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Abstract

Given a simple directed graph D = (V, A), let the size of the largest
induced acyclic tournament be denoted by mat(D). Let D € D(n,p) (with
p = p(n)) be a random instance, obtained by randomly orienting each edge
of a random graph drawn from G(n,2p). We show that mat(D) is asymp-
totically almost surely (a.a.s.) one of only 2 possible values, namely either
b* or b* + 1, where b* = [2(log, n) + 0.5] and r = p~1.

It is also shown that if, asymptotically, 2(log, n) + 1 is not within a
distance of w(n)/(Inn) (for any sufficiently slow w(n) — oo) from an integer,
then mat(D) is [2(log,.n) + 1] a.a.s. As a consequence, it is shown that
mat(D) is 1-point concentrated for all n belonging to a subset of positive
integers of density 1 if p is independent of n. It is also shown that there
are functions p = p(n) for which mat(D) is provably not concentrated in a
single value. We also establish thresholds (on p) for the existence of induced
acyclic tournaments of size ¢ which are sharp for i = i(n) — oo.

We also analyze a polynomial time heuristic and show that it produces
a solution whose size is at least log, n + ©(y/log, n). Our results are valid
as long as p > 1/n. All of these results also carry over (with some slight
changes) to a related model which allows 2-cycles.
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1. INTRODUCTION

By a simple directed graph, we mean a directed graph having no 2-cycles. Thro-
ughout the paper, we assume, w.l.o.g., that V"= {1,2,...,n}. Given a directed
graph D = (V, A), we want to find the maximum size of an induced acyclic
tournament in D, denoted by mat(D). A tournament is a simple directed graph
whose underlying undirected graph is a complete graph. A tournament is acyclic
if and only if it is transitive. In this paper, we study the problem of determining
mat(D) for random digraphs both from an analytical and an algorithmic point
of view.

We study the following model of a simple random digraph introduced in [23].
In what follows, a.a.s. refers to ‘asymptotically almost surely’; and p < 0.5 is a

real number. Throughout this paper, r denotes p~!.

Model D(n,p): Let the vertex set be V = {1,2,...,n}. Choose each undirected
edge joining distinct elements of V' independently with probability 2p. For each
chosen {u, v}, independently orient it in one of the two directions {u — v,v — u}
in D with equal probability = 1/2. The resulting directed graph is an orientation
of a simple graph, i.e., there are no 2-cycles.

1.1. Analytical aspects

Subramanian [23] first studied the related problem of determining mas(D), the
size of a largest induced acyclic subgraph in a random digraph D = (V, E), and
later Spencer and Subramanian [22] obtained the following result.

Theorem 1.1 [22]. Let D € D(n,p) and w = np. There is a sufficiently large
constant W such that: If p satisfies w > W, then, a.a.s,

mas(D) € [(ﬁq) (Inw — Inlnw — O(1)), <ln2q) (Inw + 36)] ,

where ¢ = (1 —p)~L.

Thus, with probability 1—o(1), mas(D) lies in an integer band of width O <1“hll$) .
But this upper bound on width is asymptotically ©(rInlnw), and hence can
become large for small values of p. However, if we focus on more restricted
subgraphs, namely, induced acyclic tournaments, then the optimum size can be
shown (see Theorem 1.2 below) to be one of two consecutive values a.a.s. In other
words, we obtain a 2-point concentration for mat(D). This is one of our main
results in this paper.

Theorem 1.2. Let {D(n,p) : p = p(n),n > 1} be an infinite sequence of prob-
ability distributions. Let w = w(n) be any sufficiently slowly growing function
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of n (say, any w with w < \/n always) such that w — oo as n — oo. Let
D € D(n,p). Then, a.a.s., the following holds:

(i) Suppose p > 1/n. Define

2(Inn)

d=21 1=
08 1 Inr

+1; b = |d—1/2] = |2(log, n)+0.5].

Then, mat(D) is either b* or b* + 1.
(ii) mat(D) € {2,3} if 1/(wn) <p < 1/n.
(iii) mat(D) =2 if wn™2 < p < 1/(wn).
) mat(D) < 2if 1/(wn?) < p < wn™2.
) mat(D) = 1if p < (wn?)~1.

(iv
(v

Similar two-point concentration results are known for maximum clique size w(G)
of a random undirected graph G € G(n,p) for p < 0.5 (see [5, 4, 13]). The
chromatic number x(G) is another parameter which has been shown to be 2-
point concentrated for sparse random undirected graphs (see [16, 2, 1]). However,
unlike the case of mat(D), there is no explicit closed form expression for w(G).
With some assumptions about p = p(n), one can also prove (proof presented in
Section 3) a stronger one-point concentration (Theorem 1.3 below) on mat(D)
for all large values of n.

Theorem 1.3. Let D(n,p), d be as defined in Theorem 1.2. Let w = w(n) be
any function so that as n — oo, w(n) < 0.5(Inn) and w — co. Ifp > 1/n is
such that d satisfies = < [d] —d < 1— % for all large values of n, then a.a.s.
mat(D) = |d].

As a consequence, we also obtain the following concentration result. For any
choice of p = p(n) and any given definition of f(n) = 1—o0(1), let Ny, denote the
set of natural numbers n such that mat(D) takes a specific value with probability
at least f(n). Let us call p = p(n) a constant function if, for some a € [0,0.5],
p(n) = a for every n. Then,

Corollary 1.4. For every constant function p = p(n), there exists a function
f=f(n)=1-0(1) such that the set Ny, is a subset of natural numbers having
density 1.

Our proof (presented in Subsection 3.1) of the above corollary is direct and does
not take recourse to the Borel-Cantelli Lemma which is applied in similar one-
point concentration proofs. Perhaps, similar direct proofs are possible in other
cases where the Borel-Cantelli Lemma has been used, as for example, in proving a
one-point concentration result for the clique number w(G) of random undirected
graphs.
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It is interesting to note that the bounds on [d] — d assumed in Theorem 1.3
are essentially tight. We give an example of a function p = p(n) such that the
assumptions in Theorem 1.3 do not hold, and prove that mat(D) is not 1-point
concentrated.

Theorem 1.5. For any fived j € Z+ (with j > 3) and ¢ € R, let D € D(n,p),

p=n"2U"153) . Then, for every sufficiently large n, each of the two events
(i) mat(D) =3 —1 and

(ii) mat(D) =j

occurs with probability lower bounded by a positive constant.

The proof of this theorem is provided in Subsection 3.2 and is based on applying
Lovéasz Local Lemma and Paley-Zygmund Inequality.

We also establish a threshold (on p) for the existence of induced acyclic
tournaments of size ¢. For every fixed 4, the threshold is coarse and is a sharp one
if @ = i(n) varies with n and is any suitably growing function which goes to co
as n — oo. These are stated in the following theorem whose proof is presented
in Subsection 3.3.

Theorem 1.6. For every (positive) integer valued function i = i(n) such that
i(n) € {1,...,|2logyn]} for every n, there exist functions p; = p;i(n) € [0,1] and
¢ = q¢i(n) € [0,1] such that: If D € D(n,p) with 1/n < p = p( ) < 0.5, then

a.a.s. the following holds:

(a) if p > pi + qi, then mat(D) > i.

