0, 2i−xs+1) ∈ A(D).
Observe that, by symmetry, we have the existence of the arc (α, α + 2i − xs)
(mod n) in D for every 0 ≤ α ≤ n− 1. In particular, recalling that n = k+ i, we
have (k+i−1, 2i−xs−1) ∈ A(D). Let us consider P ′ = (0, 2i−xs)∪(2i−xs)C(k+
i−1)∪ (k+ i−1, 2i−xs−1, i−xs−1)∪ (i−xs−1)C(2i−xs+1). We can observe
that 0 < i−xs−1 since xs+1 < i. Also, 2i−xs+1− (i−xs−1) = i−xs−2 ≥ 0,
i− xs − 1 ≤ 2i− xs+1. Since clearly 0 < 2i− xs+1 < 2i− xs − 1, P ′ is a directed
path in D. But ℓ(P ′) = 3+ (k+ i− 1)− (2i− xs) + (2i− xs+1)− (i− xs − 1) =
3 + (k − i+ xs − 1) + (i− xs − 2) = k. By the k-transitivity of D, we have that
(0, 2i− xs+1) ∈ A(D).

Our next result will be useful to prove Lemma 7, but it will be also used in further
results. This kind of result is very important for the present subject because once
the behavior of “long” cycles in a k-transitive digraph has been studied, we wish
to focus on the interactions between “‘short” cycles and when the existence of
various short cycles in the same strong component implies the existence of a long
cycle, like in this case.

Lemma 6. Let k ≥ 2 be an integer and D a k-transitive digraph. If C1 =
(x0, x1, . . . , xn−1, x0) and C2 = (y0, y1, . . . , yk−2, y0) are disjoint directed cycles in

D such that n ≤ k−1 and (x0, y0) ∈ A(D), then x0 → {yi : i ∈ (k − 1− n)Zk−1}.

Proof. We will prove by induction on i that (x0, yi) ∈ A(D) for i ∈ (k − 1 −
n)Zk−1. We assume without loss of generality that V (C2) = Zk−1. Thus, we have
that (x0, 0) ∈ A(D). If (x0, r(k − 1 − n)) ∈ A(D), then (x1)C1(x0) ∪ (x0, r(k −
1−n))∪ (r(k− 1−n))C2((r+1)(k− 1−n)+1) is a directed path in D of length
n + (k − 1 − n) + 1 = k, hence (x1, (r + 1)(k − 1 − n) + 1) ∈ A(D). But then
(x0, x1, (r+1)(k− 1−n)+ 1)∪ ((r+1)(k− 1−n)+ 1)C2((r+1)(k− 1−n)) is a
directed path in D of length 2 + (k − 2) = k. By the k-transitivity of D we can
conclude that (x0, (r + 1)(k − 1− n)) ∈ A(D).

The following lemmas have a similar structure. We will consider a cycle C of
length k + i, with 2 ≤ i ≤ k − 1, and we will exhibit a cycle C ′ in D[V (C)] such
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that k − 1 ≤ ℓ(C ′) < ℓ(C). In order to do this, we will consider different cases
for the possible values of i.

Lemma 7. Let k ≥ 2 be an integer and D a k-transitive digraph. If C is an

n-cycle in D such that n = k + i, k 6= r(i + 1) + i + 2 for every r ∈ N and

2 ≤ i < k
2 , then there is a directed cycle C ′ in D[V (C)] such that k ≤ ℓ(C ′) < n.

If k = r(i + 1) + i + 2, then a directed cycle C ′ exists in D[V (C)] such that

ℓ(C ′) = k − 1.

Proof. Let V (C) = Zn and A(C) = {(0, 1), (1, 2), . . . , (n − 1, 0)}. By the k-
transitivity of D, we have that (j, j + k) ∈ A(D) for any j ∈ V (C), which also
implies (j, j − i) ∈ A(D).

Let r = max{s : k − si− s > i}.

If i 6= ⌊k2⌋, then 0 < r and P = (0, k, k + 1, . . . , k + i− 2, k − 2, k − 1, k − i−
1, . . . , k−3, . . . , k−ri−r+i−1, k−ri−r+i, k−ri−r, k−ri−r+1, . . . , k−ri−r+i−2)
is a path of order r(i+1)+i containing every vertex of (k−ri−r)C(0)−(k+i−2).
By the definition of r, k − (r + 1)i− (r + 1) ≤ i < k − ri− r.

If i = k − ri − r − 2, then k = r(i + 1) + i + 2 and P ∪ (k − ri − r + i −
2, k − ri − r − 2, 0) is a cycle of length k − 1 in D. If i = k − ri − r − 1, then
k = r(i+ 1) + i+ 1 and P ∪ (k− ri− r+ i− 2, k− ri− r− 2, k− ri− r− 1, 0) is
a cycle of length k + 1 in D.

Thus, we will assume that k−(r+1)i−(r+1) ≤ i ≤ k−ri−r−3. Therefore,
i = k − (r + 1)i− (r + 1) + j, 0 ≤ j ≤ i− 2, and k = (r + 1)(i+ 1) + i− j. The
last equality is true also for i = ⌊k2⌋ (because r = 0 and hence j = 0), so we will
include this case in the following argument.

Let us apply Lemma 5 and consider the largest s such that xs +1 < i. Then
xs+1 + 1 ≥ i and (0, 2i − xs+1) ∈ A(D). If 1 < 2i − xs+1, let us consider the
directed cycle

C ′ = (0, 2i− xs+1) ∪ (2i− xs+1)C(k + i)

of length 1+ k+ i− 2i+ xs+1 = k− i+ xs+1 +1. But k− i+ xs+1 +1 ≥ k if and
only if xs+1 + 1 ≥ i, which we have as hypothesis.

