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Abstract

In 1980, Enomoto et al. proposed the conjecture that every tree is a
super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup-
port for the correctness of this conjecture by formulating some super (a, d)-
edge-antimagic total labelings on a subclass of subdivided stars denoted by
T(n,n+ 1,2n + 1,4n + 2,ns5,ng, ...,n,) for different values of the edge-
antimagic labeling parameter d, where n > 3 is odd, n,, = 2™ 4(4n+1)+1,
r>5and 5<m <r.
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1. INTRODUCTION

All graphs in this paper are finite, simple and undirected. For a graph G, V(G)
and E(G) denote the vertex set and the edge set, respectively. A (v, e)-graph G
is a graph such that |V(G)| = v and |E(G)| = e. Moreover, the theoretic ideas
of graphs can be seen in [22]. A labeling (or valuation) of a graph is a map that
carries graph elements to numbers (usually to positive or non-negative integers).
In this paper, the domain will be the set of all vertices and edges and such
a labeling is called a total labeling. Some labelings use the vertex set only or the
edge set only and we shall call them vertez-labelings or edge-labelings, respectively.

!The research contents of this paper are partially supported by the Higher Education Com-
mission (HEC) of Pakistan.
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There are many types of graph labelings, for example harmonius, cordial, graceful
and antimagic. The most complete recent survey of graph labelings can be found
in [6]. In this paper, we focus on an antimagic total labeling. More details on
an antimagic total labeling can be found in [4]. The subject of edge-magic total
labeling of graphs has its origin in the works of Kotzig and Rosa [13, 14] on what
they called magic valuations of graphs.

Definition 1.1. An (s, d)-edge-antimagic vertex ((s,d)-EAV) labeling of a graph
G is a bijective function A : V(G) — {1,2,...,v} such that the set of edge-sums
of all edges in G, {w(zy) = A(z) + A(y) : 2y € E(G)}, forms an arithmetic
progression {s,s +d,s + 2d,...,s + (e — 1)d}, where s > 0 and d > 0 are two
fixed integers.

Simanjuntak et al. [21] proved that the odd cycle Cs),41, the odd path Ps, 1 and
the even path P, have a (n+2,1)-EAV labeling, where n > 1. They also proved
that the odd path P5,41 has a (n + 3,1)-EAV labeling and the path P, admits
a (3,2)-EAV labeling for n > 1. Moreover, Bac¢a, Miller, Simanjuntak, Lin and
Bertault [2, 21] proved the following results.

e If a non-tree connected graph G has an (a,d)-EAV labeling then d = 1.

e The cycle C), has no (a,d)-EAV labeling for d > 1 and n > 3.
e The complete graph K,, has no (a,d)-EAV labeling, where n > 3.

e The symmetric complete bipartite graph K, has no (a,d)-EAV labeling,
where n > 1.

Definition 1.2. An (a,d)-edge-antimagic total ((a,d)-EAT) labeling of a graph
G is a bijective function A : V(G) U E(G) — {1,2,...,v + e} such that the set
of edge-weights of all edges in G, {w(zy) = A(z) + AM(zy) + A(y) : zy € E(G)},
forms an arithmetic progression {a,a + d,a + 2d,...,a+ (e — 1)d}, where a > 0
and d > 0 are two fixed integers. If such a labeling exists, then G is said to be
an (a,d)-EAT graph.

Definition 1.3. An (a,d)-EAT labeling A is called a super (a, d)-edge-antimagic
total (super (a,d)-EAT) labeling of G if A(V(G)) = {1,2,...,v}. Thus, a super
(a,d)-EAT graph is a graph that admits a super (a, d)-EAT labeling.

In the above definition, if d = 0, then a super (a,0)-EAT labeling is called a super
edge-magic total (SEMT) labeling and a is called a magic constant. For d # 0,
a is called minimum edge-weight. The definition of an (a,d)-EAT labeling was
introduced by Simanjuntak, Bertault and Miller in [21] as a natural extension
of an edge-magic total labeling defined by Kotzig and Rosa. A super (a,d)-
EAT labeling is a natural extension of the notion of a super (a,0)-EAT labeling
defined by Enomoto, Lladé, Nakamigawa and Ringel in [5]. They also proposed
the conjecture that every tree is a super (a,0)-EAT graph. In the favour of
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this conjecture, many authors have derived different results on a super (a,d)-
EAT labeling for many particular classes of trees, for example path-like trees
[3], banana trees [7], w-trees [11], extended w-trees [10, 12], subdivided stars
[8, 9, 18, 19, 16, 17], subdivided w-trees [8] and caterpillars [20]. Lee and Shah
[15] verified this conjecture by a computer search for trees with at most 17 vertices.
However, this conjecture is still open.