(b) if p < pi — ¢, then mat(D) < i.

Also, if i = i(n) — o0 is a growing function of n, then the threshold p;(n) is a
sharp threshold in the sense that g;(n) = o(pi(n)).

The proof of Theorem 1.7 (see Subsection 1.2) suggests a correspondence be-
tween cliques in arbitrary undirected graphs and acyclic tournaments in specific
orientations of these graphs. A quantitative statement of this relationship can be
obtained when random graphs are compared to random digraphs. See Lemma
9.1 of Subsection 9.1 for the statement and its proof.

Outline: The presentation of the results is organized as follows: In Section 2,
we provide the proof of Theorem 1.2. In Section 3, the proofs of Theorem 1.3,
Corollary 1.4, Theorem 1.5 and Theorem 1.6 are presented. The proofs of the
Theorems 1.2 and 1.3 are based on the Second Moment Method.

1.2. Algorithmic aspects

By MAT(D, k), we denote the following computational problem: Given a simple
directed graph D = (V,A) and k, determine if mat(D) > k. By MAT(D),
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we denote its optimization version. That is, given D, find an induced acyclic
tournament of maximum size.

The MAT(D, k) problem, when D is a tournament, is the complement of the
(Directed) Feedback Vertex Set problem, in which a minimum subset of vertices
has to be removed to make the remaining digraph acyclic. These problems come
up in various algorithms in computer science, such as in proving partial correct-
ness of programs [9], in deadlock recovery in operating systems [6], and in VLSI
design. They have been widely studied by approximation algorithmists also, e.g.
[18]. As such, it is a natural generalization to consider MAT(D, k) for arbi-
trary digraphs, and is of importance in algorithm design. However, MAT(D, k)
is known to be NP-complete [11], even if D is restricted to be a tournament [21].
Also, MAT(D) is known to be hard to approximate [17] when the input is an
arbitrary digraph: For some € > 0, a polynomial-time approximation algorithm
with an approximation ratio of O(n€) is not possible unless P = N P.

Below we strengthen both of these results as follows. We show that MAT(D)
is hard and inapproximable even when D is restricted to be acyclic (a dag), as
shown in Theorem 1.7. The proof is given in the Appendix.

Theorem 1.7. MAT(D, k) is NP-complete when D is restricted to be acyclic.
Also, for every fized € > 0, the optimization problem MAT(D) is not efficiently
approzimable with an approzimation ratio of n'~¢, even if D is restricted to be
acyclic, unless for every problem in NP there is a probabilistic algorithm that runs
in expected polynomial time, and never makes an error (i.e., only the running time
is stochastic)?.

Therefore, it seems hopeless to find polynomial-time algorithms for MAT(D, k),
even if we allow randomized or approximation algorithms. However, the average
case version of the problem—finding mat(D) for a random digraph D—offers
some hope. In this version, we seek to design efficient algorithms for computing
an optimal solution which succeed a.a.s. over a random digraph. We use the
model D(n, p) defined before for studying random digraphs.

We show (see Theorem 4.1) that a.a.s. every maximal induced acyclic tour-
nament is of size which is at least nearly half of the optimal size. Hence any
greedy heuristic obtains a solution whose approximation ratio is a.a.s. 2. This is
similar to the case of cliques in undirected random graphs (see e.g. [4]).

We also study another heuristic which combines greedy and brute-force ap-
proaches as follows. We first apply the greedy heuristic to get a partial solution
whose size is nearly log,.n — cy/log, n for some arbitrary constant c. Amongst
the remaining vertices, let C' be the set of vertices such that each vertex in C' can
be individually and “safely” added to the partial solution. Then, in the subgraph

2This hypothesis is known as NP # ZPP. The faith in this hypothesis is almost as strong
as that in NP # P [12].
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induced by C we find an optimal solution by brute-force and combine it with the
partial solution. It is shown in Theorem 5.1 that this modified approach produces
a solution whose size is at least log, n + cy/log, n. This results in an additive
improvement of ©(4/log, n) over the simple greedy approach. The improvement
is due to the fact we stop using greedy heuristic at a point where it is possible to
apply brute-force efficiently. This approach is similar to (and was motivated by)
the one used in [15] for finding large independent sets in G(n, 1/2).

As a consequence, we see that the problem of finding an optimal induced
acyclic tournament can be approximated within a ratio of 2 — o(1) a.a.s. for
random digraphs. This is in sharp contrast to the worst-case version where, by
Theorem 1.7, it is very unlikely to be approximable even with a large multiplica-
tive ratio.

Outline: The presentation of the algorithmic results is as follows. Theorem 4.1
is stated and proved in Section 4. Theorem 5.1 is stated and proved in Section 5.

1.3. Non-simple random digraphs

Each of the concentration and algorithmic results mentioned before also carry over
(with some slight changes) to a related random model Dy(n, p) where we allow
2-cycles to be present and each of the potential arcs is chosen independently.
These are presented in Section 6. In Section 7, we present some observations on
the concentration of the maximum size of an induced tournament (not necessarily
acyclic) for the two models of random directed graphs. Finally, in Section 8, we
conclude with a summary and some open problems.

Throughout, we use standard notation. R* denotes the positive real num-
bers, N denotes the set of natural numbers. We often use the short notations
p = p(n), w = w(n) to denote functions (real or integer valued) over N/. We also
use standard notations like O(-), Q(-), o(-) and w(-) with usual meanings.

2. ANALYSIS OF D(n,p)

Let U be any fixed subset of V of size b. The following two easy-to-verify claims
play a role in the analysis. The proof of Claim 2.1 is provided in the Appendix.

Claim 2.1. A directed acyclic graph H = (U, A) has at most one (directed)
Hamilton path.

Claim 2.2. For any p = (n) with p < 1/2, Pr[DI[U] is an acyclic tournament |
b

Proof. Let £(U) denote the event that D[U] is an acyclic tournament. Any
acyclic tournament on U is characterized by a unique linear ordering o = (o7q, . . .,
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op) of U with every ordered pair (03, 0;) (i < j) of vertices joined by a forward arc
o; — 0. For any fixed linear ordering o of U, let £(U, o) denote the event that
DIU] is an acyclic tournament characterized by o. Any such event (U, o) is the
conjunction of (12’) identical and independent events, since the linear ordering o
forces each (i, j) edge to be present and also determines their orientation. Hence,
we have

Pr(&E(U,0)) = p(g)

Now considering all o € Perm(U), where Perm(U) is set of all linear orderings
of the elements of U, we get

Pr(£(U)) = Pr (U EWU, a)>.

