Discussiones Mathematicae
Graph Theory 34 (2014) 691-705
doi:10.7151/dmgt. 1764

ON SUPER EDGE-ANTIMAGIC TOTAL LABELING OF SUBDIVIDED STARS ${ }^{1}$

Muhammad Javaid
Department of Mathematics National University of Computer and Emerging Sciences, Lahore Campus, Pakistan
e-mail: mjavaidmath@gmail.com
javaidmath@gmail.com

Abstract

In 1980, Enomoto et al. proposed the conjecture that every tree is a super ($a, 0$)-edge-antimagic total graph. In this paper, we give a partial support for the correctness of this conjecture by formulating some super (a, d) -edge-antimagic total labelings on a subclass of subdivided stars denoted by $T\left(n, n+1,2 n+1,4 n+2, n_{5}, n_{6}, \ldots, n_{r}\right)$ for different values of the edgeantimagic labeling parameter d, where $n \geq 3$ is odd, $n_{m}=2^{m-4}(4 n+1)+1$, $r \geq 5$ and $5 \leq m \leq r$.

Keywords: super (a, d)-EAT labeling, subdivision of star.
2010 Mathematics Subject Classification: 05C78.

1. Introduction

All graphs in this paper are finite, simple and undirected. For a graph $G, V(G)$ and $E(G)$ denote the vertex set and the edge set, respectively. A (v, e)-graph G is a graph such that $|V(G)|=v$ and $|E(G)|=e$. Moreover, the theoretic ideas of graphs can be seen in [22]. A labeling (or valuation) of a graph is a map that carries graph elements to numbers (usually to positive or non-negative integers). In this paper, the domain will be the set of all vertices and edges and such a labeling is called a total labeling. Some labelings use the vertex set only or the edge set only and we shall call them vertex-labelings or edge-labelings, respectively.

[^0]There are many types of graph labelings, for example harmonius, cordial, graceful and antimagic. The most complete recent survey of graph labelings can be found in [6]. In this paper, we focus on an antimagic total labeling. More details on an antimagic total labeling can be found in [4]. The subject of edge-magic total labeling of graphs has its origin in the works of Kotzig and Rosa [13, 14] on what they called magic valuations of graphs.

Definition 1.1. An (s, d)-edge-antimagic vertex $((s, d)$-EAV) labeling of a graph G is a bijective function $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ such that the set of edge-sums of all edges in $G,\{w(x y)=\lambda(x)+\lambda(y): x y \in E(G)\}$, forms an arithmetic progression $\{s, s+d, s+2 d, \ldots, s+(e-1) d\}$, where $s>0$ and $d \geq 0$ are two fixed integers.

Simanjuntak et al. [21] proved that the odd cycle $C_{2 n+1}$, the odd path $P_{2 n+1}$ and the even path $P_{2 n}$ have a $(n+2,1)$-EAV labeling, where $n \geq 1$. They also proved that the odd path $P_{2 n+1}$ has a $(n+3,1)$-EAV labeling and the path P_{n} admits a $(3,2)$-EAV labeling for $n \geq 1$. Moreover, Bača, Miller, Simanjuntak, Lin and Bertault [2, 21] proved the following results.

- If a non-tree connected graph G has an (a, d)-EAV labeling then $d=1$.
- The cycle C_{n} has no (a, d)-EAV labeling for $d>1$ and $n \geq 3$.
- The complete graph K_{n} has no (a, d)-EAV labeling, where $n>3$.
- The symmetric complete bipartite graph $K_{n, n}$ has no (a, d)-EAV labeling, where $n>1$.

Definition 1.2. An (a, d)-edge-antimagic total $((a, d)$-EAT) labeling of a graph G is a bijective function $\lambda: V(G) \cup E(G) \rightarrow\{1,2, \ldots, v+e\}$ such that the set of edge-weights of all edges in $G,\{w(x y)=\lambda(x)+\lambda(x y)+\lambda(y): x y \in E(G)\}$, forms an arithmetic progression $\{a, a+d, a+2 d, \ldots, a+(e-1) d\}$, where $a>0$ and $d \geq 0$ are two fixed integers. If such a labeling exists, then G is said to be an (a, d)-EAT graph.
Definition 1.3. An (a, d)-EAT labeling λ is called a super (a, d)-edge-antimagic total (super (a, d)-EAT) labeling of G if $\lambda(V(G))=\{1,2, \ldots, v\}$. Thus, a super (a, d)-EAT graph is a graph that admits a super (a, d)-EAT labeling.

In the above definition, if $d=0$, then a super ($a, 0$)-EAT labeling is called a super edge-magic total (SEMT) labeling and a is called a magic constant. For $d \neq 0$, a is called minimum edge-weight. The definition of an (a, d)-EAT labeling was introduced by Simanjuntak, Bertault and Miller in [21] as a natural extension of an edge-magic total labeling defined by Kotzig and Rosa. A super (a, d) EAT labeling is a natural extension of the notion of a super $(a, 0)$-EAT labeling defined by Enomoto, Lladó, Nakamigawa and Ringel in [5]. They also proposed the conjecture that every tree is a super $(a, 0)$-EAT graph. In the favour of
this conjecture, many authors have derived different results on a super (a, d) EAT labeling for many particular classes of trees, for example path-like trees [3], banana trees [7], w-trees [11], extended w-trees [10, 12], subdivided stars $[8,9,18,19,16,17]$, subdivided w-trees [8] and caterpillars [20]. Lee and Shah [15] verified this conjecture by a computer search for trees with at most 17 vertices. However, this conjecture is still open.

