
Discussiones Mathematicae
Graph Theory 34 (2014) 801–810
doi:10.7151/dmgt.1762

AN IMPLICIT WEIGHTED DEGREE CONDITION

FOR HEAVY CYCLES
1

Junqing Cai

School of Management, Qufu Normal University

Rizhao, 276826, China

e-mail: caijq09@163.com

Hao Li2

Institute for Interdisciplinary Research

Jianghan University, Wuhan, 430019, China

LRI, UMR 8623, CNRS and Université de Paris-Sud 11
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Abstract

For a vertex v in a weighted graph G, idw(v) denotes the implicit weigh-
ted degree of v. In this paper, we obtain the following result: Let G be a
2-connected weighted graph which satisfies the following conditions: (a) The
implicit weighted degree sum of any three independent vertices is at least
t; (b) w(xz) = w(yz) for every vertex z ∈ N(x) ∩ N(y) with xy /∈ E(G);
(c) In every triangle T of G, either all edges of T have different weights or
all edges of T have the same weight. Then G contains either a hamiltonian
cycle or a cycle of weight at least 2t/3. This generalizes the result of Zhang
et al. [9].
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1. Introduction

In this paper, we consider only finite, undirected and simple graphs. Notation
and terminology not defined here can be found in [2]. Let G = (V (G), E(G))
be a graph with vertex set V (G) and edge set E(G). Let H ⊆ G. For a vertex
u ∈ V (G), NH(u) = {v ∈ V (H) : uv ∈ E(G)} and dH(u) = |NH(u)|. If
H = G, we always use N(u) and d(u) in place of NG(u) and dG(u) respectively.
N2(v) = {u ∈ V (G) : d(u, v) = 2}, where d(u, v) denotes the distance between
vertices u and v in G

Based on the traditional definition of degree, Zhu, Li and Deng [10] intro-
duced the concept of implicit degrees.

Definition [10]. Let v be a vertex of a graph G and k = d(v) − 1. Set M2 =
max{d(u) : u ∈ N2(v)} and m2 = min{d(u) : u ∈ N2(v)}. Suppose d1 ≤ d2 ≤
d3 ≤ · · · ≤ dk ≤ dk+1 ≤ · · · is the degree sequence of vertices in N(v)∪N2(v). If
N2(v) 6= ∅ and d(v) ≥ 2, define

d∗(v) =











m2, if dk < m2,

dk+1, if dk+1 > M2,

dk, otherwise,

then the implicit degree of v is defined as id(v) = max{d(v), d∗(v)}. If N2(v) = ∅
or d(v) ≤ 1, then id(v) = d(v).

Clearly, id(v) ≥ d(v) for each vertex v from the definition of implicit degree.
For a graph G, if we assign a non-negative number w(e) to every edge e, then

G is called a weighted graph and w(e) is the weight of e. Clearly, an unweighted
graph can be regarded as a weighted graph in which each edge is assigned a weight
1. The weight of a subgraph H of G and the weighted degree of a vertex v in G
are defined as

w(H) =
∑

e∈E(H)
w(e) and dw(v) =

∑

u∈N(v)
w(uv), respectively.

Based on the idea of the definition of implicit degree, Li [7] gave the definition of
implicit weighted degrees as follows.

Definition [7]. Let v be a vertex of a weighted graph G and k = d(v) − 1. Set
mw

2 = min{dw(u) : u ∈ N2(v)} and Mw
2 = max{dw(u) : u ∈ N2(v)}. Suppose

dw1 ≤ dw2 ≤ · · · ≤ dwk+1 ≤ · · · is the weighted degree sequence of vertices in
N(v) ∪N2(v). If N2(v) 6= ∅ and d(v) ≥ 2, define

dw∗(v) =











mw
2 , if dwk < mw

2 ,

dwk+1, if dwk+1 > Mw
2 ,

dwk , otherwise,
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then the implicit weighted degree of v is defined as idw(v) = max{dw(v), dw∗(v)}.
If N2(v) = ∅ or d(v) ≤ 1, then idw(v) = dw(v).

