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Abstract

Let ∆ ≥ 4 be an integer. In this note, we prove that every planar graph
with maximum degree ∆ and girth at least 10∆+46 is strong (2∆−1)-edge-
colorable, that is best possible (in terms of number of colors) as soon as G

contains two adjacent vertices of degree ∆. This improves [6] when ∆ ≥ 6.

Keywords: planar graphs, edge coloring, 2-distance coloring, strong edge-
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1. Introduction

A strong k-edge-coloring of a graph G is a mapping from E(G) to {1, 2, . . . , k}
such that every two adjacent edges or two edges adjacent to a same edge receive
two distinct colors. In other words, the graph induced by each color class is an
induced matching. This can also be seen as a vertex 2-distance coloring of the line
graph of G. The strong chromatic index of G, denoted by χ′

s(G), is the smallest
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integer k such that G admits a strong k-edge-coloring. As already mentioned,
we have χ′

s(G) = χ(L(G)2), where χ denotes the usual chromatic number and
L(G)2 the square of the line graph of G.

Strong edge-colorability was introduced by Fouquet and Jolivet [11, 12] and
was used to solve the frequency assignment problem in some radio networks.
Suppose that we have a set of transceivers communicating with each other over a
shared medium. A transceiver x that wants to communicate with a transceiver y
sends its message on a frequency α. However, every close transceiver of x receives
the message dedicated to y on channel α. Suppose that transceivers x and y want
to communicate with z, they cannot send a message to z on the same channel;
otherwise z will not be able to understand the message (since the messages will
interfere with each other). Also suppose that transceiver u wants to communicate
with transceiver v, transceiver w wants to communicate with transceiver t, and
v and w are close. Transceivers u and w cannot communicate their message on
the same channel; otherwise v will receive two messages on the same channel:
the message from u dedicated to it, and the message from w dedicated to t. Now
in terms of graphs, if we consider the graph whose vertices are the transceivers,
and there is an edge if the corresponding transceivers are close, then solving the
frequency assignment problem is equivalent to find a strong edge coloring of the
graph. For more details on applications and protocols see [4, 18, 20, 21].

An obvious upper bound on χ′

s(G) (given by a greedy coloring) is 2∆(∆ −
1)+1 where ∆ is the maximum degree of G. The following conjecture was posed
by Erdős and Nešetřil [8, 9] and revised by Faudree, Schelp, Gyárfás and Tuza
[10].

Conjecture 1 (Erdős and Nešetřil [8], [9], Faudree et al. [10]). If G is a graph
with maximum degree ∆, then

χ′

s(G) ≤
5

4
∆2 if ∆ is even and

1

4
(5∆2 − 2∆ + 1) otherwise.

Moreover, they gave examples of graphs whose strong chromatic indices reach
the upper bounds.

In the general case, the best known upper bound was given by Molloy and
Reed [17] using the probabilistic method.

Theorem 2 (Molloy and Reed [17]). For ∆ large enough, every graph with max-
imum degree ∆ has χ′

s(G) ≤ 1.998∆2.

For small maximum degrees, the cases ∆ = 3 and 4 were studied.

Theorem 3 (Andersen [1], Horák et al. [15]). Every graph with maximum degree
∆ ≤ 3 admits a strong 10-edge-coloring.

This is best possible.
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Theorem 4 (Cranston [7]). Every graph with maximum degree ∆ ≤ 4 admits a
strong 22-edge-coloring.

According to Conjecture 1, the best upper bound we may expect is 20.

The strong chromatic index was also studied for different families of graphs,
as cycles, trees, d-dimensional cubes, chordal graphs, Kneser graphs, see [16]. For
complexity issues, see [14, 16].

Faudree, Schelp, Gyárfás exhibited, for every integer ∆ ≥ 2, a planar graph
with maximum degree ∆ and strong chromatic index 4∆ − 4. They established
the following upper bound.

Theorem 5 (Faudree et al. [10]). Planar graphs with maximum degree ∆ are
strong (4∆ + 4)-edge-colorable.