If 2i − xs+1 = 1, then xs+1+1
2 = i and 2xs+4

2 = i, hence xs = i − 2. But
(0, 2i − xs) = (0, i + 2) ∈ A(D), so we can consider the directed cycles C1 =
(i+1, 1)∪ (1)C(i+1) and C2 = (0, i+2)∪ (i+2)C(0) of lengths i+1 and k− 1,
respectively. Since i + 1 < k − 1 and (i + 1, i + 2) ∈ A(D), if we rename the
vertices of C2 in such a way that i + 2 = y0, i + 3 = y1, . . . , n − 1 = yk−3, then
we can conclude from Lemma 6 that i+1→ {yi : i ∈ (k − i− 2)Zk−1}. If we let
t = r+1, then k = t(i+1)+ i−j, hence i+1→ {yi : i ∈ (t(i+ 1)− j − 2)Zk−1}.
In particular, (i+1, t(t(i+1)−j−2)) ∈ A(D). But t(t(i+1)−j−2)= t2(i+1)−tj−
2t+t(i−j−1)−t(i−j−1)= t(t(i+1)+i−j−1)−tj−2t−t(i−j−1)≡−tj−2t−t(i−j−1)=
−t(i+1)=−(t(i+1)+i−j−1)+(i−j−1)≡(i−j−1)(mod k−1 = t(i+1)+i−j−1).
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Thus we can conclude that (i+ 1, yi−j−1) = (i+ 1, 2i+ 1− j) ∈ A(D). So,

C ′ = (0)C(i+ 1) ∪ (i+ 1, 2i+ 1− j) ∪ (2i+ 1− j)C(k + i)

is a directed cycle in D of length i+1+1+ (k+ i)− (2i+1− j) = k+ j+1 > k.

Lemma 8. Let k ≥ 5 be an integer and D a k-transitive digraph. If C is an

n-cycle in D such that n = k+ i and k
2 ≤ i < 2k−5

3 , then there is a directed cycle

C ′ in D[V (C)] such that k ≤ ℓ(C ′) < n.

Proof. Let V (C) = Zn and A(C) = {(0, 1), (1, 2), . . . , (n − 1, 0)}. By the k-
transitivity of D, we have that (j, j + k) ∈ A(D) for any j ∈ V (C), which also
implies (j, j − i) ∈ A(D).

Clearly,

C ′ = (0, k, . . . , 2i+2, i+2, . . . , k−1, k−1−i, . . . , i+1, 1, . . . , k−i−2, 2k−i−2, . . . , 0)

is a directed cycle in D[V (C)] of length ℓ(C ′) = 5 + (2i+ 2− k) + (k − 1)− (i+
2) + (i+ 1)− (k − 1− i) + (k − i− 2)− 1 + (k + i)− (2k − i− 2) = 4i− k + 5.
Since i < 2k−5

3 , the vertex 2k− i− 3 /∈ V (C ′), so ℓ(C ′) < n. Since i ≥ k
2 , we have

ℓ(C ′) ≥ k. For k
2 < 2k−5

3 to happen, we need that 10 < k, so, this construction
works for k ≥ 11. Thus, the only cases not covered by this construction and
Lemma 7 are when k ≤ 10 and i = k

2 . But k must be even to satisfy i = k
2 , and

by hypothesis k ≥ 5 (strong 2 and 4-transitive digraphs satisfying the hypothesis
of the theorem are complete digraphs), hence we only need to consider the cases
k ∈ {6, 8, 10}.

For k = 6, n = 9 and (0, 6, 7, 4, 5, 2, 3, 0) is the needed cycle. For k = 8,
n = 12 and (0, 8, 9, 10, 6, 7, 3, 4, 0) is the cycle we have been looking for. For
k = 10, n = 15 and (0, 10, 11, 6, 7, 2, 3, 13, 8, 9, 4, 14, 0) is the desired cycle. These
cycles are depicted in Figure 1.

Lemma 9. Let k ≥ 5 be an integer and D a k-transitive digraph. If C is an

n-cycle in D such that n = k+ i and k
2 < i = 2k−5

3 , then there is a directed cycle

C ′ in D[V (C)] such that k ≤ ℓ(C ′) < n.

Proof. Let V (C) = Zn and A(C) = {(0, 1), (1, 2), . . . , (n − 1, 0)}. By the k-
transitivity of D, we have that (j, j + k) ∈ A(D) for any j ∈ V (C), which also
implies (j, j − i) ∈ A(D).

If i = 2k−5
3 , then k ≡ 1(mod 3), thus, k = 3d + 1 for some d ∈ N. Hence,

i = 2d− 1, n = k + i = 5d and we can observe that (n, k − 1) = d. We have two
cases.
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Figure 1. Exceptional cases considered in Lemma 8: k = 10, k = 8 and k = 6.

If d is even, then C ′ = (0, 3d+1, 3d+2, . . . , 3d+ d
2+1, d+ d

2+2, d+ d
2+3, . . . , 2d+

2, 3, 4, . . . , d2 +3, 3d+ d
2 +4, 3d+ d

2 +5, . . . , 4d+4, 2d+5, 2d+6, . . . , 2d+ d
2 +5, d2 +

6, d2 + 7, . . . , d + 6,4d + 7, 4d + 8, . . . , 5d). Thus, ℓ(C ′) = 7 + 6d
2 + 5d − 4d − 7 =

4d > 3d+ 1 = k.

If d is odd, then C ′ = (0, 3d + 1, 3d + 2, . . . , 3d + d−1
2 + 1, d + d−1

2 + 2, d +
d−1
2 + 3, . . . , 2d+ 1, 2, 3, . . . , d−1

2 + 2, 3d+ d−1
2 + 3, 3d+ d−1

2 + 4, . . . , 4d+ 2, 2d+

3, 2d+4, . . . , 2d+ d−1
2 +3, d−1

2 +4, d−1
2 +5, . . . , d+3, 4d+4, 4d+5, . . . , 5d). Thus,

ℓ(C ′) = 7 + 6d−1
2 + 5d− 4d− 4 = 4d > 3d+ 1 = k.