Definition 1.4. For n; > 1, r > 2 and 1 < i < r, let T(ny,n9,...,n,) be a

subdivided star obtained by inserting n; — 1 vertices to each of the i-th edge of

the star K ,. Thus, the subdivided star 7' (1,1,...,1) is the star K ,.
—_——

r—times

A star is a particular type of trees and many authors have investigated antimag-
icness for subdivided stars under certain conditions. Lu [16, 17] called the sub-
divided star T'(m,n, k) a three-path tree and proved that it is a super (a,0)-EAT
if n, m are odd and k = n+ 1 or k = n + 2. Ngurah et al. [18] proved that
T(m,n, k) is also a super (a,0)-EAT graph if n, m are odd and k = n + 3 or
k =mn+4. Salman et al. [19] proved the existence of a super (a,0)-EAT labeling
on a particular subclass of the subdivided stars denoted by S} and S2%, where
Sl~T(2,2,...,2) and S? 2 T (3,3,...,3). Javaid et al. [8] investigated some
—_—— —_—
r—times r—times

results related to a super (a,0)-EAT labeling on the subdivision of the star K7 4
and the w-tree WT'(n, k). Javaid et al. [9] proved that a particular subclass of the
subdivided stars in its generalized form denoted by T'(n,n,n+2,n+2,ns,...,n,;)
admits a super (a,d)-EAT labeling for different values of d. Some of the results
are as follows.

Theorem 1.5 [9]. For any oddn > 3, T'(n,n,n+2,n+2,2n+3) admits a super
(a,d)-EAT labeling for d € {0,2}.

Theorem 1.6 [9]. For any oddn > 3, T(n,n,n+2,n+2,2n+3) admits a super
(a,1)-EAT labeling.

Theorem 1.7 [9]. For any oddn > 3, T(n,n,n+2,n+2,2n+ 3,4n+5) admits
a super (a,d)-EAT labeling for d € {0,2}.

Theorem 1.8 [9]. For anyr >5 and oddn >3, T(n,n,n+2,n+2,ns5,...,n;)
admits a super (a,d)-EAT labeling, where n, =1+ (n+1)2"4, 5 <m <r and
d € {0,2}.

Theorem 1.9 [9]. For anyr >5 and oddn >3, T(n,n,n+2,n+2,ns5,...,n;)
admits a super (a,1)-EAT labeling if |T(n,n,n + 2,n + 2,n5,...,n,)| is even,
where Ny =14+ (n 4+ 1)274 for 5 <m <r.
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In this paper, we construct another generalized subclass of subdivided stars de-
noted by T'(n,n+1,2n+ 1,4n + 2,ns5,n6 . . ., n;), where n,, = 2" 4(4n +1) + 1,
5 <m < r and r > 5. Moreover, it is proved that this subclass also admits some
super (a,d)-EAT labelings for different values of d. Let us consider the following
proposition which we will use in the main results.

Proposition 1.10 [2]. If a (v,e)-graph G has an (s,d)-EAV labeling, then
(i) G has a super (s +v+1,d+ 1)-EAT labeling,
(ii) G has a super (s +v+e,d — 1)-EAT labeling.

1.1. Bounds for the magic constant a

Ngurah et al. [18] found lower and upper bounds of the magic constant a for a
particular family of subdivided stars which are stated as follows.

Lemma 1.11. If T'(m,n, k) is a super (a,0)-EAT graph, then %(5l2 +3146) <
< (512 + 111 — 6), where | = m +n + k.

The lower and upper bounds of the magic constant a proved by Salman et al.
[19] are as follows.

Lemma 1.12. If T (n,n,...,n) is a super (a,0)-EAT graph, then 2% (5l2 + (9—
~—_——

n—times

2n)l+n? —n) <a < L (512 + (2n + 5)l + n —n?), where | = n?.

Now we find lower and upper bounds of the magic constant a for the most ex-
tended family of the subdivided stars denoted by T'(n1,ng,ns,...,n,) with any
n;>1forl <i<r.