Definition 1.4. For $n_{i} \geq 1, r \geq 2$ and $1 \leq i \leq r$, let $T\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ be a subdivided star obtained by inserting $n_{i}-1$ vertices to each of the i-th edge of the star $K_{1, r}$. Thus, the subdivided star $T \underbrace{(1,1, \ldots, 1)}_{r-\text { times }}$ is the star $K_{1, r}$.

A star is a particular type of trees and many authors have investigated antimagicness for subdivided stars under certain conditions. Lu $[16,17]$ called the subdivided star $T(m, n, k)$ a three-path tree and proved that it is a super ($a, 0$)-EAT if n, m are odd and $k=n+1$ or $k=n+2$. Ngurah et al. [18] proved that $T(m, n, k)$ is also a super ($a, 0$)-EAT graph if n, m are odd and $k=n+3$ or $k=n+4$. Salman et al. [19] proved the existence of a super ($a, 0$)-EAT labeling on a particular subclass of the subdivided stars denoted by S_{r}^{1} and S_{r}^{2}, where $S_{r}^{1} \cong T \underbrace{(2,2, \ldots, 2)}_{r-\text { times }}$ and $S_{r}^{2} \cong T \underbrace{(3,3, \ldots, 3)}_{r-\text { times }}$. Javaid et al. [8] investigated some results related to a super ($a, 0$)-EAT labeling on the subdivision of the star $K_{1,4}$ and the w-tree $W T(n, k)$. Javaid et al. [9] proved that a particular subclass of the subdivided stars in its generalized form denoted by $T\left(n, n, n+2, n+2, n_{5}, \ldots, n_{r}\right)$ admits a super (a, d)-EAT labeling for different values of d. Some of the results are as follows.

Theorem 1.5 [9]. For any odd $n \geq 3, T(n, n, n+2, n+2,2 n+3)$ admits a super (a, d)-EAT labeling for $d \in\{0,2\}$.

Theorem 1.6 [9]. For any odd $n \geq 3, T(n, n, n+2, n+2,2 n+3)$ admits a super ($a, 1$)-EAT labeling.

Theorem 1.7 [9]. For any odd $n \geq 3, T(n, n, n+2, n+2,2 n+3,4 n+5)$ admits a super (a, d)-EAT labeling for $d \in\{0,2\}$.

Theorem 1.8 [9]. For any $r \geq 5$ and odd $n \geq 3, T\left(n, n, n+2, n+2, n_{5}, \ldots, n_{r}\right)$ admits a super (a, d)-EAT labeling, where $n_{m}=1+(n+1) 2^{m-4}, 5 \leq m \leq r$ and $d \in\{0,2\}$.

Theorem 1.9 [9]. For any $r \geq 5$ and odd $n \geq 3, T\left(n, n, n+2, n+2, n_{5}, \ldots, n_{r}\right)$ admits a super ($a, 1$)-EAT labeling if $\left|T\left(n, n, n+2, n+2, n_{5}, \ldots, n_{r}\right)\right|$ is even, where $n_{m}=1+(n+1) 2^{m-4}$ for $5 \leq m \leq r$.

In this paper, we construct another generalized subclass of subdivided stars denoted by $T\left(n, n+1,2 n+1,4 n+2, n_{5}, n_{6} \ldots, n_{r}\right)$, where $n_{m}=2^{m-4}(4 n+1)+1$, $5 \leq m \leq r$ and $r \geq 5$. Moreover, it is proved that this subclass also admits some super (a, d)-EAT labelings for different values of d. Let us consider the following proposition which we will use in the main results.
Proposition 1.10 [2]. If a (v, e)-graph G has an (s, d)-EAV labeling, then
(i) G has a super $(s+v+1, d+1)$-EAT labeling,
(ii) G has a super $(s+v+e, d-1)$-EAT labeling.

1.1. Bounds for the magic constant a

Ngurah et al. [18] found lower and upper bounds of the magic constant a for a particular family of subdivided stars which are stated as follows.
Lemma 1.11. If $T(m, n, k)$ is a super ($a, 0)$-EAT graph, then $\frac{1}{2 l}\left(5 l^{2}+3 l+6\right) \leq$ $a \leq \frac{1}{2 l}\left(5 l^{2}+11 l-6\right)$, where $l=m+n+k$.
The lower and upper bounds of the magic constant a proved by Salman et al. [19] are as follows.
Lemma 1.12. If $T \underbrace{(n, n, \ldots, n)}_{n-\text { times }}$ is a super ($a, 0$)-EAT graph, then $\frac{1}{2 l}\left(5 l^{2}+(9-\right.$ $\left.2 n) l+n^{2}-n\right) \leq a \leq \frac{1}{2 l}\left(5 l^{2}+(2 n+5) l+n-n^{2}\right)$, where $l=n^{2}$.
Now we find lower and upper bounds of the magic constant a for the most extended family of the subdivided stars denoted by $T\left(n_{1}, n_{2}, n_{3}, \ldots, n_{r}\right)$ with any $n_{i} \geq 1$ for $1 \leq i \leq r$.
Lemma 1.13. If $T\left(n_{1}, n_{2}, n_{3}, \ldots, n_{r}\right)$ is a super ($a, 0$)-EAT graph, then $\frac{1}{2 l}\left(5 l^{2}+\right.$ $\left.(9-2 r) l+\left(r^{2}-r\right)\right) \leq a \leq \frac{1}{2 l}\left(5 l^{2}+(5+2 r) l-\left(r^{2}-r\right)\right)$, where $l=\sum_{i=1}^{r^{2 l}} n_{i}$.
Proof. Suppose that $T\left(n_{1}, n_{2}, n_{3}, \ldots, n_{r}\right)$ admits a super ($a, 0$)-EAT labeling with magic constant a and $l=\sum_{i=1}^{r} n_{i}$. Then " a " cannot be smaller than the sum obtained by assigning the smallest label 1 to the vertex of the degree r, the labels from 2 to $l+1-r$ to the vertices of degree 2 and the labels from $l+2-r$ to $l+1$ to the next r vertices of degree 1 as

$$
l a \geq r+2 \sum_{i=2}^{l-r+1} i+\sum_{i=l-r+2}^{l+1} i+\sum_{i=l+2}^{2 l+1} i
$$

