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Abstract

A k-monocore graph is a graph which has its minimum degree and degen-
eracy both equal to k. Integer sequences that can be the degree sequence
of some k-monocore graph are characterized as follows. A nonincreasing
sequence of integers d1, . . . , dn is the degree sequence of some k-monocore
graph G, 0 ≤ k ≤ n− 1, if and only if k ≤ di ≤ min {n− 1, k + n− i} and
∑

di = 2m, where m satisfies
⌈

k·n

2

⌉

≤ m ≤ k · n−
(

k+1

2

)

.
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1. Introduction

One of the basic properties of graphs is the existence of subgraphs with specified
degree conditions. (See [10] and [19] for basic terminology.)

Definition. The k-core of a graph G, Ck (G), is the maximal induced subgraph
H ⊆ G such that the minimum degree δ(H) ≥ k, if it exists.

Cores were introduced by Seidman [17] and have been studied extensively in [5].
They have mostly been studied in the context of random graph theory (e.g. [15]).

Cores have applications outside of mathematics. Seidman briefly explores
social networks in his paper. Cores have applications in computer science to
network visualization [2, 13]. They also have applications in bioinformatics [1, 3,
20].

It is easy to show that the k-core is well-defined and that the cores of a graph
are nested. There is a simple algorithm for determining the k-core of a graph,
which we shall call the k-core algorithm.
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Algorithm 1 (k-core Algorithm). Iteratively delete vertices of degree less than
k until none remain.

It is straightforward to show that this will produce the k-core if it exists. This
algorithm runs in O (m) time [4]. This suggests a way to order the vertices of a
graph by successively deleting or adding vertices of small degree.

Definition. A vertex deletion sequence of a graph G is a sequence that contains
each of its vertices exactly once and is formed by successively deleting a ver-
tex of smallest degree. A construction sequence of a graph is the reversal of a
corresponding deletion sequence.

We can also consider the maximum value in a deletion sequence.

Definition [14]. A graph is k-degenerate if its vertices can be successively deleted
so that when deleted, each has degree at most k. The degeneracyD (G) of a graph
G is the smallest k such that it is k-degenerate.

The maximum core number of a graph is the maximum k such that G has a
k-core. As a corollary of the k-core algorithm, we have the following min-max
relationship.

Corollary 2. For any graph, its maximum core number is equal to its degeneracy.

It is immediate that the degeneracy of a graph is bounded by its minimum and
maximum degrees, δ (G) ≤ D (G) ≤ △ (G). It is easy to characterize the extremal
graphs for the upper bound. Instead, we consider the extremal graphs for the
lower bound δ (G) ≤ D (G).

Definition. A graph G is k-monocore if D(G) = δ(G).

Thus a graph is k-monocore if and only if Ci (G) =

{

G i ≤ k,
∅ i > k.

Many im-

portant classes of graphs are monocore. These include regular graphs, trees,
forests without trivial components, complete multipartite graphs, wheels, max-
imal outerplanar graphs, [5] and minimally k-connected graphs ([8] p. 21–24).
The 0-monocore graphs are exactly the empty graphs, the 1-monocore graphs are
exactly the nontrivial trees, and the 2-monocore graphs are characterized in [5].
Monocore graphs have applications to several problems in graph coloring [7].

A maximal k-degenerate graph cannot have any more edges added and remain
k-degenerate. The size of a maximal k-degenerate graph was determined by Lick
and White [14].

Theorem 3. The size of a maximal k-degenerate graph with order n is k · n −
(

k+1

2

)

.
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Other properties of maximal k-degenerate graphs were studied in [16, 18, 12]
and [6]. The following lemmas are used in characterizing the degree sequences
of maximal k-degenerate graphs, and are also essential for proving the main
theorem.

Lemma 4 [6]. Let G be maximal k-degenerate with order n and nonincreasing
degree sequence d1, . . . , dn. Then di ≤ k + n− i.

Proof. Assume to the contrary that di > k + n − i for some i. Let H be the
graph formed by deleting the n− i vertices of smallest degree. Then δ (H) > k,
so G has a k + 1-core.

Lemma 5 [6]. Let d1, . . . , dn be nonincreasing sequence of integers with
∑

di =

2
[

k · n−
(

k+1

2

)

]

such that k ≤ di ≤ min {n− 1, k + n− i}. Then at most k + 1

terms of the sequence achieve the upper bound.