Also, there are exactly b! choices for o, and these choices are mutually exclusive,
since by Claim 2.1, the linear ordering o is unique for a given acyclic tournament.
Hence,

oc€Perm(U)

Pr[D[U] is an acyclic tournament| = Z Pr(&(u,0)) = bl p(g)
which completes the proof. [

Before we proceed further, we introduce some notations which play an important
role in the analysis. Define § = [d]| — d. Then, it follows that

oo [ d—240 i 6> 1/
Tl d—1+46 if §<1)2.

n

For a given b, let m = (b) and let (Aj,..., A, ) denote any but fixed ordering
of the set of all b-sized subsets of V. For i € [m], let X; denote the indicator
random variable whose value is 1 if D[4;] induces an acyclic tournament and is 0
otherwise. Let X (b) = X (n,b) denote the number of induced acyclic tournaments
of size b in D. Since there are (’Z) sets of size b, it follows by Linearity of
Expectation that

E[X(n,b)] =Y B[Xi] = <Z> bl pl3),

We are only interested in the behavior of E[X(n,b)] for b € [1,b* + 2|. From
the definition of %, it follows that b* +2 < [d] + 1 < 2% 1 3 < 3(Inn) for
sufficiently large n since p < 1/2. As a result, we have

(4) [1—o(1)]- f(n,p,b)" < E[X(n,b)] < f(n,p,b)",
where f: (R1)? — Rt such that f(n,p,b) = n pl-1/2,
Setting f(n,p,b) = 1 and solving for b, we see that
f(n,p,b) > 1 if b<d; f(n,p,d)=1; f(n,p,b) <1 if b>d.
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2.1. Proof of mat(D) < b*+1

First, we focus on proving the upper bound of Theorem 1.2. This is done by
proving that
Pr(X(b*+2)>0) < E[X(b*+2)] = o(1).

Recall that b* can be expressed in terms of d and ¢ in two different ways depending
on the value of §.

Casel. 0 >1/2

E[X(b" +2)] = E[X(d+0)]
< f(n,p,d +8)*°
d+46
= (f(n7p7 d) _p6/2)
_ pé(d+6)/2 _ péd/2 'p52/2
=n° .p5(1+6)/2 < n? (since p <1 and § > 0)
<n Y2 = o(1).

CaseIl. 6 <1/2

E[X(b* +2)] = E[X(d+1+0)]
Sf(n,p,d+ 1 +5)d+1+5

d+1+6
= (f(n,p, d) -p(“‘”/Q)

(1+6)(d+1+46)/2 (1+8)d/2 _, (1+6)2/2

=D =D p
— (9 pH9)@4)/2 < (49 (gince p < 1 and § > 0)
<n ' = o(1).

This establishes the upper bound.

2.2. Proof of mat(D) > b*

Next, we focus on proving the lower bound of Theorem 1.2. For this, we first
show that E[X (b*)] — oo as n — o0.

Case 1.6 >1/2
E[X(b")] = E[X(d — 2+ )]
> [1—o(1)] - f(n,p,d—2+8)472+

d—2+90
= [1=o()]- (f(n,p,d) - p72/2)
_ [1 o 0(1)] .p(—2+5)(d—2+5)/2 _ p(—2+5)d/2 .p(—2+5)2/2



INDUCED AcycCLIC TOURNAMENTS IN RANDOM DIGRAPHS ... 475

=[1-o0(1)] cp270 . p(2-0)(1=0)/2
> [1—o(1)] - n*~* - p** (since p <1 and § >1/2)
>n'2 5 00 as n — oo

CaseII. § < 1/2

EIX(b")] = E[X(d—1+9)]
> [1—o(1)]- f(n,p,d —1+38)"+

= [1=o(1)]- (f(n,p, ) -p(_m)/Q)diM

|- nl=8 . (142
n'~O(since p <1 and § < 1/2)

For the sake of notational simplicity, we use X to denote X (b*) and use b to
denote b* for the rest of this section. Now, we need to show that X > 0 with
high probability. We use the well-known Second Moment Method to establish
this. Let Var(X) denote the variance of X.

Recall that X; denotes the indicator random variable for the i-th b-size subset
of V. Using standard arguments (see [3]), it can be seen that

(1) Var(X) < E[X]+ ) COV(X;,X;),

where the second sum is over ordered pairs and COV (X;, X;) = E(X;X;) —
E(X;)E(X;) is the covariance between X; and X;. Note that X; and X; are in-
dependent whenever |A;NA;| <1 and in that case COV (X;, X;) = 0. Otherwise,
with |4; N A;| = [, we have

COV(Xi, X;) < B(X;X;) = B(X))E(X;|X; = 1)
@) — bip() - (pi/11) - p2) =),

where the last equality follows from Claim 2.2. Also, for any fixed i, the number
of b-sized subsets A; such that [A; N A;| =1 is exactly (ll’) (2:5’). As a result,
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Zi# COV(X;, X;) = Zi Zj <A bt COV (X;, X;)
<3 ). (ZKKH (?) (Z - f) (;’) .p@)—@)
) _ pix]- <Zzgng_1 (?) <Z - f) <Il"'> . p(é’)(é)>
- BlxP. (Z L) .p-@)
= E[X]? M,

where M = M (n, p,b) is as defined above. Applying Chebyshev’s Inequality and
(1), it follows that

Pr[X = 0] < Var(X)(E[X])?
(4) < (BIXI+ )", COV(X,, X)) (EIX) ™2
Combining (4) and (3), we notice that
(5) Pr(X =0) < (E[X]) '+ M = o(1)
provided M = M(n,b) = o(1) since it has already been shown that E[X] — oo.

Thus, we only need to show that M = o(1) to complete the arguments.
Now, we focus on showing that M = o(1). Notice that

:ZZSle—l
0\? a2
o) 3 ()0
2<I<b—1

=(+o()>_, ., B

where the last-but-one equality follows using f(n,p,d) = 1.
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Let ¢; be the ratio between successive terms: t; = Fj,1/F;. Now take the ratio of
ratios: s; = tl—i—l/tl-

b \2 (I1+1)(d—1—-1)/2 2
th=Fa1/F = ) P = <b - l) p D2
() 2 plld-1)/2 [+1

b—1—1\ [1+1\\? _,
s = .
: b—1 J\i+2)) 7
First we state the following easy-to-prove fact regarding any sequence of positive
real numbers.

Observation 2.3. For a sequence of positive real numbers ai,...,a,, if s; =
ai+2ai/a?+1 > 1 foralll < i < n—2, then for all i € [n], we have a; <
max{ai, an}.

Claim 2.4. (i) Ifp < 1/4, then s; > 1 for every b with 2 <1 <b— 3.
(ii) If p > 1/4, then s; > 1 for every b with 2 <1 <b—4 and also tp_o > 1.

From the above (Observation 2.3 and Claim 2.4), the proof of Theorem 1.2
follows easily, as we get that for all I 2 < [ < b—1, for all p > 1/n,
F < max{Fy, Fy_1}. Now F, = (3)p2d-2/2 — p(5°=3) — 2.1 — 0O(1/n)
and Fy_| = (bfl)Zp(b—l)(d—b—i—l)/Q < B2 (p(b—l)/Z) — 2 <p(”*d)/2) < B2 <r<d—b>/2) <

n n

b2 (i) —0 (<1nn>2). Therefore, M = (1+0(1))- 02} Fy = O

n n1/4

N
s[5
=
93
N N
w
Il
o)
—
—
—

Proof of Claim 2.4. Case (i). Assume that p < 1/4 and 2 <[ < b — 3. Then,
we have (b—1—1)/(b—1) > 2/3 and (I +1)/(l +2) > 3/4. This implies that
s;>pt/a>1.