Lemma 1.13. IfT(nl,ng,ng, ...,ny) is a super (a,0)-EAT graph, then % (5[2
9—=2r)l+(?*=r)) <a< 5 (512 (5+2r) — (r* —r)), where | = lel ;.

Proof. Suppose that T(ni,n2,ns,...,n,) admits a super (a,0)-EAT labeling
with magic constant a and [ = Y, ; n;. Then “la” cannot be smaller than the
sum obtained by assigning the smallest label 1 to the vertex of the degree r, the
labels from 2 to [ + 1 — r to the vertices of degree 2 and the labels from [ +2 —r
to [ + 1 to the next r vertices of degree 1 as

l—r+1 I+1 20+1
S , . .
la>r+2 Z; 1+ P v+ Zi*l—i—Q )
C0n81der Sy SE(l—=r+3), Zﬁzl ryot=3(2lr—r*43r) and ZZQZH_Q '
5 L(31+3). Consequently, we have la> (51> +7r*—=2lr + 9l —r) or

1 2
(1) 27(5l +72=2lr+90—r)
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Similarly, the upper bound of “la” is obtained by assigning the largest label [ 41
to the vertex of the degree r, the labels from r 4+ 1 to [ to the vertices of degree
2 and the labels from 1 to r to the next r vertices of degree 1 as

! . roo 2+1
la<r(l+1)+2 Zi:r-i-l s Zizl U Zi:l+2 b

Consider Zﬁzmi =301+1), >0 i=5r+1)and Z?lzﬂﬂz =5r(+r+1).
Consequently, we have la < (512 — r? + 2lr + 50 + 1) or

1
(2) a§2—l(5lz—r2+2lr—|—5l+r)

Combining (1) and (2), we get

%(552+(9*2r>l+(r24)) SGS2%(5l2+(5+2r)l—(r2—r)).

1.2. Strategy of construction for labeling schemes

Before presenting the main results, let us consider the overall strategy which is
applied to find the results related to super (a,d)-EAT labelings on the particular
subclasses of the subdivided stars for different values of the labeling parameter
d. It is important to know about three terms edge-label, edge-sum and edge-
weight. Let zy be an edge with end vertices  and y. Suppose that the assigned
labels to the edge is A(xy) and to the vertices are A(x) and A(y). Thus, A(zy),
AMz)+A(y) and A(x)+A(zy)+A(y) are called edge-label, edge-sum and edge-weight,
respectively.

In order to construct a super (a,d)-EAT labeling for d = 0,2 on the graph
G, the following steps have been performed:

1.2.1. Working steps for super (a,0)-EAT labeling

e Define a bijection A : V(G) — {1,2,...,v} in such a way that the set of
edge-sums {\(z) + A(y): zy € E(G)} forms a sequence of consecutive integers
with minimum edge-sum, say, s.

e It follows that the graph G admits an (s, 1)-EAV labeling.

o After getting an (s,1)-EAV labeling on the graph G, the goal is to extend it
to a super (a,0)-EAT labeling with the help of the magic constant a.

e The magic constant can be calculated as a = s+ v + e.

e Using set of edge-sums and the value of magic constant, the set of edge-labels
can be obtained as {a — (A(z) + A(y)): zy € E(G)}.
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Consequently, the graph G admits a super (a,0)-EAT labeling.

1.2.2. Working steps for super (a’,2)-EAT labeling
e Define a bijection A : V(G) — {1,2,...,v} in such a way that the set of
edge-sums {A(z) +A(y): zy € E(G)} forms a sequence of consecutive integers
with minimum edge-sum, say, s.
e It follows that the graph G admits an (s,1)-EAV labeling.
o After getting an (s,1)-EAV labeling on the graph G, the goal is to extend it
to a super (a’,2)-EAT labeling with the help of the minimum edge-weight a’'.
e The minimum edge-weight is calculated as a’ = s + v + 1.
e Define the set of edge-weights as {a’ —2+2i:1 <i <e}.
e Define the set of edge-sums as H = {h; : 1 < i <e}.
e Using a/ and the set H, the set of edge-labels can be obtained as {(a’ — 2 +
2) —hi:1<i<e}
Consequently, the graph G admits a super (a’,2)-EAT labeling.
In this paper, a super (a,1)-EAT labeling is formulated if the order of the
graph G is even. Thus, for the construction of a super (a, 1)-EAT labeling scheme,
we proceed as follows.