Proof. Visualize the problem as stacking boxes in adjacent columns so that the
height of the ith column is di. If all the terms other than dn that achieve the
upper bound are at the beginning of the sequence, then there are at most k,
since

∑

di = 2k · n− k (k + 1) = k (n− 1) + (n− k) k. Filling the row at height
k+ 1 would require n− k− 1 more boxes, which would have to be moved from at
least two of the columns. Similarly, filling more rows requires disrupting at least
as many columns. Thus there are at most k + 1 terms that achieve the upper
bound when all the columns that achieve the upper bound are at the beginning
or end of the sequence. Suppose there is a sequence that is a counterexample,
and let it maximize the number of columns at the beginning or end that achieve
the maximum. There must be a column somewhere in the middle that achieves
the upper bound. Then some boxes can be moved to a column or row next to
the the run of those at the beginning or end that to achieve the upper bound,
producing a contradiction.

The following theorem characterizes degree sequences of maximal k-degenerate
graphs. A different characterization was offered in [9].

Theorem 6 [6]. A nonincreasing sequence of integers d1, . . . , dn is the degree se-
quence of a maximal k-degenerate graph G if and only if k ≤ di ≤ min {n− 1, k+

n− i} and
∑

di = 2
[

k · n−
(

k+1

2

)

]

for 0 ≤ k ≤ n− 1.

2. The Main Theorem

We will first examine the maximal k-monocore graphs. In fact, these are just
maximal k-degenerate graphs. We have already seen that maximal k-degenerate
graphs are k-monocore. A partial converse to this result is true.
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Lemma 7. Every k-monocore graph is contained in a maximal k-degenerate
graph.

Proof. Let G be k-monocore. Determine a deletion sequence for G, and reverse
it to obtain a construction sequence. Now construct graph G′ by adding not only
the edges of G, but enough extra edges so that min {k, i− 1} edges are added
when the ith vertex is added, which is always possible since there are i−1 vertices
available. The resulting graph is maximal k-degenerate.

Adding an edge to a maximal k-degenerate graph creates a k+1-core, so maximal
k-monocore graphs are maximal k-degenerate.

We can use this lemma to determine sharp bounds on the size of a k-monocore
graph.

Proposition 8. The size m of a k-monocore graph G of order n satisfies

⌈

k · n

2

⌉

≤ m ≤ k · n−

(

k + 1

2

)

.

Proof. The sum of the degrees of G is at least k · n, so m ≥
⌈

k·n
2

⌉

. The upper
bound follows from the previous lemma.

Both bounds are sharp. The graphs achieving the upper bound are maximal
k-degenerate graphs. For n or k even, the graphs achieving the lower bound are
just regular graphs, and for n and k both odd, they are graphs with exactly one
vertex of degree k + 1, and all others of degree k.

Some observations about the degree sequences of k-monocore graphs are im-
mediate.

Lemma 9. If a nonincreasing sequence of integers d1, . . . , dn is the degree se-
quence of a k-monocore graph G, 0 ≤ k ≤ n−1, then k ≤ di ≤ min {n−1, k+n−i}
and

∑

di = 2m, where
⌈

k·n
2

⌉

≤ m ≤ k · n−
(

k+1

2

)

.

Proof. For the first inequalities, the lower bound is obvious, and the upper
bound follows from the corresponding result for maximal k-degenerate graphs.
The latter equation follows from the First Theorem of Graph Theory and the
previous result.

Let A be the set of sequences satisfying the conclusion of Lemma 9. Our main
theorem states that the converse to this result holds, that is, every sequence in
A is the degree sequence of some k-monocore graph. We show that the converse
is equivalent to a simpler statement that limits how many sequences we need to
consider.
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Lemma 10. Let B be the set of nonincreasing sequences of integers d1, . . . , dn
satisfying d1 ≤ n − 1, dk = dn = k, and

∑

di = 2m. The converse to Lemma 9
holds if and only if every sequence in B is the degree sequence of some k-monocore
graph.

Proof. (⇒) Since B ⊆ A, if every sequence in A is the degree sequence of some
k-monocore graph, then so is every sequence in B.

(⇐) Assume that every sequence in B is the degree sequence of some k-
monocore graph. We use induction on the order r. If r = k+ 1, the only possible
sequence is k + 1 k’s, so G = Kk+1, which is k-monocore. Hence we assume
that every sequence in A with order r ≥ k + 1 is the degree sequence of some
k-monocore graph. Let D : d1, . . . , dr+1 be a sequence in A. If D has fewer
than k integers larger than k, then D ∈ B, so it is the degree sequence of some
k-monocore graph by assumption. (In fact, any graph G satisfying D is a k-core
since dn = δ (G) = k and G cannot have a k + 1-core, so G is k-monocore.)