The proof of Theorem 5 is very nice and is as follows: first color the edges of
the graph G properly with ∆ + 1 colors with Vizing’s Theorem [23]. Then for
each color i (1 ≤ i ≤ ∆ + 1) consider the graph Hi where the vertices are the
edges of G colored by i and there is an edge between two vertices of Hi if the
corresponding edges are linked by an edge in G. Clearly, Hi is planar; so Hi is
4-vertex-colorable by the Four Color Theorem [2, 3] with the colors i1, i2, i3, i4.
Map now these colors in G. We obtain a strong edge-coloring of G.

As a corollary of the proof of Theorem 5, one can observe that K5-minor free
graphs with maximum degree ∆ are strong (4∆ + 4)-edge-colorable. It suffices
to notice that the graphs Hi are K5-minor free (as they can be seen as the
contraction of a subgraph of G) and so are 4-colorable.

Another corollary of this proof is that every planar graph G with girth at least
7 and maximum degree ∆ ≥ 7 is strong 3∆-edge-colorable: every planar graph G

with maximum degree at least 7 is properly ∆-edge-colorable [22]; moreover if the
girth of G is at least 7, then Hi is planar triangle-free and so is 3-vertex-colorable
by Grötzsch’s theorem [13].

Hence if G is planar with large girth and large maximum degree, then we
have χ′

s(G) ≤ 3∆. The purpose of this paper is to prove that if the girth is
large enough, then the upper bound can be strengthened to 2∆−1, which is best
possible as soon as G contains two adjacent vertices of degree ∆. A first attempt
was done by Borodin and Ivanova [6] who proved that every planar graph with
maximum degree ∆ is strong (2∆− 1)-colorable if its girth is at least 40

⌊

∆
2

⌋

+1.
Here we improved the girth condition as soon as ∆ ≥ 6:

Theorem 6. Let F∆ be the family of planar graphs with maximum degree at most
∆. Every graph of F∆ with girth at least 10∆ + 46 admits a strong (2∆ − 1)-
edge-coloring when ∆ ≥ 4.

Next section is devoted to the proof of Theorem 6.
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Figure 1. The odd graph O3 and its edge labeling.

2. On Planar Graphs with Large Girth

A walk in a graph is a sequence of edges where two consecutive edges are adjacent.
Throughout the paper, by path we mean a walk where every two consecutive edges
are distinct. So a vertex or an edge can appear more than once in a path. By
cycle we mean a closed path (the first and last edges of the sequence are adjacent).

The proof of Theorem 6 is based on the use of odd graphs and of their prop-
erties.

Let n be an integer; the odd graph On may be defined as follows:

• the vertices are the (n− 1)-subsets of {1, 2, . . . , 2n− 1};

• two vertices are adjacent if and only if the corresponding subsets are dis-
joint.

The odd graph On is n-regular and distance transitive. Moreover, its odd-girth
is 2n− 1 and its even-girth is 6 [5]. We will use the notation S(x) to denote the
subset assigned to the vertex x in On. Also we can label every edge xy by the
label {1, . . . , 2n − 1} \ (S(x) ∪ S(y)). Remark that the obtained edge-labeling
is a strong edge-coloring. As example, O3 (the Petersen graph) is depicted in
Figure 1. To prove Theorem 6, we establish that there is a path of length exactly
2(n−1) between every pair of vertices (not necessarily distinct) in the odd graph
On (n ≥ 4).
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In the following we will consider the case ∆ ≥ 4.

Let G ∈ F∆ be a counterexample to Theorem 6 with the minimum order.
Clearly, G is connected.

(1) G does not contain a vertex v adjacent to d(v)− 1 vertices of degree 1.

By the way of contradiction, suppose G contains such a vertex v. Let u be a
vertex of degree 1 adjacent to v. By the minimality of G, G′ = G − u admits a
strong (2∆ − 1)-edge-coloring. By a simple counting argument, it is easy to see
that we can extend the coloring to uv, a contradiction.