1.2.3. Working steps for a super (a,1)-EAT labeling

e Define a bijection A : V(G) — {1,2,...,v} in such a way that the set of
edge-sums {\(z) + A(y): zy € E(G)} forms a sequence of consecutive integers
with minimum edge-sum, say, s.

e Define the set of edge-sums as A = {a; : 1 <i <e}.

e The set of edges-labelsis B={b;j : 1 <j<e}={v;+1:1<j<e}.

e The set of edge-weights can be obtained as
C ={\=x) + ANzy) + My): zy € E(G)}

= {agic1+beipr s 1<i < U{agj +ber gt 1< < SFH 1)

J
e Thus, the minimum edge-weight is a = s + 37“

Consequently, the graph G admits a super (a, 1)-EAT labeling.

2. MAIN RESULTS

In this section, we present the main results related to a super (a, d)-EAT labeling

on a subclass of the subdivided stars for different values of the labeling parameter
d.

Theorem 2.1. For any oddn >3, G =T(n,n+1,2n+1,4n+2,8n+ 3) admits
a super (a,0)-EAT labeling with a = s +v + e and a super (a',2)-EAT labeling
with a’ = s+ v+ 1, where v =|V(G)| and s = 8n + 7.
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Proof. Let us denote the vertices and edges of G as follows.
V(G):{c}u{xﬁi:1§z’§5,1gli§ni},
B(G) = {ext s 1< i <5hu{alal i1 <i<5,1 < <ny — 1,
If v=|V(G)| and e = |E(G)|, then v = 16n+ 8 and e = v — 1.
Now, we define A : V(G) — {1,2,...,v} as follows: A(c) = 8n + 6.
For 1 <i<5,1<1; <n; and [; odd, we define:

l1

llgl, for u =z,
(n—i—l)—lQQ_l, for u = %2,
Mu)=<{ (@2n+2)— l32_1, for u = :Béf,
(4n—|—3)—l42_1, foru:a:ff,
(8n +5) — bt for u = 22,

and for I; even, we construct:

8n+6)+%, foru:xlf,
9n+7)—l§2, foru:a:lf,

%3, foru:xéf’,
12n+8)—l54, foruzxif,
16n+9) — &, for u = ¥

\

The set of all edge-sums generated by the above formulas is {A(x) + A(y): zy €
EG)}={8n+6+i:1 < i <e}. Itforms a sequence of consecutive integers
starting from the minimum edge-sum s = 8n + 7. Thus, by Definition 1.1, A is a
(8n+7,1)-EAV labeling. As a consequence of Proposition 1.10, A can be extended
to a super (a,0)-EAT labeling with magic constant a = s + v + e = 40n + 22.
The set of edge-labels is {a — (8n + 6+ ¢) : 1 <i < e}. Similarly, by Proposition
1.10, X can be extended to a super (a/,2)-EAT labeling with the minimum edge-
weight ¢’ = s +v + 1 = 24n + 16. The set of edge-labels can be obtained by
{d/ =Bn+6+1i):1<i<e} ]

As a consequence of the labeling which is formulated in Theorem 2.1, Figure
1(a) gives the set of edge-sums {31,32,33,...,85} as a sequence of consecutive
integers starting from s = 31. Thus, the subdivided star 7'(3,4,7,14,27) admits
a (31,1)-EAV labeling. The magic constant can be obtained by ¢ = v + e+ s =
56 + 55 + 31 = 142. The set of edge-labels is {(142 — 31), (142 — 32), (142 —
33),...,(142 — 85)}={111, 110,109, ...,57}. Thus, Figure 2(a) presents a super
(142,0)-EAT labeling of the subdivided star 7'(3,4,7, 14, 27).

Now, we calculate the minimum edge-weight ' = s +v + 1 = 31 + 56 +
1 = 88 and the set of edge-labels {(88 — 31),(90 — 32),(92 — 33),...,(196 —
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Figure 1. (a) (31,1)-EAV labeling of the subdivided star T(3,4,7,14,27).
(b) Super (142,0)-EAT labeling of the subdivided star T(3,4,7,14,27).

85)}={57,58,59,...,111}. Consequently, Figure 2(a) gives a super (88,2)-EAT
labeling of the subdivided star T'(3,4, 7, 14,27).