Hence we assume additionally that D has at least k integers larger than k,
so D /∈ B. Let D′ : d′1, . . . , d

′

r be the sequence formed by deleting dr+1 = k and
decreasing k other numbers greater than k by one, including any that achieve the
upper bound. (There are at most k by Lemma 5.) Then D′ ∈ A and has length
r, so it is the degree sequence for some k-monocore graph H. Add vertex vr+1 to
H, making it adjacent to the k vertices with degrees that were decreased to form
D′. Then the resulting graph G has degree sequence D and is k-monocore.

In light of this lemma, we need only consider sequences that end with many k’s
to prove the converse to Lemma 9. We use two operations to limit the number of
k’s at the end of the sequence that we must consider. They require that a large
enough independent set of edges exists in a k-core.

Proposition 11. The edge independence number α′ (G) of a k-core G satisfies
α′ (G) ≥

⌈

k
2

⌉

and the graphs for which this is an equality are exactly empty graphs,
stars, complete graphs, and K2i+1 − tK2, 1 ≤ t ≤ i.

Proof. We begin with the special cases k = 0, . . . , 3. Certainly the result holds
for empty graphs, which are exactly the 0-monocore graphs. Obviously any
nontrivial tree contains an edge and only stars have diameter at most two, so
the result holds for k = 1. Any 2-core contains a cycle and only C3 has edge
independence number one. If a 2-core contains more than one triangle, then each
contains an edge not on the other, so the result holds for k = 2.

Deleting two vertices from a 3-core leaves a 1-core, so the bound holds. Equal-
ity certainly holds for the indicated graphs, so assume it holds for a 3-core with
n ≥ 6. Deleting two vertices must leave a star, and each of its leaves must
be adjacent to both of the vertices deleted. But then the graph contains K3,3,
producing a contradiction.
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We use induction on r ≥ 2. Assume the bound and extremal graphs hold for all
k with 2 ≤ k ≤ r and let G be an r + 2-core. Let e = uv be an edge of G. Then
G − u − v is an r-core, so α′ (G− u− v) ≥

⌈

r
2

⌉

, and α′ (G) ≥
⌈

r
2

⌉

+ 1 =
⌈

r+2

2

⌉

.
Now equality holds only if G− u− v is a clique or K2i+1 − tK2; hence so is G.

Operation 12. Add one vertex of degree k = 2r. Subdivide r independent edges
and identify the r new vertices. This produces a graph with all the same degrees
as before plus one more vertex of degree k.

Note that by the proposition above, if k = 2r + 1 is odd, then a k-core must
contain 2r edges which use each vertex at most twice, since it contains two disjoint
independent sets of r edges.

Operation 13. Add two vertices of degree k = 2r + 1. Delete 2r edges which
use each vertex at most twice, add two adjacent vertices, and make each of them
adjacent to 2r of the endpoints of the deleted edges. This produces a graph with
a degree sequence that adds two k’s to the degree sequence of the original graph.

Now we can prove the main theorem.

Theorem 14. A nonincreasing sequence of integers d1, . . . , dn is the degree se-
quence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤
di ≤ min {n− 1, k + n− i} and

∑

di = 2m, where m satisfies
⌈

k·n
2

⌉

≤ m ≤

k · n−
(

k+1

2

)

.

Proof. (⇒) The forward direction is just Lemma 9.
(⇐) We use induction on k. For k = 0, it is obvious. Assume the result

holds for k ≥ 1. By Lemma 10, the result will hold if it holds for sequences with
at most k − 1 integers larger than k. Let D be such a sequence of length n. We
may assume that d1 is n − 1 or n − 2, since otherwise we may delete some k’s
so that this holds, obtain a graph for this shorter sequence, and use the above
operations to obtain a graph with the longer sequence.

If d1 = n−1, then the sequence D′ formed by deleting v1 and reducing every
other element by one has at most k− 2 integers larger than k− 1. Thus it is the
degree sequence of a k − 1-monocore graph H by the induction hypothesis, and
G = H +v is k-monocore. If d1 = n−2, then the sequence D′ formed by deleting
v1 and reducing all integers but one of the k’s by one has at most k − 1 integers
larger than k − 1. Thus it is the degree sequence of a k − 1-monocore graph H
by the induction hypothesis, and the graph G formed by joining a vertex to the
vertices of H with degrees that had been reduced is k-monocore. Thus the result
holds for k-monocore graphs by induction.

Thus Theorem 6 can be proven as a corollary of this theorem.
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