Consider now H = G− {v : v ∈ G, dG(v) = 1}.

(2) The minimum degree of H is at least 2 (by (1)). Graph H is planar and has
the same girth as G.

The following observation is well-known [19].

(3) Every planar graph with minimum degree at least 2 and girth at least 5d+ 1
contains a path consisting of d consecutive vertices of degree 2.

Let d = 2∆+ 9. It follows from the assumption on the girth, (2) and (3) that H
contains a path v0v1v2 · · · vd+1 in which every vertex vi for 1 ≤ i ≤ d has degree
2. In G, the path v1 · · · vd is an induced path and every vi (1 ≤ i ≤ d) may be
adjacent to some vertices of degree 1, by definition of H and (1).

Now, consider G′ obtained from G by

• removing all the pendant vertices adjacent to v1 · · · vd, and

• removing the vertices v2 to vd−1.

By the minimality of G, G′ admits a strong (2∆ − 1)-edge coloring φ. Our aim
is to extend φ to G and get a contradiction.

Let cφ(u) be the set of colors of the edges incident to u. We can assume that
|cφ(v0)| = |cφ(vd+1)| = ∆ (by adding vertices of degree 1 adjacent to v0 and vd+1

in G′ as 2∆ < d and so |V (G′)| < |V (G)|). Let x = φ(v0v1) and y = φ(vdvd+1).
For a set C of colors, define C = {1, . . . , 2∆− 1} \ C.

Extending φ to G is equivalent to find a special path P in the odd graph O∆.
This path P must have the following properties:

(P1) its length is d+ 1; let P = u0u1 · · ·ud+1;

(P2) u0 is the vertex of O∆ such that S(u0) = cφ(v0);

(P3) ud+1 is the vertex of O∆ such that S(ud+1) = cφ(vd+1);

(P4) the edge u0u1 is labeled with x;

(P5) the edge udud+1 is labeled with y.



728 G.J. Chang, M. Montassier, A. Pêcher and A. Raspaud

Informally speaking, this path may be seen as a mapping of v0 · · · vd+1 into O∆.
If such a path exists, then one can extend φ to G by coloring the edges incident
to vi with colors of S(ui); the edge vivi+1 is colored with the label of the edge
uiui+1.

The following part is dedicated to the proof of the existence of such a path.

(4) Let xyz be a simple path of length 2 of On with n ≥ 3. Then xyz is contained
in a cycle of length 6.

Proof. The claim follows directly from the fact that On is distance transitive
and its even-girth is 6 [5]. However, let us exhibit such a cycle of length 6, as it
is useful to establish property (5) below.

Let xyz be a path of length 2 of On. W.l.o.g. we can assume that S(x) =
X∪b, S(y) = C \(X∪{a, b}), S(z) = X∪{a} where C = {1, . . . , 2n−1}, X is an
arbitrary (n− 2)-subset of C, and a, b are distinct elements of C \X. Let us now
exhibit a 6-cycle xyzuvw going through xyz. Let c ∈ C \ (X ∪ {a, b}). Vertex u

(resp. v, w) is the vertex of On with the (n− 1)-subset of C \ (X ∪ {a, c}) (resp.
X ∪ {c}, C \ (X ∪ {b, c})) (see Figure 2). ✷

The following property of odd graphs (which follows from (4)) is also useful for
our proof.
(5) Let x be a vertex of On with n ≥ 3. Then x is contained in a cycle of length
2k for any integer k ≥ 3.

X ′ ∪ {e}

X ∪ {b}

X ∪ {a}

X ∪ {d}

X ′ ∪ {d}

C \ (X ∪ {b, d})

C \ (X ∪ {a, b})

X ′ ∪ {a}

C \ (X ∪ {a, c}) = C \ (X ′ ∪ {a, e})

C \ (X ∪ {d, c}) = C \ (X ′ ∪ {d, e})

C \ (X ∪ {b, c})

X ∪ {b} C \ (X ′ ∪ {a, d})

uy z
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Figure 2. Vertex x is contained in a cycle of length 2k for any k ≥ 3.