Again, we need that k > 10 for k
2 < 2k−5

3 , thus, d ≥ 4. But in order for C ′ to

be a cycle in the even case, we need that 3 < d
2 +3 < d

2 +6 < d+6 < d+ d
2 +2 <

2d + 2 < 2d + 5 < 2d + d
2 + 5 < 3d + 1 < 3d + d

2 + 1 < 3d + d
2 + 4 < 4d + 4 <

4d + 7 ≤ 5d, otherwise, there would be repeated vertices. But all inequalities
hold for d ≥ 10. In order for C ′ to be a cycle in the odd case, we need that
2 < d−1

2 +2 < d−1
2 +4 < d+3 < d+ d−1

2 +2 < 2d+1 < 2d+3 < 2d+ d−1
2 +3 <

3d + 1 < 3d + d−1
2 + 1 < 3d + d−1

2 + 3 < 4d + 2 < 4d + 4 ≤ 5d, otherwise,
there would be repeated vertices. But all inequalities hold for d ≥ 5. So, the
construction of C ′ always works for the odd case, but for the even case we need
to propose another cycle for d ∈ {4, 6, 8}.

For d = 4 we consider the cycle (0, 13, 14, 7, 8, 1, 2, 15, 16, 9, 10, 3, 4, 17,
18, 19, 0). For d = 6 we consider the cycle (0,19, 20, 21, 10, 11, 12, 1, 2, 3, 22,
23, 24, 13, 14, 15, 4, 5, 6, 25, 26, 27, 28, 29, 0). For d = 8 we consider the cycle
(0, 25, 26, 27, 28, 13, 14, 15, 16, 1, 2, 3, 4, 29, 30, 31, 32, 17, 18, 19, 20, 5, 6, 7, 8,
33, 34, 35, 36, 37, 38, 39, 0). These cycles also have length 4d. The cycles for this
exceptional cases can be observed in Figures 2 and 3; it is worth observing that,
although these cycles could not be considered in the general case, their structure
is very similar to the cycle C ′ of this proof.
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Figure 2. Exceptional case considered in Lemma 9: d = 8.

Lemma 10. Let k ≥ 5 be an integer and D a k-transitive digraph. If C is an

n-cycle in D such that n = k + i and 2k−2
3 ≤ i, then there is a directed cycle C ′

in D[V (C)] such that k ≤ ℓ(C ′) < n.

Proof. Let V (C) = Zn and A(C) = {(0, 1), (1, 2), . . . , (n − 1, 0)}. By the k-
transitivity of D, we have that (j, j + k) ∈ A(D) for any j ∈ V (C), which also
implies (j, j − i) ∈ A(D).

We will consider two cases. If i ≥ k − 1, then C ′ = (0, k, k + 1, . . . , n− 1, 0).

Otherwise, 2k−4
3 ≤ i ≤ k − 2 and, clearly,

C ′ = (0, k, . . . , 2i+ 1, i+ 1, . . . , k − 1, k − 1− i, . . . , i− 1, i, 0)

is a directed cycle in D[V (C)] of length ℓ(C ′) = 5 + (2i+ 1− k) + (k − 1)− (i+
1)+(i−1)− (k−1− i) = 3i−k+4 ≥ k, by the choice of i. Also, we may observe
that 2i+ 2 ≤ (2(k − 3) + 2) = 2k − 4 and then, 2i+ 2 /∈ V (C ′), so ℓ(C ′) < n.

Theorem 11. Let k ≥ 5 and i ≥ 2 be integers and D a k-transitive digraph.

If n = k + i with k 6= r(i + 1) + i + 2 for every r ∈ N and C is an n-cycle in

D, then there is a directed cycle C ′ in D[V (C)] such that k ≤ ℓ(C ′) < n. If

k = r(i+ 1) + i+ 2 for some r ∈ N, then there is a directed cycle C ′ in D[V (C)]
such that ℓ(C ′) = k − 1.
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Figure 3. Exceptional cases considered in Lemma 9: d = 4 and d = 6.
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Figure 4. Example of the cycle C ′ of Lemma 10 with k = 9 and i = 6.
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Proof. If ℓ(C) ≥ 2k − 1 and C = (v0, v1, . . . , vn−1, v0), then (v0, vk, vk+1, . . . ,
vn−1, v0) is a cycle in D[V (C)] shorter than C, so we may assume that ℓ(C) ≤
2k − 2. The result follows from Lemmas 7, 8, 9 and 10.

Corollary 12. Let k ≥ 5 be an integer and D a k-transitive digraph. If C is

an n-cycle in D with n ≥ k + 2, then D contains a (k − 1)-cycle, a k-cycle or a

(k + 1)-cycle.

Proof. By induction on ℓ(C). If ℓ(C) is k − 1, k or k + 1, there is nothing to
prove. So, suppose that ℓ(C) ≥ k + 2. It follows from Theorem 11 that there is
a directed cycle C ′ in D[V (C)] such that either ℓ(C ′) = k − 1 or k ≤ ℓ(C ′) < n,
and thus we can apply the induction hypothesis to C ′.

3. Preliminary Results

In this section we will prove the statements of Theorem 1 through a series of
lemmas considering different cases for the existence of a cycle of length at least
k + 1 in a k-transitive digraph.

Lemma 13. Let k ≥ 5 be an integer and D a strong k-transitive digraph. If D
contains a k-cycle C, and |V (D)| ≥ k + 1, then D is a complete digraph.