Clearly, idw(v) ≥ dw(v) for every vertex v from the above definition.
Let α(G) be the independent number of a graph G. For a positive integer

k ≤ α(G), we define σk(G) = min{
∑k

j=1 d(xj) : x1, x2, . . . , xk are k independent

vertices in G} and σ∗

k(G) = min{
∑k

j=1 id(xj) : x1, x2, . . . , xk are k indepen-

dent vertices in G}. For a weighted graph G, let σw
k (G) = min{

∑k
j=1 d

w(xj) :

x1, x2, . . . , xk are k independent vertices in G} and σw∗

k (G) = min{
∑k

j=1 id
w(xj) :

x1, x2, . . . , xk are k independent vertices in G}. If k > α(G), then they are all
equal to +∞.

A graph G is called hamiltonian if it has a hamiltonian cycle, i.e., a cycle that
contains all vertices of G. There are many results about the existence of hamilto-
nian cycles and long cycles in graphs in terms of the degree sum of independent
vertices. The following two theorems are famous.

Theorem 1 [4]. If G is a 2-connected graph with σ1(G) ≥ c/2, then G contains

either a hamiltonian cycle or a cycle of length at least c.

Theorem 2 [8]. If G is a 2-connected graph with σ2(G) ≥ c, then G contains

either a hamiltonian cycle or a cycle of length at least c.

After studying σ1(G) and σ2(G) conditions, Fournier and Fraisse [6] generalized
them into degree conditions on more independent vertices, i.e., the σk(G).

Theorem 3 [6]. If G is a k-connected graph (k ≥ 2) with σk+1(G) ≥ c, then G
contains either a hamiltonian cycle or a cycle of length at least 2c/(k + 1).

Zhang, Li and Broersma [9] gave a result about heavy cycles on weighted degree
condition. The result extended Theorem 3 in the case k = 2 by adding two extra
conditions.

(C1) w(xz) = w(yz) for every vertex z ∈ N(x) ∩N(y) with xy /∈ E(G);

(C2) For every triangle T of G, either all edges of T have different weights or all
edges of T have the same weight.

Theorem 4 [9]. Suppose G is a 2-connected weighted graph satisfying conditions

(C1) and (C2). If σw
3 (G) ≥ t, then G contains either a hamiltonian cycle or a

cycle of weight at least 2t/3.

Motivated by the result of Theorem 4, we obtain the following result.

Theorem 5. Let G be a 2-connected weighted graph satisfying conditions (C1)
and (C2). If σw∗

3 (G) ≥ t, then G contains either a hamiltonian cycle or a cycle

of weight at least 2t/3.
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Figure 1. Example 1.

We give the proof of Theorem 5 in the next section. Here we give a graph G with
σw∗

3 (G) > σw
3 (G). It is said that we can get a heavier cycle by using Theorem 5

than using Theorem 4.

Example. Let G be a graph shown in Figure 1, where Km (m ≥ 2) is a complete
graph and x, z are adjacent to every vertex of each Km, N(y) = {x, z}. We assign
weight 2 to each edge of G. It is easy to verify that σw

3 (G) = 4m + 8. And by
the definition of implicit weighted degree, we get that σw∗

3 (G) = 6(m+ 1).

2. Proof of Theorem 5

Our proof of Theorem 5 is based on the following three lemmas.

Lemma 6 [5]. Let G ba a connected weighted graph satisfying conditions (C1)
and (C2). Then either

(a) all edges of G have the same weight, or

(b) G is a complete multipartite graph.

Lemma 7 [3]. Let G be a k-connected graph with at least three vertices. If

k ≥ α(G), then G is hamiltonian.

Lemma 8. Let G be a 2-connected graph such that σ∗

3(G) ≥ c, then G contains

either a hamiltonian cycle or a cycle of length at least 2c/3.