Theorem 2.2. For any oddn >3, G =T(n,n+1,2n+1,4n+2,8n+ 3) admits
a super (a,1)-EAT labeling with a = s + 3¢, where v = |V(G)| and s = 8n + 7.

Proof. Let us consider the set of vertices and edges of the graph G defined as
in the proof of Theorem 2.1. Now we define the vertex-labeling A : V(G) —

{1,2,...,v} as in the same theorem. It follows that the set of edge-sums for
all edges of G denoted by A = {a; : 1 <i<e}={8n+6+i:1<1i<e}
forms an arithmetic sequence with common difference 1 and B = {b; : 1 <

j<e}l={v+j:1<j<e}isaset of edge-labels. Define the set of edge-
weights C' = {A(z) + AM(zy) + A(y) : zy € E(G)}={a2i—1 + be—it1 : 1 < i <
%} U {agj + be;zl_j+1 :1<5< 6;“—1 — 1}. It is easy to see that C' constitutes
an arithmetic sequence with d =1 and a = s + 371’ = 32n + 19. Since all vertices
receive the smallest labels, A is a super (a, 1)-EAT labeling. |
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Figure 2. (a) Super (88,2)-EAT labeling of the subdivided star T(3,4,7,14,27).
(b) Super (115,1)-EAT labeling of the subdivided star T(3,4,7,14,27).

As a consequence of Theorem 2.2, to find a super (a, 1)-EAT labeling on 7'(3,4, 7,
14, 27), define A = {al, az,as. .. ,(Le}:{?)l, 32, 33, ey 85} and B:{bl, bg, bg, ey
be} = {57,58,59,...,111}. The set of edge-weights can be obtained by C =

{a2i1 +beis1 1 <0 <28} U {agj +ber 15 < 27} = {31+ 111,33 +
110,...,85+84}U{32+83,34+82,...,84+57} = {142,143,.".,169}U{115, 116,
..., 141} = {115,116,117,...,169}. We note that the minimum edge-weight in
the set C' is 115. It also can be calculated by a = s + 37” =31+ @ = 115.

Consequently, Figure 2(b) shows a super (115, 1)-EAT labeling of the subdivided
star T'(3,4,7,14,27).

Theorem 2.3. For any oddn >3, G =T (n,n+1,2n+1,4n+2,8n+3,16n+5)
admits a super (a,0)-EAT labeling with a = s +v + e and a super (a’,2)-EAT
labeling with o’ = s+ v+ 1, where v = |V(G)| and s = 16n + 10.

Proof. Let us denote the vertices and edges of G as follows.
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V(G):{c}u{x?:1§i§6,1§ligni},
E(G):{cxg:1gig6}u{x§ix§i“:1g¢g6,1gzigni—1}.
If v=|V(G)| and e = |E(G)|, then v = 32n+ 13, and e = v — 1.
Now, we define A : V(G) — {1,2,...,v} as follows: A(c) = 16n + 9.
For 1 <i<6,1<I; <n; and [; odd, we define:

l

5 foru:xlll,
n+1)—l22_1, for u = x7,
2n+2)—13;1, foru::v?,

(
(
(4n+3)—l451, foru:xif,
(
(

8n +5) — 5=, for u = 22,

16n + 8) — 162_1, for u:xéf",

((16n+9) + 4, for u = 2%,

(17n + 10) — %2, for u = 2,

(18n +10) — &, for u = 2%,

Au) = (20n +11) — &4, for u = a8,
(24n + 12) — %5, for u = ;Uf-f’,

(32n + 14) — %’3, for u = xéG.

The set of all edge-sums generated by the above formulas is {\(z) + A(y): zy €
EG)}={16n+9+i:1 < i < e}. It forms a sequence of consecutive integers
starting from the minimum edge-sum s = 16n + 10. Thus, by Definition 1.1, A
is a (16n + 10,1)-EAV labeling. As a consequence of Proposition 1.10, A can be
extended to a super (a,0)-EAT labeling with magic constant a = s +v +e =
80n + 35. The set of edge-labels is {a — (16n + 9+ 1) : 1 < i < e}. Similarly,
by Proposition 1.10, A can be extended to a super (a’,2)-EAT labeling with the
minimum edge-weight ¢’ = s + v + 1 = 48n + 24. The set of edge-labels can be
obtained by {a’ — (48n + 23 +1i) : 1 <i <e}. u

Theorem 2.4. For any oddn >3, G=T(n,n+1,2n+1,4n+ 2,8n+ 3,16n +
5,32n + 9) admits a super (a,0)-EAT labeling with a = s + v + e and a super
(a,2)-EAT labeling with o' = s + v+ 1, where v =|V(G)| and s = 32n + 15.