Proof. Let V (C) = Zk. It is clear from Proposition 4 that v → V (C) and
V (C)→ v for every v ∈ V (D) \V (C). Since |V (D)| ≥ k+1, there is at least one
vertex v ∈ V (D) \ V (C). If v 6= u ∈ V (D) \ V (C), then (v, 0, 1, . . . , k − 2, u) is a
directed path of length k in D. If follows from the k-transitivity of D that (v, u) ∈
A(D). Hence, v → V (D) \ {v} for every vertex v ∈ V (D) \ V (C). Also, clearly
(v, 1, 2, . . . , k − 1, v) is a k-cycle in D not containing 0. Thus, 0 → V (D) \ {0}.
It follows from the symmetries of C that D is a complete digraph.

Lemma 14. Let k ≥ 5 be an integer and D a strong k-transitive digraph. If D
contains a (k + 1)-cycle C, and |V (D)| ≥ k + 2, then:
(1) If k ≡ 0(mod 2), then D is a complete digraph.

(2) If k ≡ 1(mod 2), then D is a complete digraph or a complete bipartite di-

graph.

Proof. Let V (C) = Zk+1. If k ≡ 0(mod 2), then (k − 1, k + 1) = 1. Again, it is
clear from Proposition 4 that v → V (C) and V (C)→ v for every v ∈ V (D)\V (C).
Since |V (D)| ≥ k + 2, then there is at least one vertex v ∈ V (D) \ V (C). The
same argument as in Lemma 13 can be used from this point to conclude that D
is a complete digraph.
If k ≡ 1(mod 2), then (k − 1, k + 1) = 2. It follows that (k − 1)Zk+1 = 2Zk+1.
Observe that (X = 2Zk+1, Y = 1+2Zk+1) is a bipartition of C. If D is bipartite,
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then Proposition 3 and the fact that D is strong imply that for every v ∈ V (D)
either X → v and v → X, or Y → v and v → Y hold. Arguments similar to those
of Lemma 13 can be used to conclude that D is a complete bipartite digraph.

If D is not bipartite, then Proposition 3 and the fact that D is strong imply
the existence of v ∈ V (D) such that v → Y and X → v (or Y → v and v → X).
Hence, (v, 1, . . . , k − 1, v) is a k-cycle in D, and Lemma 13 implies that D is a
complete digraph.

Lemma 15. Let d, p, k ≥ 2 be integers such that k − 1 = d(p − 1) and D a

k-transitive digraph. If C is a dp-cycle in D, then C has a d-cycle extension as

a spanning subdigraph. Moreover, if V (C) = (v0, v1, . . . , vdp−1, 0), {Vi}
d−1
i=0 is the

cyclical partition of V (C), where Vi = {vj : j ≡ i (mod d)}.

Proof. If we let i = d− 1 and r = p− 2, it is clear that k = r(i+ 1) + i+ 2, so
we may consider the cycle C ′ of Lemma 7 that has length k − 1. Such cycle is

C ′ =
⋃r−1

m=0

(

(vk−(m−1)i−m, vk−mi−m) ∪ (vk−mi−mCvk+(1−m)i−(m+2) )

∪ (vk+(1−m)i−(m+2), vk−mi−(m+2)) ∪ (vk−mi−(m+2), vk−mi−(m+1)) )

∪ (v2i+2, vi+2) ∪ (vi+2Cv2i) ∪ (v2i, vi, 0).
Let us observe that vk+i−1 /∈ V (C ′). So, we may consider the directed path
P = (vk+i−1, v0) ∪ (v0C

′vi) ∪ (vi, vi+1) of length ℓ(P ) = 1 + ℓ(v0C
′vi) + 1 =

1+ k− 2+1 = k. Thus, (vk+i−1, vi+1) ∈ A(D). By symmetry of C, we have that
(v0, vi+2) ∈ A(D).

We may then consider the cycles C1 = (vi+1, v1) ∪ (v1Cvi+1) and C2 =
(v0, vi+2) ∪ (vi+2Cv0) of lengths i + 1 and k − 1 respectively. Since i + 1 ≤
k − 1 and (vi+1, vi+2) ∈ A(D), if we rename the vertices of C2 in such way that
vi+2 = y0, vi+3 = y1, . . . , vk+i−1 = yk−3, then we can conclude from Lemma 6 that
vi+1 → {yi : i ∈ (k − i− 2)Zk−1}. Let us recall that k = r(i + 1) + i + 2, hence
vi+1 → {yi : i ∈ (r(i+ 1))Zk−1}. But r(i + 1) = d(p − 2) and k − 1 = d(p − 1),
thus vi+1 →

{

yi : i ∈ (d(p− 2))Zd(p−1)

}

. Also, (d(p − 2), d(p − 1)) = d, thus
(d(p − 2))Zd(p−1) = dZd(p−1) = {0, d, 2d, . . . , d(p − 2)}. Thus, vi+1 = vd →

{ysd}
p−2
s=0 = {vd+1, v2d+1, . . . , v(p−2)d+1}. We already knew that (vd, v1) ∈ A(D),

thus vd → V1 = {vj : j ≡ 1(mod d)}.
By the symmetries of C, the desired result is then obtained.

If D is a (possibly infinite) digraph and k ≥ 2 is an integer, we can recursively
define a family of digraphs as follows.

• D0 = D.

• Di+1 = Di + {(u, v) : dDi
(u, v) = k}.

Clearly, D ⊆ Di ⊆ Di+1 for every i ∈ N. We can define the k-transitive closure

of D as Ck(D) =
⋃

i∈NDi. It is direct to observe that Ck(D) is a k-transitive
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digraph containing D. As a matter of fact, it is the minimal k-transitive digraph
containing D. Thus, if D is k-transitive, D = Ck(D). We will use these simple
observations to prove our next lemma.

Lemma 16. Let k ≥ 2 be an integer. If C = (v0, v1, . . . , vn−1, v0) is an n-cycle
with n ≥ k + 2 and (n, k − 1) = d, with d ≥ 2, then Ck(C) is a d-cycle extension

with cyclical partition {Vi}
d−1
i=0 of V (C), where Vi = {vj : j ≡ i (mod d)}.