Consider $\sum_{i=2}^{l-r+1} i=\frac{l-r}{2}(l-r+3), \sum_{i=l-r+2}^{l+1} i=\frac{1}{2}\left(2 l r-r^{2}+3 r\right)$ and $\sum_{i=l+2}^{2 l+1} i=$ $\frac{l}{2}(3 l+3)$. Consequently, we have $l a \geq \frac{1}{2}\left(5 l^{2}+r^{2}-2 l r+9 l-r\right)$ or

$$
\begin{equation*}
a \geq \frac{1}{2 l}\left(5 l^{2}+r^{2}-2 l r+9 l-r\right) \tag{1}
\end{equation*}
$$

Similarly, the upper bound of "la" is obtained by assigning the largest label $l+1$ to the vertex of the degree r, the labels from $r+1$ to l to the vertices of degree 2 and the labels from 1 to r to the next r vertices of degree 1 as

$$
l a \leq r(l+1)+2 \sum_{i=r+1}^{l} i+\sum_{i=1}^{r} i+\sum_{i=l+2}^{2 l+1} i .
$$

Consider $\sum_{i=r+1}^{l} i=\frac{3 l}{2}(l+1), \sum_{i=1}^{r} i=\frac{r}{2}(r+1)$ and $\sum_{i=l+2}^{2 l+1} i=\frac{l-r}{2}(l+r+1)$. Consequently, we have $l a \leq \frac{1}{2 l}\left(5 l^{2}-r^{2}+2 l r+5 l+r\right)$ or

$$
\begin{equation*}
a \leq \frac{1}{2 l}\left(5 l^{2}-r^{2}+2 l r+5 l+r\right) \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get

$$
\frac{1}{2 l}\left(5 l^{2}+(9-2 r) l+\left(r^{2}-r\right)\right) \leq a \leq \frac{1}{2 l}\left(5 l^{2}+(5+2 r) l-\left(r^{2}-r\right)\right)
$$

1.2. Strategy of construction for labeling schemes

Before presenting the main results, let us consider the overall strategy which is applied to find the results related to super (a, d)-EAT labelings on the particular subclasses of the subdivided stars for different values of the labeling parameter d. It is important to know about three terms edge-label, edge-sum and edgeweight. Let $x y$ be an edge with end vertices x and y. Suppose that the assigned labels to the edge is $\lambda(x y)$ and to the vertices are $\lambda(x)$ and $\lambda(y)$. Thus, $\lambda(x y)$, $\lambda(x)+\lambda(y)$ and $\lambda(x)+\lambda(x y)+\lambda(y)$ are called edge-label, edge-sum and edge-weight, respectively.

In order to construct a super (a, d)-EAT labeling for $d=0,2$ on the graph G, the following steps have been performed:

1.2.1. Working steps for super ($a, 0$)-EAT labeling

- Define a bijection $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ in such a way that the set of edge-sums $\{\lambda(x)+\lambda(y): x y \in E(G)\}$ forms a sequence of consecutive integers with minimum edge-sum, say, s.
- It follows that the graph G admits an $(s, 1)$-EAV labeling.
- After getting an $(s, 1)$-EAV labeling on the graph G, the goal is to extend it to a super ($a, 0$)-EAT labeling with the help of the magic constant a.
- The magic constant can be calculated as $a=s+v+e$.
- Using set of edge-sums and the value of magic constant, the set of edge-labels can be obtained as $\{a-(\lambda(x)+\lambda(y)): x y \in E(G)\}$.

Consequently, the graph G admits a super ($a, 0$)-EAT labeling.

1.2.2. Working steps for super ($\left.a^{\prime}, 2\right)$-EAT labeling

- Define a bijection $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ in such a way that the set of edge-sums $\{\lambda(x)+\lambda(y): x y \in E(G)\}$ forms a sequence of consecutive integers with minimum edge-sum, say, s.
- It follows that the graph G admits an $(s, 1)$-EAV labeling.
- After getting an $(s, 1)$-EAV labeling on the graph G, the goal is to extend it to a super $\left(a^{\prime}, 2\right)$-EAT labeling with the help of the minimum edge-weight a^{\prime}.
- The minimum edge-weight is calculated as $a^{\prime}=s+v+1$.
- Define the set of edge-weights as $\left\{a^{\prime}-2+2 i: 1 \leq i \leq e\right\}$.
- Define the set of edge-sums as $H=\left\{h_{i}: 1 \leq i \leq e\right\}$.
- Using a^{\prime} and the set H, the set of edge-labels can be obtained as $\left\{\left(a^{\prime}-2+\right.\right.$ $\left.2 i)-h_{i}: 1 \leq i \leq e\right\}$.
Consequently, the graph G admits a super ($a^{\prime}, 2$)-EAT labeling.
In this paper, a super $(a, 1)$-EAT labeling is formulated if the order of the graph G is even. Thus, for the construction of a super ($a, 1$)-EAT labeling scheme, we proceed as follows.