Case (ii). Assume that p > 1/4 and [ < b — 4. It can be verified that
the square term in s; is at least 1/2 and p~l > 2 s0os > 1. Now ty_o =
(2/(b —1))2p~(0=2Hd=1)/2 > (47bp2) / (nb?) > % — 00, using our assumption
that p > 1/4. |

We have thus completely established that M = o(1) for all p > 1/n, thereby
establishing that Pr(X = 0) = o(1). Hence, a.a.s., mat(D) € {b*,b* + 1} for
the stated range of p. The remaining parts of Theorem 1.2 are straightforward
to derive and are given in Subsection 9.4 for the sake of completeness. This
completes the proof of Theorem 1.2.
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3. ONE-POINT CONCENTRATION AND THRESHOLD RESULTS

Recall the definition of d, § from the proof of Theorem 1.2. The proof of Theorem
1.3 proceeds by considering the following 2 cases:

Casel. 0 <w/Inn < § < 1/2. In this case, |d| = b*. From Theorem 1.2, it
only remains to show that Pr[mat(D) > b* + 1] — 0 as n — oco. We again use
the first moment method to show that E[X (b* +1)] = o(1).

By our assumption about p, § < 1/2. Hence, by definition, b* + 1 = d + ¢.
Thus,

S(d+8)/2 _ =5 5(145)/2

EX(b* +1)] < f(n,p,d +6)" = n=’-p

_ 6/2)d+5 _
nf(S < nfw/lnn:

p

(p
e — 0 asn — oo.

—w

IN

CaseII. 1/2 <0 <1—w/Inn < 1. Here, |d| = b* + 1. The proof proceeds
by verifying that Pr[X (b* + 1) = 0] = o(1), and hence, mat(D) > b* + 1 a.a.s.
Together with the upper bound on mat(D) when p > 1/n in Theorem 1.2, this
gives the desired result. Briefly, this can be seen as follows. From (5), it suffices
to show that

(i) E[X(n,b* +1)] = 0o as n — oo, and
(i) M = M(n,p,b* +1) =o(1).

To prove (i), we notice that

E[X(b"+1)] > [1—o(1)] - f(n,p,d+ 36— 1)~
= (1= ofD)] - (/)51 — 1= p(u)] -5V
=[1-o0(1)] Lo ,p—é(l—a)/2 > [1—o(1)] . pw/Inn
=[1—-0(1)] €Y = oo asn— oo.

To prove (ii), we need to go along the proof of Theorem 1.2, and evaluate
M(n,p,b* +1).
An easy check reveals that M (n,p,b* + 1) = M(n,p,b*) - O((Inn)3) + Ty,

where
b* + 1\ 2 ) -1 b+ 1\ 2 . —b*
o . < -1/2) "
Ty ( . ) ((0ep=)) <27 7)) (mp®02)

Now, from the proof of Theorem 1.2, we have that M(n,p,b*) = O <(1;1723).
Therefore M(n,p,b* +1) = O ((hm)6> + T

ni/4
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Next, using the definition of b* when 6 > 1/2, we have

Ty < 206" + 1)2(np® =D/2) 7" = o(b* + 1)2(np(d=3+9)/2) ="

Thus it is verified that both M - O((Inn)3) and Ty, and hence their sum, are

o(1).
3.1. Proof of Corollary 1.4

Let p be fixed but arbitrary. It follows from the definitions of d and §, that for
k—(148)
every n, we have n = r > for some nonnegative integer k. Also, it follows

from Theorem 1.3 that for every sufficiently large n, mat(D) is concentrated on
one value if 2~ < ¢ <1 — = Hence, for every such n, we must have

k72+ w k-1 _ _w
r2 2lnn < <7 2 2Inn ,

For every k > 2, we define two values as follows.

. k=2, w_ E—1_ _w
My =min{n:n=>r 2 "2hn o5 Mpp=maxn:n <r 2 2hn o,

It follows that mat(D) is just one value for every sufficiently large n € R where

R = Uj>o Ri and Ry, = {n : my; <n < myyp}. Hence it suffices to show that R

is a subset of density 1 of the set A of positive integers. Now, N'— R = J,~5 Sk

where Sy ={n e N :my_1;, <n < my,}. a
For every k > 3,

L A AT g= k=2 [ s o w
|Rk| ~r3 p2 2Wmmgp o 2lnmgg ) oa0q ‘Sk| ~r 2 (Tanmkvl —p 21nmk717h> )

By choosing w suitably, we can ensure that w/Inn — 0 as n — oco. Also, my
and my,; grow exponentially in k. Hence, for every sufficiently large £,

k=2 /1 _ k2 [ w(rk/?) B k-2
|Ri| ~ 1 2 <r2—1> and|5k|—0<r2 (klnt —0(7“2).

Thus, for all sufficiently large k, we have >, 115j| = O(|Sk+1]) = o(|Rk). As

a result, we have

(RO [n]

This shows that R has density 1 as a subset of A/. This completes the proof of
Corollary 1.4.

— 1 asn — oo.
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3.2. Proof of Theorem 1.5

The proof is based on an application of Lovasz Local Lemma stated below.

Lemma 3.1. Let A = {Ey, Es,...,Ey,} be a collection of events over a prob-
ability space such that each E; is totally independent of all but the events in
D; C A\{E;}. If there exists a real sequence {x;}", z; € [0,1), such that

For alli € [m], Pr[E;] < a;ZH (1 —xj), then

j:EjE'Di
m  — m
Pr | E] =[] (1 —=)>o0.

Hence, with positive probability, none of the events occur.

First, notice that for the given value of p, d = (j + ¢/(Inn)), b:=b* = j — 1 and
d =1—c¢/lnn > 1/2, for sufficiently large n. By Theorem 1.2, we know that
for the given probability p = p(n), mat(D) € {b,b+ 1} a.a.s. Therefore to prove
Theorem 1.5, it suffices to show that there exist constants 0 < ¢; < ¢ < 1 such
that ¢y < Pr(mat(D) = b+ 1) < co for all sufficiently large n. This is proved
below. For various symbols like, d, § and b*, we use the same meanings used in
the proof of Theorem 1.2.
Consider the expected number of acyclic tournaments of size b + 1:

ElXp] = (npb/z) T (np(d+5—2)/2> _ (p(_1+5)/2)
- (r _C/Q(lnn)y—lH G 2““”))d_1+6 = (er2s: n))d—1+5

:(€C)1+(5/2(logrn)) ~ ec’,

b+1 b+1

for some constant ¢ > 0. If the expectation had been a constant less than 1,
a simple application of Markov’s inequality would have established the upper
bound on the probability.