Proof. Let D = Ck(C) and let us consider the family {Ci}i∈N used to define
Ck(C). We will prove by induction on i that Ci is a cyclically d-partite digraph
with cyclical partition {Vi}

d−1
i=0 . Clearly, C0 = C fulfills the desired property.

Let us consider an arc (u, v) ∈ A(Ci+1) \A(Ci). By the definition of Ci+1, a
uv-directed path P = (u = u0, u1, . . . , uk = v) of length k exists in Ci. We can
assume without loss of generality that u0 ∈ V0, thus, vi ∈ Vi (mod d), because
Ci is a cyclically d-partite digraph. But (n, k − 1) = d, implying that d|k − 1,
thus k ≡ 1(mod d). Hence, v = uk ∈ V1. Every arc of Ci+1 is then a VjVj+1-arc
(mod d).

The Principle of Mathematical Induction and the definition of Ck(C) imply
that Ck(C) is a cyclically d-partite digraph. It remains to show that Ck(C) is a
d-cycle extension.

If k− 1 = (p− 1)d and n = pd for some integer p ≥ 2, then the result follows
directly from Lemma 15. Otherwise, we have that k − 1 = (p − 1)d and n = qd
for some pair of integers 2 ≤ p < q. Since C is an n-cycle in the k-transitive
digraph Ck(C), we know from Corollary 12 that Ck(C) contains a (k − 1)-cycle,
a k-cycle or a (k + 1)-cycle. But Ck(C) is a cyclically d-partite digraph, thus, it
cannot contain a k-cycle.

If Ck(C) contains a (k+1)-cycle, then d
∣

∣k+1, hence d = 2 and k ≡ 1(mod 2).
Thus, by Lemma 14, Ck(C) is a complete 2-partite digraph and thus a cyclically
2-partite digraph.

So, let us suppose that Ck(C) contains a (k − 1)-cycle. It can be observed
from Lemmas 7, 8, 9, and 10 that the existence of a (k− 1)-cycle is the outcome
of only one case, when k = r(i + 1) + i + 2 and a (k + i)-cycle is considered. If
we let i+ 1 = d and r = p− 1, we necessarily have the existence of a pd-cycle in
Ck(C). Let C1 be such a cycle. Then, by Lemma 15, Ck(C)[V (C1)] is a d-cycle
extension. If follows from the fact that Ck(C) is a cyclically d-partite digraph
that the d-cyclical partition {V ′

0 , . . . , V
′

d−1} of V (C1) is such that V ′

i ⊆ Vi for
0 ≤ i ≤ d− 1.

Also, Ck(C) is a strong k-transitive digraph, thus, since ℓ(C1) ≥ k + 2, for
every vertex v ∈ V (Ck(C)) \V (C1) there exist a vC1-arc and a C1v-arc in C

k(C).
As we have already observed, Ck(C) is a cyclically d-partite digraph, thus, every
vC1-arc is a ViVi+1-arc and every C1v-arc is a Vi−1Vi-arc for some 0 ≤ i ≤ d− 1.
Also, since d

∣

∣k − 1, it follows from the k-transitivity of Ck(C) that V ′

i−1 → v →
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V ′

i+1 for some 0 ≤ i ≤ d − 1. From here it is easy to observe that if v ∈ Vi \ V
′

i

and u ∈ Vi+1 \ V
′

i+1, a uv-directed path of length k can be found in Ck(C), thus,
Vi → Vi+1. Hence C

k(C) is a d-cycle extension.

Lemma 14 describes the situation of a strong k-transitive digraph containing a
(k + 1)-cycle and at least one vertex outside the cycle. It is easy to observe
that a (k + 1)-cycle with all its arcs symmetrical is a k-transitive digraph, and
the existence of diagonals of the cycle cannot be derived. But, as the following
lemma states, if a single diagonal exists, it is easy to show the existence of many
more of them.

Lemma 17. Let k ≥ 2 be an integer and D a k-transitive digraph. If C =
(v0, v1, . . . , vk, v0) is a (k+ 1)-directed cycle in D and (vi, vj) is a diagonal of C,

then

(i) If k ≡ 0(mod 2), then D[V (C)] is a complete digraph.

(ii) If k ≡ 1(mod 2), we have two cases:

(i) If i ≡ j (mod 2), then D[V (C)] is a complete digraph.

(ii) If i 6≡ j (mod 2), then D[V (C)] is a complete bipartite digraph with

bipartition (V2i, V2i+1), where V2i is the set of vertices with even index

and V2i+1 the complement of V2i.

Proof. First, let us observe that it follows from the k-transitivity of D that every

arc of C is symmetrical, thus, the directed cycle C−1 =
←−
C is a directed cycle in

D. We will assume without loss of generality that the diagonal (vi, vj) is of the
form (v0, vj), thus, 2 ≤ j ≤ k − 1. Let us make an observation that works for
every case.

If j > 2, then the directed paths (vj−1C
−1v0) ∪ (v0, vj) ∪ (vjCvk) and

(vj+1Cv0)∪(v0, vj)∪(vjC
−1v1) have length k. Thus, (vj−1, vk), (vj+1, v1) ∈ A(D).

Also, the directed path (v0, vj , vj−1, vk)∪(vkC
−1vj+1)∪(vj+1, v1)∪(v1Cvj−2) is a

k-directed path in D, thus, (v0, vj−2) ∈ A(D). Clearly, we can make an inductive
proof.

Thus, if j = 2, then (v0, v2)∪ (v2Cv0) is a k-cycle, and the result follows from
Lemma 13. Also, if (v0, vj) ∈ A(D) with j ≥ 4, then the previous observation give
us that (v0, vj−2) ∈ A(D). For the case when k ≡ 1(mod 2) but j ≡ 0(mod 2)
we are done, we already have the base case and the inductive step.