1.2.3. Working steps for a super ($a, 1$)-EAT labeling

- Define a bijection $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ in such a way that the set of edge-sums $\{\lambda(x)+\lambda(y): x y \in E(G)\}$ forms a sequence of consecutive integers with minimum edge-sum, say, s.
- Define the set of edge-sums as $A=\left\{a_{i}: 1 \leq i \leq e\right\}$.
- The set of edges-labels is $B=\left\{b_{j}: 1 \leq j \leq e\right\}=\left\{v_{j}+1: 1 \leq j \leq e\right\}$.
- The set of edge-weights can be obtained as $C=\{\lambda(x)+\lambda(x y)+\lambda(y): x y \in E(G)\}$ $=\left\{a_{2 i-1}+b_{e-i+1}: 1 \leq i \leq \frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1}: 1 \leq j \leq \frac{e+1}{2}-1\right\}$.
- Thus, the minimum edge-weight is $a=s+\frac{3 v}{2}$.

Consequently, the graph G admits a super $(a, 1)$-EAT labeling.

2. Main Results

In this section, we present the main results related to a super (a, d)-EAT labeling on a subclass of the subdivided stars for different values of the labeling parameter d.

Theorem 2.1. For any odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+2,8 n+3)$ admits a super $(a, 0)$-EAT labeling with $a=s+v+e$ and a super ($\left.a^{\prime}, 2\right)$-EAT labeling with $a^{\prime}=s+v+1$, where $v=|V(G)|$ and $s=8 n+7$.

Proof. Let us denote the vertices and edges of G as follows.

$$
\begin{aligned}
& V(G)=\{c\} \cup\left\{x_{i}^{l_{i}}: 1 \leq i \leq 5,1 \leq l_{i} \leq n_{i}\right\} \\
& E(G)=\left\{c x_{i}^{1}: 1 \leq i \leq 5\right\} \cup\left\{x_{i}^{l_{i}} x_{i}^{l_{i}+1}: 1 \leq i \leq 5,1 \leq l_{i} \leq n_{i}-1\right\}
\end{aligned}
$$

If $v=|V(G)|$ and $e=|E(G)|$, then $v=16 n+8$ and $e=v-1$.
Now, we define $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows: $\lambda(c)=8 n+6$.
For $1 \leq i \leq 5,1 \leq l_{i} \leq n_{i}$ and l_{i} odd, we define:

$$
\lambda(u)= \begin{cases}\frac{l_{1}+1}{2}, & \text { for } u=x_{1}^{l_{1}}, \\ (n+1)-\frac{l_{2}-1}{2}, & \text { for } u=x_{2}^{l_{2}}, \\ (2 n+2)-\frac{l_{3}-1}{2}, & \text { for } u=x_{3}^{l_{3}} \\ (4 n+3)-\frac{l_{4}-1}{2}, & \text { for } u=x_{4}^{l_{4}}, \\ (8 n+5)-\frac{l_{5}-1}{2}, & \text { for } u=x_{5}^{l_{5}}\end{cases}
$$

and for l_{i} even, we construct:

$$
\lambda(u)= \begin{cases}(8 n+6)+\frac{l_{1}}{2}, & \text { for } u=x_{1}^{l_{1}} \\ (9 n+7)-\frac{l_{2}}{2}, & \text { for } u=x_{2}^{l_{2}} \\ (10 n+7)-\frac{l_{3}}{2}, & \text { for } u=x_{3}^{l_{3}} \\ (12 n+8)-\frac{l_{4}}{2}, & \text { for } u=x_{4}^{l_{4}} \\ (16 n+9)-\frac{l_{5}}{2}, & \text { for } u=x_{5}^{l_{5}}\end{cases}
$$

The set of all edge-sums generated by the above formulas is $\{\lambda(x)+\lambda(y): x y \in$ $E(G)\}=\{8 n+6+i: 1 \leq i \leq e\}$. It forms a sequence of consecutive integers starting from the minimum edge-sum $s=8 n+7$. Thus, by Definition $1.1, \lambda$ is a $(8 n+7,1)$-EAV labeling. As a consequence of Proposition 1.10, λ can be extended to a super $(a, 0)$-EAT labeling with magic constant $a=s+v+e=40 n+22$. The set of edge-labels is $\{a-(8 n+6+i): 1 \leq i \leq e\}$. Similarly, by Proposition $1.10, \lambda$ can be extended to a super $\left(a^{\prime}, 2\right)$-EAT labeling with the minimum edgeweight $a^{\prime}=s+v+1=24 n+16$. The set of edge-labels can be obtained by $\left\{a^{\prime}-(8 n+6+i): 1 \leq i \leq e\right\}$.

As a consequence of the labeling which is formulated in Theorem 2.1, Figure 1 (a) gives the set of edge-sums $\{31,32,33, \ldots, 85\}$ as a sequence of consecutive integers starting from $s=31$. Thus, the subdivided star $T(3,4,7,14,27)$ admits a $(31,1)$-EAV labeling. The magic constant can be obtained by $c=v+e+s=$ $56+55+31=142$. The set of edge-labels is $\{(142-31),(142-32),(142-$ $33), \ldots,(142-85)\}=\{111,110,109, \ldots, 57\}$. Thus, Figure 2(a) presents a super $(142,0)$-EAT labeling of the subdivided star $T(3,4,7,14,27)$.