Proof. Let x be a vertex of On. By applying (4), one can observe that x

is contained in the subgraph depicted in Figure 2, where C denotes the set
{1, . . . , 2n − 1}, X and X ′ two (n − 2)-subsets, and a, b, c, d, e five distinct el-
ements.

Let C1 (resp. C2, C3) be the cycle xyzuvw (resp. xyzuvqpo, xyzutsrqpo) of
length 6 (resp. 8, 10) containing x as depicted in Figure 2. Let k = 3l + r with
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l ≥ 1 and 0 ≤ r ≤ 2. We have 2k = 6(l − 1) + (6 + 2r). Hence the cycle made of
Cr+1 and (l − 1) times C1 is a cycle of length 2k containing x. ✷

We recall that a simple path is a path containing distinct vertices.

Claim 7. Let u and v be two (not necessarily distinct) vertices of On with n ≥ 4.
There exists a simple path linking u and v of length exactly 2(n− 1).

Proof. Given two vertices (not necessarily distinct) u and v, we will exhibit
a path, say P = w1 · · ·w2(n−1)+1, of length exactly 2(n − 1) where w1 = u,
w2(n−1)+1 = v. We consider the following three cases with respect to the size of
the intersection of S(u) and S(v).

Case: |S(u) ∩ S(v)| = k with k = 0 or 3 ≤ k ≤ n − 1. Let S(u) ∩
S(v) = {x1, . . . , xk} and assume S(u) = {x1, . . . , xk, yk+1, . . . , yn−1} and S(v) =
{x1, . . . , xk, tk+1, . . . , tn−1}. Let z1, . . . , zk+1 be the elements of {1, . . . , 2n− 1} \
(S(u) ∪ S(v)).

We leave the vertex wi by taking the edge labeled with tk+(i+1)/2 when i is
odd, and with yk+i/2 otherwise. It follows that

S(wi)=







{z1, . . . , zk+1, tk+2, . . . , tn−1}, i = 2,
{x1, . . . , xk, tk+1, . . . , tk+(i−1)/2, yk+(i+1)/2, . . . , yn−1}, i is odd, i ≥ 3,

{z1, . . . , zk+1, yk+1, yk−1+i/2, tk+1+i/2, . . . , tn−1}, i is even, i ≥ 4.

This path attains v after 2(n−1−k) steps; in other words, we have w2(n−1−k)+1 =
v. If k = 0, then the result is obtained. Assume now k ≥ 3. By the properties of
On, vertex v is contained in a cycle of length 2k (k ≥ 3), say C. We can make a
loop around C. We obtain P .

Case: |S(u) ∩ S(v)| = 1. Let S(u) ∩ S(v) = {x1} and assume S(u) =
{x1, y2, . . . , yn−1} and S(v) = {x1, t2 . . . , tn−1}. Let z1, z2 be the elements of
{1, . . . , 2n− 1} \ (S(u) ∪ S(v)).

We leave w1 by taking the edge labeled with z2. Hence,

S(w2) = {z1, t2, . . . , tn−1}.

Now we leave wi (3 ≤ i ≤ 2(n− 1)− 1) by the edge labeled with yi/2+1 when i is
even, and with t(i−1)/2+1 otherwise. It follows that

S(w3) = {x1, z2, y3, . . . , yn−1} and S(w4) = {z1, y2, t3, . . . , tn−1}

Moreover, when j is even and j ≥ 4, we have

S(wj) = {z1, y2, . . . , yj/2, tj/2+1, . . . , tn−1}.

and, when j is odd and j ≥ 5, we have

S(wj) = {x1, z2, t2, . . . , t(j−1)/2, y(j+1)/2+1, . . . yn−1}.

We obtain



730 G.J. Chang, M. Montassier, A. Pêcher and A. Raspaud

S
(

w2(n−1)

)

= {z1, y2, . . . , yn−1}.