Proof. Let us denote the vertices and edges of G as follows.
V(G):{c}u{xﬁi '1 gig?,1gzigni},
B(G) = {eat 1 <i<mhu{alal i1 <i< 71 <l <ng - 1.

If v =|V(G)| and e = |E(G)| then v = 64n + 22, and e = 64n + 21.
Now, we define A : V(G) — {1,2,...,v} as follows: A(c) = 32n + 14.
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For1<i<7,1<1; <n; and [; odd, we define:

( llH for u = xlll,
(n—l—l) 21, for u = 2,
(2n +2) — b 1, for u = 2%,
Au) = (4n +3) 1, for u = xif
(8n+5) — 21, for u =z,
(16n 4+ 8) — 62 L foru= xéﬁ,
(32n+13) — 2, for u = b
and for I; even we construct.
(32n+14) + 4, foru= al
(33n+15) — %2, for u = 22,
(34n +15) — %”, for u = xé?’,
Au) = ¢ (36n+16) — %‘, for u = x4,
(40n+17)—l§5, foru:x?,
(48n +19) — &, for u = 2l¥,
(64n +23) — 2, for u = alr.

The set of all edge-sums generated by the above formulas is {\(z) + A(y): zy €
EG)}={32n+14+1i:1 < i <e}. It forms a sequence of consecutive integers
starting from the minimum edge-sum s = 32n + 15. Thus, by Definition 1.1, A
is a (32n + 15,1)-EAV labeling. As a consequence of Proposition 1.10, A can be
extended to a super (a,0)-EAT labeling with magic constant a = s +v +e =
160n + 58. The set of edge-labels is {a — (16n +9+1) : 1 < i < e}. Similarly,
by Proposition 1.10, A can be extended to a super (a’,2)-EAT labeling with the
minimum edge-weight ¢’ = s + v + 1 = 96n + 28. The set of edge-labels can be
obtained by {a’ — (96n + 27 +14) : 1 <i <e}. u

Theorem 2.5. For any evenn >3, G =T (n,n+1,2n+1,4n+2,8n+3,16n +
5,32n+9) admits a super (a,1)-EAT labeling with a = s+ 22, where v = |V (G))|
and s = 32n + 15.

Proof. Let us consider the set of vertices and edges of G defined as in Theorem
2.4. Now we define the vertex-labeling A : V(G) — {1,2,...,v} as in the same
theorem. It follows that the set of edge-sums for all edges of G denoted by
A={a;:1<i<e}={32n+14+i:1 <i<e} forms an arithmetic sequence
with common difference 1 and B={b;: 1 < j<e}={v+j:1<j<e}isaset
of edge-labels. Define the set of edge-weights C' = {A(z) + A(zy) + A(y) : 2y €
E(G)}:{agi,l + befi+1 01 S ) S %} U {azj +b%—j+1 01 S] S in — 1}

It is easy to see that C' constitutes an arithmetic sequence with d = 1 and
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a=s+ 37” = 128n + 48. Since all vertices receive the smallest labels, A is a super
(a,1)-EAT labeling. |

Theorem 2.6. For any v > 5 and odd n > 3, G = T(n,n+ 1,2n + 1,4n +
2,ns5,...,n,) admits a super (a,0)-EAT labeling with a = s +v + e and a super
(a/,2)-EAT labeling with o' = s+ v+ 1 where v = |V(G)|, s = (4n +5) +
S22 (Un+1) + 1] and ny, = 2" 4An4+ 1)+ 1 for 5 <m <r.