Now, we calculate the minimum edge-weight $a^{\prime}=s+v+1=31+56+$ $1=88$ and the set of edge-labels $\{(88-31),(90-32),(92-33), \ldots,(196-$

Figure 1. (a) (31,1)-EAV labeling of the subdivided star $\mathrm{T}(3,4,7,14,27)$.
(b) Super (142,0)-EAT labeling of the subdivided star $\mathrm{T}(3,4,7,14,27)$.
$85)\}=\{57,58,59, \ldots, 111\}$. Consequently, Figure 2(a) gives a super (88,2)-EAT labeling of the subdivided star $T(3,4,7,14,27)$.

Theorem 2.2. For any odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+2,8 n+3)$ admits a super ($a, 1$-EAT labeling with $a=s+\frac{3 v}{2}$, where $v=|V(G)|$ and $s=8 n+7$.

Proof. Let us consider the set of vertices and edges of the graph G defined as in the proof of Theorem 2.1. Now we define the vertex-labeling $\lambda: V(G) \rightarrow$ $\{1,2, \ldots, v\}$ as in the same theorem. It follows that the set of edge-sums for all edges of G denoted by $A=\left\{a_{i}: 1 \leq i \leq e\right\}=\{8 n+6+i: 1 \leq i \leq e\}$ forms an arithmetic sequence with common difference 1 and $B=\left\{b_{j}: 1 \leq\right.$ $j \leq e\}=\{v+j: 1 \leq j \leq e\}$ is a set of edge-labels. Define the set of edgeweights $C=\{\lambda(x)+\lambda(x y)+\lambda(y): x y \in E(G)\}=\left\{a_{2 i-1}+b_{e-i+1}: 1 \leq i \leq\right.$ $\left.\frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1}: 1 \leq j \leq \frac{e+1}{2}-1\right\}$. It is easy to see that C constitutes an arithmetic sequence with $d=1$ and $a=s+\frac{3 v}{2}=32 n+19$. Since all vertices receive the smallest labels, λ is a super ($a, 1$)-EAT labeling.

Figure 2. (a) Super (88,2)-EAT labeling of the subdivided star T(3,4,7,14,27).
(b) Super (115,1)-EAT labeling of the subdivided star $\mathrm{T}(3,4,7,14,27)$.

As a consequence of Theorem 2.2, to find a super ($a, 1$)-EAT labeling on $T(3,4,7$, 14,27), define $A=\left\{a_{1}, a_{2}, a_{3} \ldots, a_{e}\right\}=\{31,32,33, \ldots, 85\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right.$, $\left.b_{e}\right\}=\{57,58,59, \ldots, 111\}$. The set of edge-weights can be obtained by $C=$ $\left\{a_{2 i-1}+b_{e-i+1}: 1 \leq i \leq 28\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1}: 1 \leq j \leq 27\right\}=\{31+111,33+$ $110, \ldots, 85+84\} \cup\{32+83,34+82, \ldots, 84+57\}=\{142,143, \ldots, 169\} \cup\{115,116$, $\ldots, 141\}=\{115,116,117, \ldots, 169\}$. We note that the minimum edge-weight in the set C is 115. It also can be calculated by $a=s+\frac{3 v}{2}=31+\frac{3(56)}{2}=115$. Consequently, Figure 2(b) shows a super (115, 1)-EAT labeling of the subdivided star $T(3,4,7,14,27)$.

Theorem 2.3. For any odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+2,8 n+3,16 n+5)$ admits a super ($a, 0$)-EAT labeling with $a=s+v+e$ and a super ($a^{\prime}, 2$)-EAT labeling with $a^{\prime}=s+v+1$, where $v=|V(G)|$ and $s=16 n+10$.

Proof. Let us denote the vertices and edges of G as follows.

$$
\begin{aligned}
V(G) & =\{c\} \cup\left\{x_{i}^{l_{i}}: 1 \leq i \leq 6,1 \leq l_{i} \leq n_{i}\right\} \\
E(G) & =\left\{c x_{i}^{1}: 1 \leq i \leq 6\right\} \cup\left\{x_{i}^{l_{i}} x_{i}^{l_{i}+1}: 1 \leq i \leq 6,1 \leq l_{i} \leq n_{i}-1\right\} .
\end{aligned}
$$

If $v=|V(G)|$ and $e=|E(G)|$, then $v=32 n+13$, and $e=v-1$.
Now, we define $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows: $\lambda(c)=16 n+9$.
For $1 \leq i \leq 6,1 \leq l_{i} \leq n_{i}$ and l_{i} odd, we define:

$$
\lambda(u)= \begin{cases}\frac{l_{1}+1}{2}, & \text { for } u=x_{1}^{l_{1}}, \\ (n+1)-\frac{l_{2}-1}{2}, & \text { for } u=x_{2}^{l_{2}}, \\ (2 n+2)-\frac{l_{3}-1}{2}, & \text { for } u=x_{3}^{l_{3}}, \\ (4 n+3)-\frac{l_{4}-1}{2}, & \text { for } u=x_{4}^{l_{4}}, \\ (8 n+5)-\frac{l_{5}-1}{2}, & \text { for } u=x_{5}^{l_{5}}, \\ (16 n+8)-\frac{l_{6}-1}{2}, & \text { for } u=x_{6}^{l_{6}},\end{cases}
$$

and for l_{i} even we construct:

$$
\lambda(u)= \begin{cases}(16 n+9)+\frac{l_{1}}{2}, & \text { for } u=x_{1}^{l_{1}}, \\ (17 n+10)-\frac{l_{2}}{2}, & \text { for } u=x_{2}^{l_{2}}, \\ (18 n+10)-\frac{l_{3}}{2}, & \text { for } u=x_{3}^{l_{3}}, \\ (20 n+11)-\frac{l_{4}}{2}, & \text { for } u=x_{4}^{l_{4}}, \\ (24 n+12)-\frac{l_{5}}{2}, & \text { for } u=x_{5}^{l_{5}}, \\ (32 n+14)-\frac{l_{6}}{2}, & \text { for } u=x_{6}^{l_{6}} .\end{cases}
$$