We give the proof of Lemma 8 in the next section.

Proof of Theorem 5. Let G be a weighted graph satisfying the conditions of
Theorem 5. If α(G) ≤ 2, then G is hamiltonian by Lemma 7.

Hence we assume α(G) ≥ 3. Then by Lemma 6, either all edges of G have
the same weight or G is a complete multipartite graph.
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First we suppose all edges of G have the same weight m. When m = 0, there
is nothing to say. Suppose m 6= 0. By the definitions of implicit degree and
implicit weighted degree, we have idw(v) = m(id(v)) for each v ∈ V (G). Hence,
σ∗

3(G) = σw∗

3 (G)/m ≥ t/m. Then, G contains either a hamiltonian cycle or a
cycle C of length at least 2t/3m by Lemma 8. If G is not hamiltonian , then
w(C) = m× |E(C)| ≥ m× (2t/3m) = 2t/3.

Now, we assume that G is a complete multipartite graph and G is not hamil-
tonian . Let |V (G)| = n and V1, V2, . . . , Vl be a partition of V (G).

Claim 2.1 [5]. If x, y ∈ Vi, then w(xz) = w(yz) for every z ∈ V (G) \ Vi. In

particular, dw(x) = dw(y).

Claim 2.2 [5]. If G is not hamiltonian , then |Vi| > n/2 for some i with 1 ≤ i ≤ l.

We can assume, without loss of generality, that |V1| > n/2 by Claim 2.2. Let
p = |V1| and q = n − p. Since G is 2-connected, 2 ≤ q < p. And let V1 =
{v1, v2, . . . , vp} and V (G) \ V1 = {u1, u2, . . . , uq}.

Claim 2.3. idw(x) = idw(y) for any two distinct vertices x, y ∈ Vi.

Proof. Since x, y ∈ Vi, N(x) = N(y) = V (G)\Vi andN2(x)\{y} = N2(y)\{x} =
Vi \ {x, y}. By Claim 2.1, we know dw(x) = dw(y) and the weighted degree
sequences of vertices in N(x) ∪N2(x) and those of vertices in N(y) ∪N2(y) are
the same. Then by the definition of implicit weighted degree, we can get that
idw(x) = idw(y).

Claim 2.4. idw(v) ≥ t/3 for each v ∈ V1.

Proof. Since p > 2, there are three vertices v1, v2 and v3 in V1 and {v1, v2, v3} is
an independent set. Hence idw(v1) + idw(v2) + idw(v3) ≥ t. We assume, without
loss of generality, that idw(v1) ≥ t/3. Then idw(v) = idw(v1) ≥ t/3 for each
v ∈ V1 by Claim 2.3.

Claim 2.5. idw(v) = dw(v) for any v ∈ V1.

Proof. Suppose there is some v ∈ V1 such that dw(v) < idw(v). Since G is
a complete multipartite graph, N2(v) = V1\{v} and N(v) = V (G)\V1. Since
|V1| > n/2, |N2(v)| ≥ |N(v)|. Let k = d(v) − 1,Mw

2 = max{dw(u) : u ∈ N2(v)}
and mw

2 = min{dw(u) : u ∈ N2(v)}. Suppose dw1 ≤ dw2 ≤ · · · ≤ dwk+1 ≤ · · · is
the weighted degree sequence of vertices of N(v) ∪N2(v). By Claim 2.1 and the
definition of idw(v), we have Mw

2 = mw
2 , d

w
1 ≤ dw2 ≤ · · · ≤ dwk+1 < idw(v) and

idw(v) 6= mw
2 . Which is contrary to the definition of idw(v). So idw(v) = dw(v)

for any v ∈ V1.



806 J. Cai, H. Li and W. Ning

By Claims 2.4 and 2.5, we can get that dw(v) ≥ t/3 for each v ∈ V1. Now, we
consider the cycle C = v1u1v2u2 · · · vquqv1. Then Claim 2.1 implies

w(C) =
∑q

i=1
w(viui) +

∑q−1

i=1
w(vi+1ui) + w(v1uq)

=
∑q

i=1
w(v1ui) +

∑q−1

i=1
w(v1ui) + w(v1uq)

= 2
∑q

i=1
w(v1ui) = 2dw(v1).