Case 1. Proof of Pr(mat(D) = b+ 1) < ¢o. We apply Lovasz Local Lemma
3.1 to prove this claim. For every ¢, 1 < i < N = (b21)7 define E; to be
the event that A; induces an acyclic tournament, where A; is the i-th (b + 1)-
set in some fixed ordering of all (b + 1)-subsets of V. For every i, Pr(E;) =
q:= (b+ 1)!p(bJ2rl) = o(1). Choose z; = x = 25¢q for each i. Construct the
dependency graph on N events by joining E; and Ej if |4; N A;| > 2. It can be
seen that each Ej; is totally independent of all other F;’s which are not adjacent
to E;. Note that the dependency graph is regular with the uniform degree of
any FE; being given by deg(E;) = Y 5 p<p (bzl) (Z:f:li) It is easy to see that

deg(E;) < (b;rl) (2:12) ~Y where Y := N(b*/2n?). Using ¢ = o(1) and Nq ~ e,
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it follows that Y'q¢ = Ngb*/(2n?) = o(1) and also that In(1—25¢) = —25q[1+o(1)].
To apply the Local Lemma, it suffices to prove that

g < 25q(1—25q)".
Equivalently, it suffices to prove that
1 S 256Y(1n(1—25q)) — 256—25Yq[1+o(1)] — 25[1 _ 0(1)]

The above clearly holds true. Now applying 3.1, one gets that
N /
Pr[ﬂiE] > H(l — l’) = (1 — 25q)N ~ 6_25Nq > 6—25€° ]
i=1

Therefore, Pr(mat(D) = b+ 1) < Pr[mat(D) > b+ 1] = Pr[U;E;] < ¢, where

/
_ c
coi=1—e25¢

Case 1I. Proof of Pr(mat(D) = b+ 1) > ¢;. To prove this, we use the
following version of Paley-Zygmund Inequality (see [10])

(6) Pr[Xy11 > 0] > E[Xp41]*/BIXG, ).

Notice that the RHS of the previous inequality (6) is exactly 1/(1 + z), where
z = Var(Xps1)/E[Xps1]?. As in the proof of Theorem 1.3, z < E[Xpyq] 7! +
M(n,p,b+1), and M(n,p,b+1) < M(n,p,b) - (Inn)® + Ty. Now, M(n,p,b) =
O ((ln”)6> = o(1), and it was shown that 7, = o(1). Therefore, we get that

ni/4
z<e ¢ +o(l)~ e, and therefore 1/(1+ z) in (6) is at least ¢}, where ¢; is the
constant defined by ¢; = 1/(1+e~¢). This proves that Pr(mat(D) > b+1) > ¢;.
As a result, Pr(mat(D) = b+1) = Pr(mat(D) > b+1) — Pr(mat(D) > b+2) >
c1—o(l) = c.

Hence there exist constants ¢q,ca € (0, 1) such that,

c1 <Pr[mat(D) =b+1] <c¢p, and hence
1—0(1) —ca <Pr[mat(D) =5 <1—0(1) — c;.

Thus, mat(D) is not concentrated at any single point.

3.3. Proof of Theorem 1.6

First, we prove the following lemma, from which the theorem follows as an easy
consequence.

Lemma 3.2. Let i = i(n) € {1,...,|2logyn]} be any fized function of n. Let
D € D(n,p) and let w = w(n) be any function of n so that as n — oo, w — oo
and w < (0.5Inn). Then, asymptotically almost surely, the following are true:
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() Ifp>n~0"155%)  then mat(D) > i.
(ii) Ifp < n~2(15%) | then mat(D) < i.

Proof. The probability of having an induced acyclic tournament of size i only
increases with increasing p. From the one-point concentration result of Theorem
1.3, it follows that if p is such that d (defined before) satisfies d > i + -, then
a.a.s. mat(D) > i. Similarly, if p is such that d satisfies d < i — %, then a.a.s.
mat(D) < i. However,

1—1 w

d>i+ 2 o log,n> +
=t Inn O8r T = 2 2lnn

S n> p_(%'i'ﬁ)

& p> n—2/(i—1+ﬁ)_
Similarly, we have

d<i-— v Sp< n_2/(i_1_ﬁ),
Inn

This completes the proof of the lemma. [

From the above lemma, Theorem 1.6 can be proved as follows. We choose
w(n) = vInn and it satisfies the conditions of the lemma above. We set Ib;(n) =
n~?(71-5%) and ubi(n) = nfz/(iler%n), and define p;(n) = (ub;(n)+1b;(n))/2,
and g;(n) = (ub;(n) — Ibj(n))/2.

If i(n) — oo, we choose w(n) = i(n)/4 so that w(n) — oo. Also, it can be
verified that [b;(n) = ub;(n)[1 — o(1)] and hence g;(n) = o(p;(n)), so we have a
sharp threshold for such i = i(n).

Remark. In the above proof, notice that the ratio % < % which is

T =1 (120 (g ) ) = 00/
for w = i/4.

4. TFINDING AN INDUCED AcCYcCLIC TOURNAMENT

In this section, we obtain a lower bound (see Theorem 4.1 below) on the size of
any maximal induced acyclic tournament. As a consequence, any simple heuristic
which builds a maximal solution of a given random digraph, a.a.s. produces an
acyclic tournament of size within a muliplicative factor (= 1/2) of the optimal.

In what follows, we assume that p > n~/4 mainly to focus on the interesting
range of p. If p is smaller, then mat(D) < 9 almost surely and one can find
provably optimal solutions in polynomial time.
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Theorem 4.1. Given D € D(n,p) with p > n~"* and any w = w(n) such that

w(n) — 0o as n — 0o, with probability 1 — o(1), every mazimal induced acyclic
In(In np+w)

Inn

tournament is of size at least [§log, n], where 6 =1 —

Proof. Without loss of generality, we assume that p > n~/% so that log, n > 4.
Hence d = §(log, n) > 3 and |d] > 3.

For any induced acyclic tournament D[A] of size |A| = b, b < d = §(log, n),
and any vertex u € V' \ A, the probability that u can be added to A is given by

Pr[D[A U {u}] is an acyclic tournament] = (b + 1)p".

The above equality is true since D[A U {u}] induces an acyclic tournament if
and only if u can be added to any of the b+ 1 positions in the unique Hamilton
path of D[A] in such a way that each of the edges joining u with vertices in A is
present and is oriented in the proper direction. Also, this probability decreases
with increasing b.

This event depends only on the edges joining u with the vertices in A, and
hence, is independent of events corresponding to other vertices in V' '\ A. There-
fore, the probability that D[A] is a maximal acyclic tournament is given by

Pr(D[A]) is maximal =Pr[Vu € V' \ A, u cannot be added to A]

= (1 —(b+ 1)pb>n_b.

As b increases, this probability increases and hence achieves its maximum (for
b <d) at b= |d]. Hence, for an induced acyclic tournament D[A] of size |d], we
have (using (d + 1)(n — d) > nd):

nn)\ n—d] d 1 n—d
Pr(D[A] is maximal) < (1 (|d] +1)p6(11rlr)> < (1— a )
n
_ (d+1)(n—4d)
<e nd <e

—dnl-9

For any fized set A of size b < d, let £(A) denote the event that D[A] is a
maximal induced acyclic tournament.