The set of all edge-sums generated by the above formulas is $\{\lambda(x)+\lambda(y): x y \in$ $E(G)\}=\{16 n+9+i: 1 \leq i \leq e\}$. It forms a sequence of consecutive integers starting from the minimum edge-sum $s=16 n+10$. Thus, by Definition 1.1, λ is a $(16 n+10,1)$-EAV labeling. As a consequence of Proposition $1.10, \lambda$ can be extended to a super ($a, 0$)-EAT labeling with magic constant $a=s+v+e=$ $80 n+35$. The set of edge-labels is $\{a-(16 n+9+i): 1 \leq i \leq e\}$. Similarly, by Proposition 1.10, λ can be extended to a super ($a^{\prime}, 2$)-EAT labeling with the minimum edge-weight $a^{\prime}=s+v+1=48 n+24$. The set of edge-labels can be obtained by $\left\{a^{\prime}-(48 n+23+i): 1 \leq i \leq e\right\}$.

Theorem 2.4. For any odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+2,8 n+3,16 n+$ $5,32 n+9)$ admits a super ($a, 0$)-EAT labeling with $a=s+v+e$ and a super $\left(a^{\prime}, 2\right)$-EAT labeling with $a^{\prime}=s+v+1$, where $v=|V(G)|$ and $s=32 n+15$.

Proof. Let us denote the vertices and edges of G as follows.

$$
\begin{aligned}
& V(G)=\{c\} \cup\left\{x_{i}^{l_{i}}: 1 \leq i \leq 7,1 \leq l_{i} \leq n_{i}\right\} \\
& E(G)=\left\{c x_{i}^{1}: 1 \leq i \leq 7\right\} \cup\left\{x_{i}^{l_{i}} x_{i}^{l_{i}+1}: 1 \leq i \leq 7,1 \leq l_{i} \leq n_{i}-1\right\} .
\end{aligned}
$$

If $v=|V(G)|$ and $e=|E(G)|$ then $v=64 n+22$, and $e=64 n+21$.
Now, we define $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows: $\lambda(c)=32 n+14$.

For $1 \leq i \leq 7,1 \leq l_{i} \leq n_{i}$ and l_{i} odd, we define:

$$
\lambda(u)= \begin{cases}\frac{l_{1}+1}{2}, & \text { for } u=x_{1}^{l_{1}}, \\ (n+1)-\frac{l_{2}-1}{2}, & \text { for } u=x_{2}^{l_{2}}, \\ (2 n+2)-\frac{l_{3}-1}{2}, & \text { for } u=x_{3}^{l_{3}}, \\ (4 n+3)-\frac{l_{4}-1}{2}, & \text { for } u=x_{4}^{l_{4}} \\ (8 n+5)-\frac{l_{5}-1}{2}, & \text { for } u=x_{5}^{l_{5}} \\ (16 n+8)-\frac{l_{6}-1}{2}, & \text { for } u=x_{6}^{l_{6}}, \\ (32 n+13)-\frac{l_{7}-1}{2}, & \text { for } u=x_{7}^{l_{7}}\end{cases}
$$

and for l_{i} even we construct:

$$
\lambda(u)= \begin{cases}(32 n+14)+\frac{l_{1}}{2}, & \text { for } u=x_{1}^{l_{1}}, \\ (33 n+15)-\frac{l_{2}}{2}, & \text { for } u=x_{2}^{l_{2}}, \\ (34 n+15)-\frac{l_{3}}{2}, & \text { for } u=x_{3}^{l_{3}}, \\ (36 n+16)-\frac{l_{4}}{2}, & \text { for } u=x_{4}^{l_{4}}, \\ (40 n+17)-\frac{l_{5}}{2}, & \text { for } u=x_{5}^{l_{5}}, \\ (48 n+19)-\frac{l_{6}}{2}, & \text { for } u=x_{6}^{l_{6}}, \\ (64 n+23)-\frac{l_{7}}{2}, & \text { for } u=x_{7}^{l_{7}},\end{cases}
$$

The set of all edge-sums generated by the above formulas is $\{\lambda(x)+\lambda(y): x y \in$ $E(G)\}=\{32 n+14+i: 1 \leq i \leq e\}$. It forms a sequence of consecutive integers starting from the minimum edge-sum $s=32 n+15$. Thus, by Definition 1.1, λ is a $(32 n+15,1)$-EAV labeling. As a consequence of Proposition $1.10, \lambda$ can be extended to a super ($a, 0$)-EAT labeling with magic constant $a=s+v+e=$ $160 n+58$. The set of edge-labels is $\{a-(16 n+9+i): 1 \leq i \leq e\}$. Similarly, by Proposition 1.10, λ can be extended to a super ($a^{\prime}, 2$)-EAT labeling with the minimum edge-weight $a^{\prime}=s+v+1=96 n+28$. The set of edge-labels can be obtained by $\left\{a^{\prime}-(96 n+27+i): 1 \leq i \leq e\right\}$.

Theorem 2.5. For any even $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+2,8 n+3,16 n+$ $5,32 n+9)$ admits a super ($a, 1$)-EAT labeling with $a=s+\frac{3 v}{2}$, where $v=|V(G)|$ and $s=32 n+15$.