Hence, w(C) ≥ 2t/3. This completes the proof of Theorem 5.

3. Proof of Lemma 8

Let P = x1x2 · · ·xp be a path of a graph G, for any I ⊆ V (P ), define I− = {xi :
xi+1 ∈ I} and I+ = {xi : xi−1 ∈ I}. We use LP (x1) to denote the vertex xi
such that x1xi ∈ E(G) and x1xj /∈ E(G) for any j > i on P . To prove Lemma 8
we need the following two lemmas.

Lemma 9 [1]. Let G be a 2-connected non-hamiltonian graph and P = x1x2 · · ·xp
be a longest path of G. Then G contains a cycle of length at least d(x1) + d(xp).

Lemma 10 [10]. Let G be a 2-connected graph and P = x1x2 · · ·xp be a longest

path of G. If d(x1) < id(x1) and x1xp /∈ E(G), then either

(1) there is some xj ∈ NP (x1)
− such that d(xj) ≥ id(x1); or

(2) NP (x1)
− = NP (x1)∪{x1} \ {LP (x1)} and id(x1) = min{d(v) : v ∈ N2(x1)}.

Proof of Lemma 8. Let G be a 2-connected graph satisfying the conditions of
Lemma 8 and supposeG is not hamiltonian. Then by Lemma 9, it suffices to prove
that there exists a longest path P = v1v2 · · · vp inG such that d(v1)+d(vp) ≥ 2c/3.

Suppose to the contrary that d(v1) + d(vp) < 2c/3 for any longest path
P = v1v2 · · · vp. Choose a longest path P = v1v2 · · · vp such that d(v1) + d(vp) is
as large as possible. Then N(v1) ∪N(vp) ⊆ V (P ) and there is no cycle of length
p in G. We can assume, without loss of generality, that d(v1) < c/3. Since G is
2-connected, |NP (v1)| ≥ 2 and |NP (vp)| ≥ 2. Let k = max{i : v1vi ∈ E(G)} and
l = min{j : vpvj ∈ E(G)}. Then 3 ≤ k ≤ p− 1 and 2 ≤ l ≤ p− 2.

Case 1. N(v1) = {v2, v3, . . . , vk}.
Since G − vk is connected, there exists an edge vrvs ∈ E(G) with r < k < s.
Choose such an edge vrvs such that s is as large as possible. By the choice of P ,
we have N(vr) ⊆ V (P ). Let

P1 = vrvr−1 · · · v1vr+1vr+2 · · · vp.
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Since G has no cycle of length p, vrvp /∈ E(G). Next, we are going to look for a
special vertex vj ∈ V (P ) such that {vr, vj , vp} is an independent set of G.

Subcase 1.1. There is some j with r+1 ≤ j ≤ s− 1 such that vrvj+1 ∈ E(G)
and vrvj /∈ E(G). We consider the longest path P2 = vjvj−1 · · · vr+1v1v2 · · · vrvj+1

vj+2 · · · vp. Since G has no cycle of length p, we have vjvp /∈ E(G). Then we have
found the vertex vj .

Subcase 1.2. vrvi ∈ E(G) for each i with r + 1 ≤ i ≤ s. By the choice of P ,
r ≥ 4 and there must exist some j with 2 ≤ j ≤ r − 2 such that vrvj /∈ E(G).
(Since, otherwise, P1 is a longest path with d(vr) + d(vp) > d(v1) + d(vp), a
contradiction.) We consider the longest path P3 = vjvj−1 · · · v1vj+1vj+2 · · · vp.
Then vjvp /∈ E(G). So we find the vertex vj .

Claim 3.1. id(vr) ≤ d(v1) and id(vj) ≤ d(v1).