Pr(£(4)) < blplle
Thus,
Pr(34,[A[=b:&E(4)) < (Z) pip(3) e—dn' =

(7)
b _ _
S (np(b*l)/2> e*dnl s — (f(n7p, b))befd’nl 67
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where we recall that f(n,p,b) = npt~1/2,

Note that for each b < |d],

f(n,p,b+ 1)1
(f(n,p,b))®

Hence Syea(f(p,5)° < (F(ps [d))D Sy gy (nmp + ) (140D
=2(f(n,p, |d]))!4. As a result, taking the union bound over all choices of A, we
see that (using |d| > 3)

= f(n,p, b+ 1)p"? = np® > np? = n'~% = (Innp) + w.

Pr(3A,|A| < |d] : E(A)) <2(f(n,p, LdJ))LdJ o—dnt < 2(np) (] g—dn'=5

_ In(ln np+w)
For § = 1 — n(nnptw)

this probability is
Pr[3A, [A| <d:E(A)] < 2. edmmp—(nnptw)) _g . o=dw < 96=v 5 () a5 n — c0.

Hence, every maximal induced acyclic tournament is of size at least [d]. [ ]

5. ANOTHER EFFICIENT HEURISTIC WITH IMPROVED GUARANTEE

We present below another efficient heuristic which will be analyzed and be shown
to have an additive improvement of © (\/ log,. n) over the guarantee given (in
Section 4) on the size of any maximal solution. It is similar to a heuristic presented
in [15] for finding large independent sets in G € G(n,1/2). We show that, for
every large constant ¢ > 0, one can find in polynomial time an acyclic tournament
of size at least |log, n + c4/log, n|.

The idea is to construct greedily a solution A of size g(n,p,c) = [log, n —
cy/log, n| and then add an optimal solution (found by an exhaustive search) in
the subgraph induced by those vertices each of which can be safely and individu-
ally added to A to get a bigger solution. We will show that exhaustive search can
be done in polynomial time and yields (a.a.s.) a solution of size 2c4/log, n. As
a result, we finally get a solution of the stated size. The algorithm is described
below.

ACYTOUR(D = (V, E),p,c)

1. Choose and fix a linear ordering o of V.
2. =12c; A=0; B=V.
3. while B # () and |A| < g(n/2,p,c") do

4. Let u be the o-smallest vertex in B.
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o

if D[A U {u}] induces an acyclic tournament then add u to A.
6. Remove u from B. endwhile

7. if |A| < g(n/2,p,c) or |B| < n/2, then Return FAIL and halt.

8. C={ueB:YWweA voueckE}; r=p L pu=|BpH.

9. if |C| € [(0.9)p, (1.1)p] then Return FAIL.

10. for each X C C': |X| = |2¢y/log, n/2| — 1 do

11. if D[X] is an acylic tournament then Return D[A U X] and halt.
endfor

12. Return FAIL.
We analyze the above algorithm and obtain the following result.

Theorem 5.1. Let D € D(n,p). For every sufficiently large constant ¢ > 1, if p
is such that n=1/¢* < p < 0.5, then, with probability 1 —o(1), ACYTOUR(D) will
output an induced acyclic tournament of size at least b’ = |(1+¢€')log, n|, where

e =c/y/log, n.

Proof. Recall our assumption that ¢ is sufficiently large.

Correctness. First, we prove the correctness. Note that D[A] is always an
induced acyclic tournament. Also, each u € C is such that D[A U {u}] is an
acyclic tournament with u as the unique sink vertex (having zero out-degree).
Hence, any acyclic tournament D[X]| present as a subgraph in D[C] can be safely
added to A so that D[A U X] also induces an acyclic tournament.

Analysis. Consider the following events defined as

Failure at step 7 :
& = |A] < g(n/2.p,) or |B| < n/2
Failure at step9 :
Ey =& NEY, where & = |C] € [(0.9)p, (1.1)p];
Failure at step 12 :
Es:=ENEN Eé, where

& = mat(D[C]) < [2dy/log, n/2] — 1.
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If none of the events {&1, £2, £3} holds, then the algorithm will succeed and output
a solution whose size is

|JAUX| > log,.(n/2) — ' /log,(n/2) +2c\/log, n/2 — 2
> (1+¢€)(log, n) + (¢ — ¢)y/log, n/2 — 2.5 — log, 2
> (1+ ¢€)(log, n) + (0.2¢)+/log, n/2 — 3.5
>

(1+ €)(log, n).
The probability of this happening is
Pr(é’Tﬁ (‘Sﬂg) =1- Pr(El Ué& U 53).

The events &1,&) and & are totally independent since they are determined by
pairwise disjoint sets of potential edges. Also, the events &1, & and &3 are mutu-
ally exclusive and hence

PI'(gl Ué& U 53) = Pr(é’l) + PI‘(EQ) + Pl‘(gg)
< Pr(&)) + Pr(g) | &) + Pr(& | & N &),
Let Vi denote the set of first n/2 vertices of o. Then, by Theorem 4.1, any
maximal tournament in D[Vj]) is of size at least log,(n/2) — log,(In(n/2) +
Inln(n/2)) > g(n/2,p,d) = [log,(n/2) — d\/log.(n/2)], with probability

1 —o(1). Hence, Pr(&;) = o(1).
For any fixed vertex u € B,

Pr(uecC) = Pr(Yve A, (v,u) € E) = pHl.

Hence
p = E[C|] = |B|-pH.

Since |C] is the sum of | B| identical and independent indicator random variables,
by applying Chernoff-Hoeffding bounds (see [19, 3]), we get that

Pr(|C] & [(0.9). (LL)p)) < 207/,

Since |A| = g(n/2,p, ), we deduce that
p o~ |B|-2r¢Vies /2y

after justifiably ignoring the effect of the ceiling function used in the definition
of g(n/2,p,c). More precisely, since we know that £ has not occured, |B| > n/2
and hence

(8) Tc'\/logrn/Q < u< 2rc’\/10grn/2_
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It is easy to verify that p — oo as n — oo. Hence Pr(&}| &) = o(1).
Given that neither of £ and & holds, it follows that |C| > (0.9)u =

(0.9) - r¢'V1o%:/2 Hence, using r > 2 and applying Theorem 1.2,

mat(D[C]) > Pc'\/log,, n/2+ 0.5+ 2log, 0.9J > Pc’\/logr n/2J -1

with probability 1 — o(1). This establishes that Pr(&5 | & N &) = o(1). It then
follows from (8) that ACYTOUR(D) outputs a solution of required size with
probability 1 — o(1).

Time Complexity. It is easy to see that the running time is polynomial except
for the for loop of lines 10 and 11. The maximum number of iterations of the
for loop is at most

C (1.1) 1.2 V108, (172)
(1) < QQCVWJ) < (o mewm))
-0 (,Ac'?aogr n)) ~0 (nou)) ’

where the upper bound on p is the one obtained in (8). Since each iteration takes
polynomial time, the algorithm finishes in polynomial time always. [

Remark 5.2. In Theorem 5.1, we assume that p > n~1/¢ . This is because if
p < n V¢ then mat(D) < [2¢® + 1] a.a.s. and hence even a provably optimal

solution can be found in polynomial time a.a.s.