For the cases k ≡ 0(mod 2) and k ≡ 1 ≡ j (mod 2) we need to consider also
j = 3. But it is easy to observe that (v0, v3)∪(v3Cv0) is a (k−1)-directed cycle in
D. Also (v2, v3), (v3, v2) ∈ A(D). In the former case, (k−1, k−3) = 1, thus, v1 →
V (C) \ {v1} → v1 and v2 → V (C) \ {v2} → v2. Also, (v1, v2), (v2, v1) ∈ A(D),
so it can be easily observed that for every pair of distinct vertices in V (C) a k-
directed path between them can be found. Thus, the base case for k ≡ 0(mod 2)
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is done. Since the inductive step is a trivial consequence of the observation at
the beginning of the proof, this case is finished.

If k ≡ 1 ≡ j (mod 2), then it follows from Lemma 6 and (k−1, k−3) = 2 that
v2 → {vi : i ∈ 2Zk+1 + 1} and {vi : i ∈ 2Zk+1 + 1} → v2. Analogously, since
(v0, v1), (v1, v0) ∈ A(D),we have v1 → {vi : i ∈ 2Zk+1} and {vi : i ∈ 2Zk+1} →
v1. Finally, if 0 ≤ n ≤ k−1 is even, 3 ≤ k is odd, 2 6= n 6= m±1, and n < m, then
P = (vnC

−1v2)∪(v2, vn+1)∪(vn+1Cvm−1)∪(vm−1, v1)∪(v1C
−1vm) is a k-directed

path in D. Clearly,
←−
P is also a k-directed path in D, thus, (vn, vm), (vm, vn) ∈

A(D). If m < n, then P = (vmC−1v2)∪(v2, vn−1)∪(vn−1C
−1vm+1)∪(vm+1, v1)∪

(v1C
−1vm) is a k-directed path in D. Clearly,

←−
P is also a k-directed path in D,

thus, (vn, vm), (vm, vn) ∈ A(D). It follows that V2i → V2i+1 and V2i+1 → V2i.
Thus, D[V (C)] is a complete bipartite digraph. This complete the base case.
The inductive step is trivial considering the initial observation of the proof.

Lemma 18. Let k ≥ 2 be an integer and D a k-transitive digraph. If C =
(v0, v1, . . . , vn−1, v0) is an n-cycle in D with n ≥ k + 2, then the following asser-

tions hold.

(i) If (n, k − 1) = 1, then D[V (C)] is a complete digraph.

(ii) If (n, k − 1) = d, with d ≥ 2, then D[V (C)] contains a d-cycle extension as

a spanning subdigraph. Moreover, {Vi}
d−1
i=0 is the cyclical partition of V (C),

where Vi = {vj : j ≡ i(mod d)}.

Proof. For k = 2 the assertion is trivial. For 3 ≤ k ≤ 4, the result follows
from the characterization theorems in [5] and [6]. For k ≥ 5, it follows from
Corollary 12 that a (k − 1), k or (k + 1)-cycle exists in D[V (C)]. If a k-cycle
exists in D[V (C)], Lemma 13 give us the desired result. If a (k+1)-cycle exists in
D[V (C)] we can consider two cases. If k ≡ 0(mod 2), then D[V (C)] is a complete
digraph by virtue of Lemma 14. If k ≡ 1(mod 2), using again Lemma 14, then
D[V (C)] contains a complete bipartite spanning subdigraph D′ = (X,Y ). But
(n, k − 1) = 1, so D[V (C)] is not a bipartite digraph. We can assume without
loss of generality that a XX-arc exists in D. But D′ is complete bipartite, so a
k-cycle can be easily constructed in D. Applying again Lemma 13 we obtain the
desired result.

If a (k − 1)-cycle exists in D[V (C)], then the same argument as used in the
proof of Lemma 16 shows that there exist integers d, p ≥ 2 such that a dp-cycle
C1 exists in D[V (C)] and k − 1 = d(p − 1). Moreover, it can be deduced from
Lemma 16 that D[V (C1)] has a d-cycle extension as a spanning subdigraph. Let
us suppose that the d-cyclical partition of D[V (C1)] is {Vi}

d−1
i=0 . It follows from

Proposition 3, the k-transitivity of D and the fact that D is strong, that for
every vertex v ∈ V (C) \V (C1), there exist i, j ∈ {0, 1, . . . , d− 1} (not necessarily
distinct) such that v → Vi and Vj → v.
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But (n, k − 1) = 1, so there must exist a vertex v ∈ V (C) \ V (C1) and integers
i, j ∈ {0, 1, . . . , d− 1} such that i 6≡ j +2(mod d), v → Vi and Vj → v, otherwise
D[V (C)] would be cyclically d-partite, which is impossible. If i = j, then the
existence of a (k+1)-cycle can be easily deduced. But in this case we have already
showed that the desired result is reached.

Thus, we can assume without loss of generality that 0 ≤ i < j ≤ d − 1.
Since |Vi| = p for each 0 ≤ i ≤ d − 1 and V [(C1)] has a d-cycle extension as a
spanning subdigraph, directed paths of length k passing through v can be found
from every vertex of Vj to every vertex of Vi−1, thus, Vj → Vi−1 (it can be the
case that j = i − 1). Thus, we can consider a directed path P of length k − 1
with initial and terminal vertex in Vi−1. Let us observe that only p − 1 vertices
of each Vi have been used in the path P , thus, we can consider a directed path
P ′ disjoint with P such that the initial vertex of P ′ is the terminal vertex of P
and the terminal vertex of P ′ is in Vj . The walk P ∪ P ′ together with the arc
joining the terminal vertex of P ′ to the initial vertex of P is a directed cycle of
length k − 1 < k + (j − i) + 1 < pd. If we name such cycle as C2, then either
ℓ(C2) ∈ {k, k + 1} or k + 2 ≤ ℓ(C2) < pd. In the latter case, since ℓ(C2) < pd,
Corollary 12 implies that a k-cycle or a (k+1)-cycle exists in D[V (C2)], because
the only case that has a k − 1 cycle as outcome cannot occur. In either case, we
have already proved that D[V (C)] is a complete digraph.