Proof. Let us denote the vertices and edges of G as follows.
V(G):{C}U{m?:1§i§r,1§li§ni},
E(G) = {cz}:1 Sigr}u{xéixéiﬂ:1§i§r,1§li§ni—1}.
If v = |[V(G)| and e = |E(G)|, then v = (8n +5) + > _[2" 4(4n+ 1) + 1] and
e = v—1. Throughout the labeling, suppose v = (4n+4)+> 1 _[2™75(4n+1)+1].
Define A : V(G) — {1,2,...,v} as follows: A(c) = a.
For 1 <i<4,1<1; <n; and [; odd, we define:

for u:xlll,
(n+1)—122_1, for u = 22,
(2n+2) — 531 for u=azf,
(

dn+3) =zl foru= :vff,

AMu) =

and for I; even, we construct:

a—l—%, foru:a:lll,
(a+n+1)—%, for u = 2,
(a+2n+1) -5, for u = 2%,

(a+4n+2) -4, for u =zt

AMu) =

For 5 <i<r,1<I; <n; and l; odd, we define:

li—1
2 )

Mal) = (n+3)+ Y 2" (An+1)+1] -
and for I; even, we construct:

Mal) = (0t an+2) 43 P an 4 1) - o

The set of all edge-sums generated by the above formulas is {\(z) + A(y): zy €
E(G)}={a+i:1 <i<i}. It forms a sequence of consecutive integers starting
from the minimum edge-sum s = a+ 1. Thus, by Definition 1.1, X is a (a+1,1)-
EAV labeling. As a consequence of Proposition 1.10, A can be extended to a
super (a,0)-EAT labeling with magic constant a = s+v+e =2v+ (dn+4) +



ON SUPER EDGE-ANTIMAGIC TOTAL LABELING OF SUBDIVIDED STARS 703

S _s[2MP(dn+1)+1] = (20n+14)+ > _[2™75(20n+5)+3]. The set of edge-
labels is {a—(a+1) : 1 <14 < e}. Similarly, by Proposition 1.10, A can be extended
to a super (da’,2)-EAT labeling with the minimum edge-weight ¢’ = s +v +1 =
v+ (An+6)+ > 2™ (dAn+1)4+1] = (12n+11)+ >0 _[2">(12n+3) +2].
The set of edge-labels can be obtained by {a’ — (a + 1) : 1 <i < e}. |

Theorem 2.7. For any v > 5 and odd n > 3, G = T(n,n+ 1,2n + 1,4n +
2,ns5,...,n,) admits a super (a,1)-EAT total labeling with a = s + 37” if v is
even, where v = [V(G)|, s = (4n+5) + >0 _[2">(4n + 1) + 1] and n,, =
2m*4(4n+ D+1for5<m<r.

Proof. Let us consider the vertices and edges of G defined as in Theorem 2.6.
Now, we define the labeling A : V(G) — {1,2,...,v} as in the same theorem.
It follows that the set of edge-sums for all edges of G denoted by A = {a; :
1<i<e}={a+i:1<i<e} forms an arithmetic sequence with common
difference 1 and B = {b; : 1 < j < e} ={v+j:1 < j < e} isaset of
edge-labels, where a = (4n +4) + > _-[2™75(4n + 1) 4+ 1]. Define the set of
edge-weights C' = {\(z) + Mzy) + \(y) : zy € E(G)}={agi—1 + be—it1: 1 <i <
%}U{agj + be%fj+1 1< < % — 1} . It is easy to see that C' constitutes an

arithmetic sequence with d =1 and a = s+ 3¢ = 128n+48+ 3 Y1 _[2™%(dn+
1) + 5]. Since all vertices receive the smallest labels, A\ is a super (a,1)-EAT
labeling. [

3. CONCLUSION

In this paper, we have shown that a subclass of subdivided stars denoted by
T(n,n+1,2n+1,4n+ 2,ns,...,n,) admits a super (a,d)-EAT labeling for d €
{0,1,2}, where n > 3 is odd, ny, = 2™ 4dn+1)+1,r >5and 5<m <r. It
is a generalized form of the three-path tree studied by Lu [16, 17] and Ngurah
et al. [18]. The choice of {n; : 2 <1i < r} in the present results is different from
the results which are derived by Javaid et al. [9]. Salman et al. [19] proved the
existence of a super (a,0)-EAT labeling on a particular subclass of the subdivided
stars denoted by T'(ni,ng,n3...,n,), where ny = ng = ng = --- =n, = n and
n € {2,3}. Moreover, the scheme of a super (a,d)-EAT labeling developed in
this paper does not work on T'(n1,ng, ns, ng, ns,ne), when n; = ng = nsz =ny =
ns = ng = 4. Thus, we propose the following open problem.

Open Problem 3.1. For the subdivided star T'(ny, no, ns, ..., n,), where ny =
ng =ng =---=mn, =n > 1, determine if there is a super (a, d)-EAT labeling.
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