It remains to leave w2(n−1) by the edge labeled with z2. Hence

S
(

w2(n−1)+1

)

= {x1, t2, . . . , tn−1} = S(v),

as claimed.

Case: |S(u) ∩ S(v)| = 2. Let S(u) ∩ S(v) = {x1, x2} and assume S(u) =
{x1, x2, y3, . . . , yn−1} and S(v) = {x1, x2, t3, . . . , tn−1}. Let z1, z2, z3 be the ele-
ments of {1, . . . , 2n− 1} \ (S(u) ∪ S(v)).

We leave w1 by the edge labeled with z1, we obtain

S(w2) = {z2, z3, t3, . . . , tn−1}.

Then we leave w2 by the edge labeled with x1. We have

S(w3) = {z1, x2, y3, . . . , yn−1}.

Now we leave wi (4 ≤ i ≤ 2(n − 1) − 2) with the edge labeled with t(i+1)/2+1

when i is odd and with yi/2+1 otherwise. Hence

S(wi)=















{x1, z2, z3, t4, . . . , tn−1}, i = 4,
{z1, x2, t3, y4, . . . , yn−1}, i = 5,
{z1, x2, t3, . . . , t(i+1)/2, y(i+1)/2+1, . . . , yn−1}, i is odd and i ≥ 5,

{x1, z2, z3, y3, . . . , yi/2, ti/2+2, . . . , tn−1}, i is even and i ≥ 6.

We obtain

S
(

w2(n−1)−1

)

= {z1, x2, t3, . . . , tn−1}.

We leave w2(n−1)−1 by the edge labeled by x1. We have

S
(

w2(n−1)

)

= {z2, z3, y3, . . . , yn−1}.

Finally we leave w2(n−1) by the edge labeled with z1. We obtain

S
(

w2(n−1)+1

)

= {x1, x2, t3, . . . , tn−1}

as claimed. This completes the proof of the claim. ✷

We are now able to exhibit the path P linking u0 and ud+1. By Claim 7, let
Ps = u0s1 · · · s2(∆−1)−1ud+1 be a path linking u0 and ud+1 of length 2(∆− 1) in
O∆. Let u1 be the neighbor of u0 so that the edge u0u1 is labeled with x. Let
ud be the neighbor of ud+1 so that the edge udud+1 is labeled with y. As ∆ ≥ 3,
let t be a neighbor of u0 distinct from u1 and s1, and let w be a neighbor of ud+1

distinct from ud and s2(∆−1)−1. Finally, let C1 be a 6-cycle containing tu0u1 and
let C2 be a 6-cycle containing wud+1ud.

1. We first start from u0 making a loop around C1 going through first u1.
Hence (P2) and (P4) are satisfied.
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2. We then leave u0 to ud+1 going through Ps.

3. Finally, we make a loop around C2 going through first w. Hence (P3) and
(P5) are satisfied.

Finally, observe that the length of P is 6 (loop on C1) plus the length of Ps plus
6 (loop on C2) that is equal to 2(∆− 1) + 12 = 2∆ + 10 = d+ 1, as required by
(P1).

3. Concluding Remark

The proof of Theorem 6 is based on the existence of a path Ps of length exactly
2(n − 1) in On (n ≥ 4) between every pair of vertices. One possible way to
improve the lower bound on the girth in Theorem 6 would be to decrease the
length of Ps. However, the length of Ps is best possible: it does not exist an
integer l < 2(n− 1) such that every pair of vertices is linked by a path of length
exactly l.

Suppose by the way of contradiction that such an l exists and consider the
following two cases depending on the parity of l.

Assume l is odd and consider the path Ps (of length l) linking a vertex x

with itself. It forms an odd cycle of length strictly less than 2n−1, contradicting
the value of the odd-girth of On.

Assume l is even and consider the path Ps (of length l) linking two adjacent
vertices x and y. Again, it forms an odd cycle of length strictly less than 2n− 1,
contradicting the value of the odd-girth of On.
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