For the second part of the result, we know by Lemma 16 that {Vi}
d−1
i=0 is the

cyclical partition of Ck(C) ⊆ D[V (C)], where Vi = {vj : j ≡ i(mod d)}. Also
Ck(C) is a d-cycle extension, which completes the proof.

Lemma 19. Let k ≥ 2 be an integer and D a strong k-transitive digraph such

that D has at least one directed cycle of length greater than or equal to k+2, but
D does not contain any directed cycle C such that (ℓ(C), k−1) = 1. If {Ci}i∈I is

the family of all the directed cycles of D of length greater than or equal to k + 1
and d is the g.c.d of {(ℓ(Ci), k − 1)}i∈I , then d = mini∈I{(ℓ(Ci), k − 1)} and D
is a d-cycle extension.

Proof. Let C = (v0, v1, . . . , vn−1, v0) be an n-cycle with (n, k − 1) = d =
mini∈I{(ℓ(Ci), k − 1)}. By Lemma 18, D[V (C)] has a d-cycle extension as a
spanning subdigraph with cyclical partition {V ′

i }
d−1
i=0 , where V ′

i = {vj : j ≡ i}
(mod d). Since ℓ(C) ≥ k + 2 and D is strong, for every vertex v ∈ V (D) \ V (C)
there exist integers 0 ≤ i ≤ j ≤ d − 1 such that V ′

i → v → V ′

j . If i ≡ j + 2
(mod d) for every v ∈ V (D)\V (C), then D has a d-cycle extension as a spanning
subdigraph with d-cyclical partition {Vi}

d−1
i=0 such that V ′

i ⊆ Vi for 0 ≤ i ≤ d− 1.

If there is a V ′

i V
′

j -arc in D[V (C)] with j 6≡ i+1(mod d), then we can assume
without loss of generality that i = 0. Since ℓ(C) ≥ k + 1, each V ′

i has at least
p vertices, where k − 1 = (p − 1)d, thus, if (u, v) is the V ′

0V
′

j -arc in D, we can
consider a directed path of length k−1 beginning at u′ ∈ V ′

0 , ending at u and not
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using v. If we add (u, v) to the end of such path, we have a u′v-directed path of
length k and we can conclude that (u′, v) ∈ A(D). Analogously, for every v′ ∈ Vj ,
we can consider a directed path of length k − 1 with initial vertex v, end vertex
v′ and without V ′

0V
′

j -arcs. If we add (u′, v) to the beginning of such path, for any
u′ ∈ V ′

0 , then we have a u′v′-directed path in D. It follows from the k-transitivity
of D that (u′, v′) ∈ A(D). Since u′ and v′ were arbitrarily chosen, V ′

0 → V ′

j . Also,
we can consider a directed path P with initial vertex in V ′

1 of length k− 2, using
arcs of the form ViVi+1 (mod d) only. Thus, the endpoint of P belongs to V ′

0 ,
and we can add a V ′

0V
′

j -arc and a V ′

jV
′

j+1 arc to the end of P in such way that
a V ′

1V
′

j+1-directed path of length k is obtained. Again, a V ′

1V
′

j+1-arc exists in D
by the k-transitivity of D. Inductively, it can be shown that V ′

i → V ′

i+j (mod d).
We have two cases.

If (d, j) = d′ > 1, then P1 = (v0, vj , v2j , . . . , v( d

d′
−1)j , v) with vi ∈ V ′

i and

v ∈ V ′

0 is a V0V0-directed path of length d
d′
. Once again, we can consider a vv0-

directed path of length k−1 in D, say P2, disjoint with P1. Thus, P = P1∪P2 is
a directed cycle in D of length m = (k−1)+ d

d′
≥ k+1. But m−(k−1) = d

d′
< d,

and hence (m, k − 1) < d, which results in a contradiction by the minimality of
d.

If (d, j) = 1, then by the Division Algorithm, there are positive integers q, r
such that 0 ≤ r < j and d = qj + r. If we consider P1, a V0V0-directed path
of length k − 1 with initial vertex u and terminal vertex v, we can consider the
directed path P2 = (u, vj , v2j , . . . , vqj , vqj+1, . . . , vqj+r−1, v) disjoint with P1 and
of length q + r. Now, P1 ∪ P2 is a directed cycle of length m = (k − 1) + q + r.
Recalling that (d, j) = 1 and j < d, we have that q, r > 0. It follows from
this observation that q + r > 1, therefore m ≥ k + 1. We can observe that
d = qj + r > q(j − 1) + r ≥ q + r. But, m − (k − 1) = q + r, and hence,
(m, k − 1) ≤ q + r < d, contradicting the minimality of d.

Thus, every arc of D[V (C)] is a ViVi+1-arc, and D[V (C)] is a d-cycle exten-
sion.

If there is a vertex v ∈ V (D)\V (C) and integers 0 ≤ i ≤ j ≤ k−1 such that
i 6≡ j+2(mod d)) and V ′

i → v → V ′

j a similar argument can be used to show that
there is a V ′

i V
′

j -arc in D[V (C)] with j 6≡ i+ 1(mod d). We just have to consider
a directed path P of length k − 2 beginning at V ′

i+1 and ending at V ′

i . We can
add to P a V ′

i v-arc and a vV ′

j -arc to obtain a directed path of length k. The
k-transitivity of D implies that a V ′

i+1V
′

j -arc exists in D and j 6≡ i+ 2(mod d).

Thus, it follows that D is a d-cycle extension.