Proof. Suppose id(vr) > d(v1). We consider the longest path P1 defined as
before. If d(vr) = id(vr), then d(vr) + d(vp) > d(v1) + d(vp), a contradiction.

Suppose d(vr) < id(vr). For convenience, we set P1 = y1y2 · · · yp, where
y1 = vr, y2 = vr−1, . . . , yp = vp. Since vrvs ∈ E(G) and vrvj /∈ E(G), we have
NP1

(vr)
− 6= NP1

(vr) ∪ {vr} \ {LP1
(vr)}. Hence, by Lemma 10, there exists some

ya ∈ NP1
(y1)

− such that d(ya) ≥ id(y1). Then yaya−1 · · · y1ya+1ya+2 · · · yp is
a longest path of G with d(ya) + d(yp) ≥ id(y1) + d(yp) = id(vr) + d(vp) >
d(v1) + d(vp), which is contrary to the choice of P . Hence id(vr) ≤ d(v1).

Suppose id(vj) > d(v1). If vj is got in Subcase 1.1, we consider P2. If vj is
got in Subcase 1.2, we consider P3 (where P2 and P3 are defined as before). No
matter what cases happen, we have d(vr, vj) = 2. By the choice of P , we get
that d(vr) ≤ d(v1). So id(vj) 6= min{d(u) : u ∈ N2(vj)}. By similar arguments
as above, we get contradictions. So id(vj) ≤ d(v1).

Since {vr, vj , vp} is an independent set of G, we have id(vr)+ id(vj)+ id(vp) ≥ c.
So id(vp) ≥ c− id(vr)− id(vj) ≥ c− 2d(v1) by Claim 3.1. If d(vp) = id(vp), then
d(v1) + d(vp) = d(v1) + id(vp) ≥ c− d(v1) > 2c/3, a contradiction. Hence we can
assume d(vp) < id(vp).

Claim 3.2. N(vp) = {vl, vl+1, . . . , vp−1} and d(vi) < id(vp) for any vi ∈
NP (vp)

+.

Proof. Suppose to the contrary that there exists some vi ∈ NP (vp)
+ such that

d(vi) ≥ id(vp). Then v1v2 · · · vi−1vpvp−1 · · · vi is a longest path of G different from
P with d(v1) + d(vi) ≥ d(v1) + id(vp) > d(v1) + d(vp), which is contrary to the
choice of P . Therefore, Claim 3.2 holds by Lemma 10.
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By Claim 3.2, we can check that l ≥ s, otherwise, v1v2 · · · vrvsvs+1 · · · vpvs−1

vs−2 · · · vr+1v1 is cycle of length p, a contradiction. Since G−vl is connected, there
exists an edge vr′vs′ ∈ E(G) such that s′ < l < r′. Choose such an edge vr′vs′ such
that s′ is as small as possible. We can get that vrvr′ /∈ E(G) and vjvr′ /∈ E(G) for
vrvr−1 · · · v1vr+1vr+2 · · · vr′−1vpvp−1 · · · vr′ and vjvj−1 · · · vr+1v1v2 · · · vrvj+1vj+2

· · · vr′−1vpvp−1 · · · vr′ (vj is got in Subcase 1.1) or vjvj−1 · · · v1vj+1vj+2 · · · vr′−1vp
vp−1 · · · vr′ (vj is got in Subcase 1.2) are longest paths of G. So {vr, vj , vr′} is an
independent set of G. Hence, id(vr) + id(vj) + id(vr′) ≥ c. Then, by Claim 3.1,
id(vr′) ≥ c− id(vr)− id(vj) ≥ c− 2d(v1).

Considering the following longest path

P ′ = vr′vr′+1 · · · vpvr′−1vr′−2 · · · vs′+1vs′ · · · v1,

we can claim d(vr′) < id(vr′). If not, d(vr′)+d(v1) ≥ c−2d(v1) = c−d(v1) > 2c/3,
a contradiction.