Proof. Let us consider the set of vertices and edges of G defined as in Theorem 2.4. Now we define the vertex-labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as in the same theorem. It follows that the set of edge-sums for all edges of G denoted by $A=\left\{a_{i}: 1 \leq i \leq e\right\}=\{32 n+14+i: 1 \leq i \leq e\}$ forms an arithmetic sequence with common difference 1 and $B=\left\{b_{j}: 1 \leq j \leq e\right\}=\{v+j: 1 \leq j \leq e\}$ is a set of edge-labels. Define the set of edge-weights $C=\{\lambda(x)+\lambda(x y)+\lambda(y): x y \in$ $E(G)\}=\left\{a_{2 i-1}+b_{e-i+1}: 1 \leq i \leq \frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1}: 1 \leq j \leq \frac{e+1}{2}-1\right\}$. It is easy to see that C constitutes an arithmetic sequence with $d=1$ and
$a=s+\frac{3 v}{2}=128 n+48$. Since all vertices receive the smallest labels, λ is a super ($a, 1$)-EAT labeling.

Theorem 2.6. For any $r \geq 5$ and odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+$ $2, n_{5}, \ldots, n_{r}$) admits a super ($a, 0$)-EAT labeling with $a=s+v+e$ and a super $\left(a^{\prime}, 2\right)$-EAT labeling with $a^{\prime}=s+v+1$ where $v=|V(G)|, s=(4 n+5)+$ $\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]$ and $n_{m}=2^{m-4}(4 n+1)+1$ for $5 \leq m \leq r$.

Proof. Let us denote the vertices and edges of G as follows.

$$
\begin{aligned}
& V(G)=\{c\} \cup\left\{x_{i}^{l_{i}}: 1 \leq i \leq r, 1 \leq l_{i} \leq n_{i}\right\} \\
& E(G)=\left\{c x_{i}^{1}: 1 \leq i \leq r\right\} \cup\left\{x_{i}^{l_{i}} x_{i}^{l_{i}+1}: 1 \leq i \leq r, 1 \leq l_{i} \leq n_{i}-1\right\}
\end{aligned}
$$

If $v=|V(G)|$ and $e=|E(G)|$, then $v=(8 n+5)+\sum_{m=5}^{r}\left[2^{m-4}(4 n+1)+1\right]$ and $e=v-1$. Throughout the labeling, suppose $\alpha=(4 n+4)+\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]$.

Define $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as follows: $\lambda(c)=\alpha$.
For $1 \leq i \leq 4,1 \leq l_{i} \leq n_{i}$ and l_{i} odd, we define:

$$
\lambda(u)= \begin{cases}\frac{l_{1}+1}{2}, & \text { for } u=x_{1}^{l_{1}} \\ (n+1)-\frac{l_{2}-1}{2}, & \text { for } u=x_{2}^{l_{2}} \\ (2 n+2)-\frac{l_{3}-1}{2}, & \text { for } u=x_{3}^{l_{3}} \\ (4 n+3)-\frac{l_{4}-1}{2}, & \text { for } u=x_{4}^{l_{4}}\end{cases}
$$

and for l_{i} even, we construct:

$$
\lambda(u)= \begin{cases}\alpha+\frac{l_{1}}{2}, & \text { for } u=x_{1}^{l_{1}} \\ (\alpha+n+1)-\frac{l_{2}}{2}, & \text { for } u=x_{2}^{l_{2}} \\ (\alpha+2 n+1)-\frac{l_{3}}{2}, & \text { for } u=x_{3}^{l_{3}} \\ (\alpha+4 n+2)-\frac{l_{4}}{2}, & \text { for } u=x_{4}^{l_{4}}\end{cases}
$$

For $5 \leq i \leq r, 1 \leq l_{i} \leq n_{i}$ and l_{i} odd, we define:

$$
\lambda\left(x_{i}^{l_{i}}\right)=(4 n+3)+\sum_{m=5}^{i}\left[2^{m-5}(4 n+1)+1\right]-\frac{l_{i}-1}{2}
$$

and for l_{i} even, we construct:

$$
\lambda\left(x_{i}^{l_{i}}\right)=(\alpha+4 n+2)+\sum_{m=5}^{i}\left[2^{m-5}(4 n+1)\right]-\frac{l_{i}}{2}
$$

The set of all edge-sums generated by the above formulas is $\{\lambda(x)+\lambda(y): x y \in$ $E(G)\}=\{\alpha+i: 1 \leq i \leq i\}$. It forms a sequence of consecutive integers starting from the minimum edge-sum $s=\alpha+1$. Thus, by Definition $1.1, \lambda$ is a $(\alpha+1,1)$ EAV labeling. As a consequence of Proposition $1.10, \lambda$ can be extended to a super $(a, 0)$-EAT labeling with magic constant $a=s+v+e=2 v+(4 n+4)+$
$\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]=(20 n+14)+\sum_{m=5}^{r}\left[2^{m-5}(20 n+5)+3\right]$. The set of edgelabels is $\{a-(\alpha+i): 1 \leq i \leq e\}$. Similarly, by Proposition 1.10, λ can be extended to a super $\left(a^{\prime}, 2\right)$-EAT labeling with the minimum edge-weight $a^{\prime}=s+v+1=$ $v+(4 n+6)+\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]=(12 n+11)+\sum_{m=5}^{r}\left[2^{m-5}(12 n+3)+2\right]$. The set of edge-labels can be obtained by $\left\{a^{\prime}-(\alpha+i): 1 \leq i \leq e\right\}$.