4. Main Results and Consequences

Now we are ready to prove our main results.
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Proof of Theorem 1. It follows from the lemmas in the previous section.

Proof of Theorem 2. It follows from the lemmas in the previous section.

Corollary 20. Let k ≥ 2 be an integer and D a strong k-transitive digraph with

at least one directed cycle of length greater than or equal to k + 2. Then D is

either a complete digraph or a cycle extension.

Proof. It is straightforward from Theorem 1.

Now, the case when k − 1 is a prime greater than 2 can be easily studied.

Corollary 21. Let k− 1 ≥ 3 be a prime integer, D a strong k-transitive digraph

and C a directed cycle of length at least k + 1. Exactly one of the following

possibilities hold:

(i) D is a symmetrical (k + 1)-cycle.

(ii) D is a (k − 1)-cycle extension.

(iii) D is a complete digraph.

Proof. It follows from Theorem 1 and the fact that k − 1 is a prime (and hence
k is even).

Another easy observation can be done for k-transitive digraphs with directed
cycles of length greater than k. We define an extensionD[E1, . . . , En] of a digraph
D to be r-regular if |Ei| = r for every 1 ≤ i ≤ n; an extension will be regular if
it is r-regular for some r ∈ Z

+. An extension of a digraph will be non-regular if
it is not regular.

Corollary 22. Let k ≥ 2 be an integer and D a strong k-transitive digraph

with at least one directed cycle of length greater than or equal to k. Then D is

hamiltonian if and only if D is not a non-regular cycle extension.

Proof. If D is hamiltonian and it is a cycle extension, then D must be a regular
cycle extension since it visits each class of the cyclical partition the same number
of times. If D is not a non-regular cycle extension, then it is either a complete
digraph, a regular cycle extension, a hamiltonian digraph on k vertices or a
symmetrical (k+1)-cycle. It is clear that all these four families are hamiltonian.

4.1. The Laborde-Payan-Xuong Conjecture

The Laborde-Payan-Xuong Conjecture (LPX), [7], states that for every digraph
D, there exists an independent set I ⊆ V (D) such that I intersects every directed
path of maximum length in D. We will prove LPX to be true for some particular
cases of k-transitive digraphs.
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Proposition 23. Let k ≥ 2 be an integer and D a strong k-transitive digraph.

If a cycle of length greater than or equal to k exists in D, then LPX is valid for

D.

Proof. Observing Theorem 1 there are only four cases to consider. If D is a
complete digraph, then the independent set {v} will work for every v ∈ V (D).
If D = (X,Y ) is complete bipartite, then we can choose either X or Y . If D
is a d-cycle extension with cyclical partition {Vi}

d−1
i=0 , then any Vi will work as

our independent set. Finally, if a k-cycle exists in D but |V (D)| = k, then D is
hamiltonian and once again, {v} will work for every v ∈ V (D).

As a final observation, wheneverD has a (k+1)-cycle and contains a complete
bipartite digraph as a spanning subdigraph, thenD is either complete or complete
bipartite.

Theorem 24. Let k ≥ 2 be an integer and D a k-transitive digraph. If a cycle

of length greater than or equal to k exists in every terminal strong component of

D, then LPX is valid for D.

Proof. It is a well known result that every non-terminal strong component of D
reaches at least one terminal component. Hence, applying Lemma 3 is easy to
observe that every vertex of D dominates a vertex in a terminal component and
thus, every longest path must have its terminal vertex in a terminal component.

In the case that a longest path of D has its terminal vertex in a terminal
component T that is complete or hamiltonian, then this longest path must visit
every vertex of T . Therefore, the independent set {v} will work for every v ∈
V (T ).

If a longest path P of D has its terminal vertex in a cycle extension (which
includes a complete bipartite digraph), then P must visit every vertex in the
smallest class of the cyclical partition, so that class is the independent set we
were looking for.

As a matter of fact, by the simple observation that D is k-transitive if and only

if
←−
D is k-transitive, we have also proved the following corollary.

Corollary 25. Let k ≥ 2 be an integer and D a k-transitive digraph. If a cycle

of length greater than or equal to k exist in every initial strong component of D,

then LPX is valid for D.

Also, it is easy to observe that besides finding an independent set I intersecting
every longest path, a longest path of D can be found having any vertex of I as its
initial vertex, which is a stronger version of LPX. It has been proved that LPX is
true for 2 and 3-transitive digraphs. We think that an analysis of the behaviour
between strong components of a k-transitive digraph may be useful to improve
the results of this section.
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5. Conclusions and Further Problems

We have successfully analyzed the structure of strong k-transitive digraphs with
a directed cycle of length at least k + 1. We have also observed that those k-
transitive digraphs containing a directed cycle of length k which are not complete,
at least are hamiltonian. Also, we used those results to prove some interesting
consequences, like the Laborde-Payan-Xuong Conjecture for k-transitive digraphs
with cycles of length at least k.

But it is more important to notice that the family of k-transitive digraphs
has a lot of structure. We hope that this work will encourage others to work
in this fascinating family of digraphs, and also with the very related family of
k-quasi-transitive digraphs, also defined in [3]. A digraph is k-quasi-transitive
if the existence of a directed path (v0, . . . , vk) implies that (v0, vk) ∈ A(D) or
(vk, v0) ∈ A(D). As some initial problems, we think that k-quasi-transitive
digraphs with cycles of length at least k + 2 have a very similar behavior as
k-transitive digraphs, but, in most cases, the obtained results will reduce to
semicomplete instead of complete digraphs. Also, the generalization of a classical
result relating asymmetrical transitive and quasi-transitive digraph remains un-
explored. Is it true that a graph can receive a k-transitive orientation if and only
if it can receive a k-quasi-transitive orientation? In [4] this question received an
affirmative answer for k = 2 and also in [9] R. Wang and S. Wang prove the case
k = 3.
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