We can get that vr′ is not adjacent to some vertex vd ∈ N(vp). If not, we
have d(vr′) > d(vp). Then, for the longest path P ′, d(vr′)+d(v1) > d(vp)+d(v1),
which is contrary to the choice of P . Now vr′vd /∈ E(G) and vr′vs′ ∈ E(G),
which imply that NP ′(vr′)

− 6= NP ′(vr′) ∪ {vr′} \ {LP ′(vr′)}. For convenience,
let P ′ = x1x2 · · ·xp such that x1 = vr′ , x2 = vr′+1, . . . , xp = v1. By Lemma
10, there exists some vertex xb ∈ NP ′(x1)

− such that d(xb) ≥ id(x1). Then
xbxb−1 · · ·x1xb+1xb+2 · · ·xp is a longest path of G with d(xb) + d(xp) ≥ id(x1) +
d(xp) = id(vr′) + d(v1) ≥ c− d(v1) > 2c/3, which is contrary to the choice of P .

Case 2. N(v1) 6= {v2, v3, . . . , vk}.
Choose vj /∈ N(v1) with j < k such that j is as large as possible. Then v1vi ∈
E(G) for each i with j < i ≤ k. Then {v1, vj , vp} is an independent set of G. If
d(v1) < id(v1), then there exists some vd ∈ NP (v1)

− such that d(vd) ≥ id(v1) >
d(v1) by Lemma 10. Then vdvd−1 · · · v1vd+1vd+2 · · · vp is a longest path of G with
d(vd) + d(vp) > d(v1) + d(vp), a contradiction.

Next we assume id(v1) = d(v1). By similar arguments as in Claim 3.1,
we have id(vj) ≤ d(v1). If d(vp) = id(vp), then id(v1) + id(vj) + id(vp) ≥ c,
which implies id(vp) ≥ c − id(v1) − id(vj) ≥ c − 2d(v1). Hence d(v1) + d(vp) =
d(v1) + id(vp) ≥ c− d(v1) > 2c/3, a contradiction.

Suppose d(vp) < id(vp). If N(vp) 6= {vl, vl+1, . . . , vp−1}, then there is a vertex
vf ∈ NP (vp)

+ such that d(vf )≥ id(vp) by Lemma 10. So vfvf+1 · · · vpvf−1vf−2 · · ·
v1 is a longest path with d(v1) + d(vf ) ≥ d(v1) + id(vp) > d(v1) + d(vp), which is
contrary to choice of P .

Hence N(vp) = {vl, vl+1, . . . , vp−1}. By the 2-connectivity of G, we know
that there exists an edge vrvs ∈ E(G) with r < l < s. We can easily verify
that {v1, vj , vs} is an independent set of G. Then id(v1) + id(vj) + id(vs) ≥ c.
Therefore, id(vs) ≥ c− id(v1)− id(vj) ≥ c− 2d(v1).
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Now for the longest path P5 = vsvs+1 · · · vpvs−1vs−2 · · · v1, we claim that there
exists a vertex vi ∈ N(vp) such that vivs /∈ E(G). Otherwise, d(vs) > d(vp) and
hence d(v1) + d(vs) > d(v1) + d(vp), which is contrary to the choice of P .

Since vivs /∈ E(G) and vsvr ∈ E(G), NP5
(vs)

− 6= NP5
(vs) ∪ {vs} \ {LP5

(vs)}.
For convenience, we let P5 = z1z2 · · · zp with z1 = vs, z2 = vs+1, . . . , zp = v1.
By Lemma 10, there is a vertex zg ∈ NP5

(z1)
− such that d(zg) ≥ id(z1). Then

zgzg−1 · · · z1zg+1zg+2 · · · zp is a longest path of G with d(zg) + d(zp) ≥ id(z1) +
d(zp) = id(vs) + d(v1) ≥ (c− 2d(v1)) + d(v1) > 2c/3, a contradiction.

Now we complete the proof of Lemma 8.
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