Theorem 2.7. For any $r \geq 5$ and odd $n \geq 3, G \cong T(n, n+1,2 n+1,4 n+$ $2, n_{5}, \ldots, n_{r}$) admits a super ($a, 1$)-EAT total labeling with $a=s+\frac{3 v}{2}$ if v is even, where $v=|V(G)|$, $s=(4 n+5)+\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]$ and $n_{m}=$ $2^{m-4}(4 n+1)+1$ for $5 \leq m \leq r$.

Proof. Let us consider the vertices and edges of G defined as in Theorem 2.6. Now, we define the labeling $\lambda: V(G) \rightarrow\{1,2, \ldots, v\}$ as in the same theorem. It follows that the set of edge-sums for all edges of G denoted by $A=\left\{a_{i}\right.$: $1 \leq i \leq e\}=\{\alpha+i: 1 \leq i \leq e\}$ forms an arithmetic sequence with common difference 1 and $B=\left\{b_{j}: 1 \leq j \leq e\right\}=\{v+j: 1 \leq j \leq e\}$ is a set of edge-labels, where $\alpha=(4 n+4)+\sum_{m=5}^{r}\left[2^{m-5}(4 n+1)+1\right]$. Define the set of edge-weights $C=\{\lambda(x)+\lambda(x y)+\lambda(y): x y \in E(G)\}=\left\{a_{2 i-1}+b_{e-i+1}: 1 \leq i \leq\right.$ $\left.\frac{e+1}{2}\right\} \cup\left\{a_{2 j}+b_{\frac{e-1}{2}-j+1}: 1 \leq j \leq \frac{e+1}{2}-1\right\}$. It is easy to see that C constitutes an arithmetic sequence with $d=1$ and $a=s+\frac{3 v}{2}=128 n+48+\frac{1}{2} \sum_{m=5}^{r}\left[2^{m-2}(4 n+\right.$ $1)+5]$. Since all vertices receive the smallest labels, λ is a super $(a, 1)$-EAT labeling.

3. Conclusion

In this paper, we have shown that a subclass of subdivided stars denoted by $T\left(n, n+1,2 n+1,4 n+2, n_{5}, \ldots, n_{r}\right)$ admits a super (a, d)-EAT labeling for $d \in$ $\{0,1,2\}$, where $n \geq 3$ is odd, $n_{m}=2^{m-4}(4 n+1)+1, r \geq 5$ and $5 \leq m \leq r$. It is a generalized form of the three-path tree studied by Lu [16, 17] and Ngurah et al. [18]. The choice of $\left\{n_{i}: 2 \leq i \leq r\right\}$ in the present results is different from the results which are derived by Javaid et al. [9]. Salman et al. [19] proved the existence of a super $(a, 0)$-EAT labeling on a particular subclass of the subdivided stars denoted by $T\left(n_{1}, n_{2}, n_{3} \ldots, n_{r}\right)$, where $n_{1}=n_{2}=n_{3}=\cdots=n_{r}=n$ and $n \in\{2,3\}$. Moreover, the scheme of a super (a, d)-EAT labeling developed in this paper does not work on $T\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right)$, when $n_{1}=n_{2}=n_{3}=n_{4}=$ $n_{5}=n_{6}=4$. Thus, we propose the following open problem.

Open Problem 3.1. For the subdivided star $T\left(n_{1}, n_{2}, n_{3}, \ldots, n_{r}\right)$, where $n_{1}=$ $n_{2}=n_{3}=\cdots=n_{r}=n \geq 1$, determine if there is a super (a, d)-EAT labeling.

Acknowledgement

The author is deeply indebted to the anonymous referees for their valuable thoughts and comments which improved the original version of this paper.

References

[1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038
[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239.
[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128.
[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
[5] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2011) \#DS6.
[7] M. Hussain, E.T. Baskoro and Slamin, On super edge-magic total labeling of banana trees, Util. Math. 79 (2009) 243-251.
[8] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177.
[9] M. Javaid and A.A. Bhatti, On super (a,d)-edge antimagic total labeling of subdivided stars, Ars Combin. 105 (2012) 503-512.
[10] M. Javaid, A.A. Bhatti and M. Hussain, On (a,d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303.
[11] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191.
[12] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162.
[13] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1
[14] A. Kotzig and A. Rosa, Magic Valuation of Complete Graphs (Centre de Recherches Mathematiques, Uni. de Montreal, 1972).
[15] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, in: 16th MCCCC Conference, Carbondale SIU (2002).
[16] Y.-J. Lu, A proof of three-path trees $P(m, n, t)$ being edge-magic, College Mathematica 17(2) (2001) 41-44.
[17] Y.-J. Lu, A proof of three-path trees $P(m, n, t)$ being edge-magic (II), College Mathematica 20(3) (2004) 51-53.
[18] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of $K_{1,3}$, SUT J. Math. 43 (2007) 127-136.
[19] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star S_{n}, Util. Math. 81 (2010) 275-284.
[20] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a,d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. doi:10.1007/978-3-540-30540-8_19
[21] R. Simanjuntak, F. Bertault and M. Miller, Two new (a,d)-antimagic graph labelings, in: Proc. 11th Australian Workshop on Combin. Algor. 11 (2000) 179-189.
[22] D.B. West, An Introduction to Graph Theory (Prentice Hall, 1996).
Received 11 June 2012
Revised 2 October 2013
Accepted 2 October 2013

[^0]: ${ }^{1}$ The research contents of this paper are partially supported by the Higher Education Commission (HEC) of Pakistan.