6. mat(D) FOR NON-SIMPLE RANDOM DIGRAPHS

We also consider another model introduced in [22] which does not force the ran-
dom digraph to be simple and allows cycles of length 2.

Model D € Dy(n,p): Choose each directed edge u — v joining distinct elements
of V independently with probability p.
Note that if D € Ds(n,p) and D" € Dy(n, 1 — p), then for every b, we have

Pr(mat(D) =b) = Pr(mat(D') =b).

Hence, for the rest of this section, without loss of generality, we assume that
p < 0.5 and use ¢ to denote 1 — p.

The maximum size of any induced acyclic tournament is determined by those
unordered pairs {u,v} such that exactly one arc between u and v is present.
Hence, if D € Dy(n,p) and D’ € D(n,pq), then for every b, we have

Pr(mat(D) =b) = Pr(mat(D') =b).
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Hence, we can obtain the following analogues of Lemma 9.1, Theorems 1.2, 1.3,
1.6, 4.1, 5.1 and Corollary 1.4.

Lemma 6.1. For any positive integer b, for a random digraph D € Dy(n,p),
Pr[mat(D) > 0] > Prjw(G) > b,
where G € G(n,pq).

Theorem 6.2. Let D € Dy(n,p) with p > 1/n. Define

2(Inn
( )1+1; b* = |d—1/2].

d=2log 11+ 1= ———
N

Then, a.a.s. as n — oo, mat(D) is either b* or b* + 1.

Theorem 6.3. Let D € Dy(n,p). Let w = w(n) be any function so that as
n— oo, w < 0.5(Inn) and w — oo. If p=p(n), p > 1/n, is such that d (defined
in Theorem 6.2) satisfies 1 < [d] —d < 1 — % for all large values of n, then
mat(D) is a.a.s equal to |d].

Corollary 6.4. Let D € Dy(n,p). For every constant function p = p(n), there
exists a function f = f(n) =1—o0(1) such that the set Ny, is a subset of natural
numbers having density 1.

Our goal is to obtain a threshold statement in terms of p = p(n). First, observe
that Theorem 1.6 can be applied straightaway to get a threshold statement (for
Dsy(n,p) model) in terms of the parameter pg. However, to get a threshold in
terms of p more work needs to be done. Before stating the analogue of the
threshold theorem, we need some definitions.

Let w = w(n) be a sufficiently slow-growing function of n, such that w = w(1)
and w = o(lnn). Let i = i(n) be a suitably growing function which goes to co as
n — o0o. Define a = n~ %014 5%) and b = n=%0-1"w%). Let f(x,y) denote the
function 22 — x + y.

Theorem 6.5. Leti =i(n) € {1,..., |logyn]} (for everyn) be any fized function
of n. Then, there exist functions ¢ = ¢;(n) € [0,1] and d = d;(n) € [0,1] such that:
if D € Dy(n,p) with p > 1/n, then, asymptotically almost surely, the following
are true:

(i) If p > ¢, then pq > a and hence mat(D) > i.

(ii) If p < d, then pq < b and hence mat(D) < i,
where ¢, d are the real positive roots in the range [0, 1/2] of the quadratic equations
f(xz,a) =0 and f(y,b) = 0 respectively. Also, if i = i(n) is a growing function,
then ¢ —d = o(c).
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Hence it follows that we obtain thresholds (sharp if i = i(n) increases) for the
existence of induced acyclic tournaments of size i.

Proof of Theorem 6.5. Notice that pg = p(1—p) = p—p? and hence if pg = 3,
y € R, then p> —p+y =0, ie., f(p,y) = 0. Now, taking y to be a and b
respectively, we get that if p = ¢, then pg = a; if p = d, then pg = b. Also, since
pq is increasing when x € [0,1/2], p > ¢ implies pg > a, and p < d implies pg < b.
The Claims (i) and (ii) now follow by applying Lemma 3.2. It is easy to check
that for each y = a,b, f(x,y) = 0 has 2 positive real roots only one of which lies
in the range [0,1/2].

Now, for a sharp threshold we need to show that (c—d) = o(c), i.e., 1 —d/c =
o(1). This is proved as follows: If d/c > (1 — 1/+/i), then we are done, since
1—d/c < 1/v/i = o(1). Therefore, assume that d/c < (1—1/+/i). Now, ¢ € [0,1/2]
and hence ¢ < 1/2. By our assumption, d < (1 —1/V/i)c < (1 — 1//7). Hence,

c+d < l—ﬁ. Since ¢ and d satisfy f(c,a) = 0 and f(d, b) = 0, after subtracting,

we get f(c,a)—f(d,b) = (c—d)(c+d—1)+a—b = 0. Therefore, c—d = 12-2-. Now

c

using the upper bound on c+d, we get c—d < 1/‘5\%) = 2(a—b)V/i. Observe that

a < ¢ < 2a, since a =c—c? and ¢ € [0,1/2]. Therefore, (c —d)/c < (c—d)/a <
2(a — b)V/i/a. But from the remark following the proof of Theorem 1.6, we have
that (a —b)/a = O(1/i). Therefore (c—d)/c = O(\/i/i) = O(1/V/i) = o(1). Thus
in this case too, the threshold is seen to be sharp. [

Theorem 6.6. Given D € Do(n,p) with pg > n~* and any w = w(n) such that

w(n) — 0o as n — 0o, with probability 1 — o(1), every mazimal induced acyclic
In(In(npq)+w) ]

tournament is of size at least d = |§log,qg)-1 n], where § =1 — e

Theorem 6.7. Let D € Dy(n,p). For every sufficiently large constant ¢ > 1,
if p < 0.5 is such that nl/e < pqg < 0.25, then, with probability 1 — o(1),
ACYTOUR(D) will output an induced acyclic tournament of size at least b’ =

[(1 + €) log(pg)—1 ], where € = ¢/, [log(pg-1 1.

Remark 6.8. However, in the case of Dy(n, p) model, we need to slightly modify
the description of ACYTOUR(D) as follows: In the definition of C' (Line 8), we
also need to require that (u,v) & E for each v € A.

7. ON THE MAXIMUM SIZE OF INDUCED TOURNAMENTS

Suppose we drop the requirement of acyclicity of the induced tournament. It then
reduces to the clique problem as follows. Let us first recall some basic facts about
the distributions of w(G) and «(G) for G € G(n,p). w(G) (a(G)) denotes the
maximum size of a clique (an independent set) in G. It is easy to verify that w(G)
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for G € G(n,p) and a(G) for G € G(n,1 — p) are identically distributed. Also,
by the classical results of Bollobds and Erdds [5], and Grimmett and McDiarmid
(see e.g. [4], Chapter 11), w(G) is a.a.s. concentrated in just two values for every
p =p(n) <1—n"° for some suitably small constant € > 0. But it does not seem
to exhibit such sharp concentration behavior for larger values of p. In particular,
if p is such that p = 1 — n~2/3, w(G) is only known (see [10]) to be concentrated
in a band of ©(n?/3).

This has implications to the concentration of the maximum size of an induced
(need not be acyclic) tournament in a random digraph. We use w(D) to denote
the maximum size of an induced tournament in D. It is clear that w(D) for
D € D(n,p) and w(G) for G € G(n,2p) are identically distributed for every
p = p(n) < 0.5. Similarly, w(D) for D € Da(n,p) and w(G) for G € G(n,2p(1—p))
are identically distributed for every p = p(n) < 1.

But, unlike the case of mat(D), the concentration of w(D) is quite different
between the two models D(n,p) and Dsz(n,p). First, we focus on the model
Da(n,p). Since 2p(1 —p) < 0.5 for any 0 < p < 1, w(G) is 2-point concentrated
for G € G(n,2p(1 —p)), and hence we notice that w(D) is always concentrated in
just two values for any p.

If D € D(n,p), then w(D) is concentrated in just two values a.a.s. for any
p = p(n) < 0.25. However, for 0.25 < p < 0.5, w(D) is not tightly concentrated
and has the same distribution and concentration behavior as w(G) for certain
ranges of p > 0.5 (see the discussion before).

8. SUMMARY

The problem of determining the size of the largest induced acyclic tournament
mat(D) in a random digraph was studied. We showed that a.a.s. mat(D) takes
one of only two possible values. The result is valid for all ranges of the arc
probability p. The value of mat(D) also has an explicit closed form expression
(for all ranges of p) which does not seem to exist for clique number w(G) of a
random graph.

The results of this paper and those of [23], [22] and [8] show that mat(D) of
a random digraph behaves like the clique number w(G) of a random graph and
maximum induced acyclic subgraph size mas(D) behaves like the independence
number a(G) of a random graph (see also the discussion above in Section 7).

We then showed that a.a.s. every maximal acyclic tournament is of a size
which is at least nearly half of the optimal size. As a result, one immediately
gets an efficient approximation algorithm whose approximation ratio is bounded
by 2 + O((Inlnn)/(Inn)). We also considered and analyzed another efficient
heuristic whose approximation ratio was shown to be 2 — O(1//log, n).
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An interesting and natural open problem that comes to mind is the following.

Open Problem: Let p be a constant such that 0 < p < 0.5. Design a poly-
nomial time algorithm which, given D € D(n,p), a.a.s. finds an induced acyclic
tournament of size at least (1 + €) log, n for some positive constant e.

Solving this problem could turn out to be as hard as designing an efficient
algorithm which finds, given G € G(n,1/2), a clique of size (1 + €)logy, n and the
latter problem has remained open for more than three decades.

Unlike the case of mat(D), the gap between lower and upper bounds on
mas(D) obtained in [23, 22] is not very sharp. However, further progress has
been made on shortening this gap and the details appear in the extended abstract
8].
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9. APPENDIX

9.1. mat(D) versus w(G)

The following lemma relates the probabilities in the two models D(n,p) and
G(n,p) for having, respectively, tournaments and cliques of specific sizes. Its
proof is similar to the proof of an analogous relationship involving mas(D) and
a(G) (maximum size of an independent set in G) established in [23].

Lemma 9.1. For any positive integer b, for a random digraph D € D(n,p),
Pr{mat(D) > b] > Prjw(G) > b],

where G € G(n,p).

Proof. Given a linear ordering o of vertices of D and a subset A of size b, we
say that D[A] is consistent with o if for every o;,0; € A with i < j, D[A] has
the arc (oy,05).

Let 7 denote an arbitrary but fixed ordering of V. Once we fix 7, the spanning
subgraph of D formed by arcs of the form (7(¢),7(j)) (¢ < j) is having the same
distribution as G(n, p). Hence, for any A, the event of D[A] being consistent with
T is equivalent to the event of A inducing a clique in G(n,p). Hence,

Pr(mat(D) > b) =Pr( 3A, |A| =b, D[A] is an acyclic tournament)
=Pr(3JA, |A| = b, Jo, D[A] is consistent with o)
= Pr(Jo, A, |A| = b, D[A] is consistent with o)
>Pr(3JA, |A| = b, D[A] is consistent with 7 )
— Pr(w(G) > b).

Hence it is natural that we have a bigger upper bound for mat(D) than we have

for w(G). |

Note: Recall that we first draw an undirected G € G(n,2p) and then choose
uniformly randomly an orientation of F(G). Hence, for any fixed A C V of size
b with b = w(1),

Pr( D[A] is an acyclic tournament | G[A] induces a clique ) = —~ = o(1).

However, there are so many cliques of size b in G that one of them manages to
induce an acyclic tournament.
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9.2. Proof of Theorem 1.7

We reduce the NP-complete Maximum Clique problem MC(G, k) to the MAT(D,
k) problem as follows. Given an instance (G = (V, E), k) of the first problem,
compute an instance f(G) = (G’ = (V, A), k) in polynomial time where

A={(u,v) :uv € E,u < v}.

Clearly, G’ is a dag and it is easy to see that a set V/ C V induces a clique in
G if and only if V'’ induces an acyclic tournament in G’. This establishes that
MAT(D, k) is NP-hard even if D is restricted to be a dag.

The inapproximability of MAT(D) follows from the following observation.
Note that the reduction G — f(G) is an L-reduction in the sense of [20], since
|f(G)] = |G| and w(G) = mat(G’'). Hence, any inapproximability result on
maximum clique in undirected graphs (for example [12, 14]), implies a similar
inapproximability for the MAT(D) problem.

9.3. Proof of Claim 2.1

Order the vertices of U along a Hamilton path P (if any exists) of H. An arc
(u,v) € A is a forward arc if u comes before v in P and is a backward arc
otherwise. Since H is acyclic, any arc (v,u) € A must be a forward arc, since
otherwise the segment of P from u to v along with (v, u) forms a cycle in H.

Now if there is another Hamilton path @ in H, ) # P, then walking along
P, consider the first vertex a where @ differs from P. Then in the path @, a is
visited immediately after some vertex a’ that comes after a in P. But this implies
that (a/,a) is a backward arc in H contradicting the observation earlier that H
has no backward arc.

9.4. Remaining cases of Theorem 1.2

For 1/wn <p < 1/n,
B 0) = () -4 <t < () = o)
Now, an acyclic tournament of size 2 is simply an edge which a.a.s. exists since:

Primat(D) < 2] = Pr[D is the empty graph] = (1 — 2p)(g) < e mn=hp — (1),

since p > 1/wn > w/n?. Hence, when 1/wn < p < 1/n, mat(D) € {2,3}, a.a.s.
For wn=2 < p < 1/wn,

E[X(n,3)] = (g) - 3! p(g) < n3p® = o(1) since np = o(1).
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The proof for mat(D) > 2 is the same as in the previous case, since n?p =
w(1), and hence, at least one arc will exist, a.a.s. So when w/n? < p < 1/wn,
mat(D) = 2, a.a.s.

For (wn?)~! < p <w/n? E[X(n,3)] = o(1), as in the previous case, and so
mat(D) = 1 or 2, a.a.s. When p < (wn?)~!, mat(D) = 1 since D a.a.s. has no

directed edge.
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