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Abstract

A twin edge k-coloring of a graph G is a proper edge coloring of G with
the elements of Zk so that the induced vertex coloring in which the color
of a vertex v in G is the sum (in Zk) of the colors of the edges incident
with v is a proper vertex coloring. The minimum k for which G has a twin
edge k-coloring is called the twin chromatic index of G. Among the results
presented are formulas for the twin chromatic index of each complete graph
and each complete bipartite graph.
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1. Introduction

In 1968, Rosa [13] introduced a vertex labeling that induces an edge-distinguishing

labeling defined by subtracting labels. In particular, for a graph G of size m, a
vertex labeling (an injective function) f : V (G) → {0, 1, . . . ,m} was called a β-
valuation by Rosa if the induced edge labeling f ′ : E(G) → {1, 2, . . . ,m} defined
by f ′(uv) = |f(u) − f(v)| was bijective. In 1972 Golomb [8] called a β-valuation
a graceful labeling and a graph possessing a graceful labeling a graceful graph. It
is this terminology that has become standard. Much research has been done on
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graceful graphs. A popular conjecture in graph theory, due to Anton Kotzig and
Gerhard Ringel, is the following.

The Graceful Tree Conjecture. Every nontrivial tree is graceful.

In 1991 Gnana Jothi [7] introduced a concept that, in a certain sense, reverses
the roles of vertices and edges in graceful labelings (see also [6]). For a connected
graph G of order n ≥ 3, let f : E(G) → Zn be an edge labeling of G that induces
a bijective function f ′ : V (G) → Zn defined by f ′(v) =

∑

e∈Ev

f(e) for each
vertex v of G, where Ev is the set of edges of G incident with a vertex v. Such
a labeling f is called a modular edge-graceful labeling, while a graph possessing
such a labeling is called modular edge-graceful (see [10]). Verifying a conjecture
by Gnana Jothi on trees, Jones, Kolasinski and Zhang [11] showed not only that
every tree of order n ≥ 3 is modular edge-graceful if and only if n 6≡ 2 (mod 4) but
a connected graph of order n ≥ 3 is modular edge-graceful if and only if n 6≡ 2
(mod 4). These concepts have been studied in greater detail by Jones [9]. A
generalization of this concept has been introduced recently by Anholcer, Cichacz
and Milanič in [2].

Prior to Jothi’s paper, an edge labeling (with positive integers) of a connected
graph G was introduced in 1986 [3] for the purpose of producing a weighted
graph whose degrees (obtained by adding the weights of the incident edges of
each vertex) were distinct. Such a weighted graph was called irregular. This
concept was later looked at in another manner. For the set N of positive integers,
an edge coloring c : E(G) → N, where adjacent edges may be colored the same,
is said to be vertex-distinguishing if the coloring c′ : V (G) → N induced by c
and defined by c′(v) =

∑

e∈Ev

c(e) has the property that c′(x) 6= c′(y) for every
two distinct vertices x and y of G. The research in [3] dealt with minimizing the
largest color assigned to the edges of the graph to produce an irregular graph.
Vertex-distinguishing edge colorings have received increased attention during the
past 25 years (see [5, pp. 370-385]).

A neighbor-distinguishing coloring of a graph G is a coloring in which every
pair of adjacent vertices of G are colored differently. Such a coloring is more
commonly called a proper vertex coloring. The minimum number of colors needed
in a proper vertex coloring of a graph G is the chromatic number of G and
denoted by χ(G). A number of neighbor-distinguishing vertex colorings different
from standard proper colorings have been introduced in the literature (see [5, pp.
383-391], for example).

In 2005 non-proper edge colorings of graphs were studied that induce a proper
vertex coloring [1]. In particular, for k ∈ N, let c : E(G) → {1, 2, . . . , k} be an
edge coloring of G (where adjacent edges may be assigned the same color). A
vertex coloring c′ : V (G) → N is defined where c′(v) is the sum of the colors of
the edges incident with v. If c′ is a proper vertex coloring of G, then c is called a
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neighbor-distinguishing edge coloring of G (see [5, p. 385]). A major conjecture
in this area is the following [12].

The 1-2-3 Conjecture. For every connected graph G of order at least 3, there
exists a neighbor-distinguishing edge coloring of G using only the colors 1, 2, 3.

Among the various edge colorings studied in graph theory, the best known and
most studied are proper edge colorings. In a proper edge coloring of a graph
G, each edge of G is assigned a color from a given set of colors where adjacent
edges are colored differently. The minimum number of colors needed in a proper
edge coloring of G is called the chromatic index of G and is denoted by χ′(G).
The classic theorem in this connection is due to Vizing [14] who proved that
∆(G) ≤ χ′(G) ≤ ∆(G) + 1 for every nonempty graph G.

A related and also well-studied graph coloring is the so-called total coloring of
a graph G that assigns colors to both the vertices and edges of G so that not only
the vertex coloring and edge coloring are proper but no vertex and an incident
edge are assigned the same color. The minimum number of colors required for
a total coloring of G is the total chromatic number of G, denoted by χ′′(G). It
then follows that χ′′(G) ≥ ∆(G) + 1, where ∆(G) is the maximum degree of G.
A well-known conjecture in this area is due independently to Behzad and Vizing
(see [5, p. 282]).

The Total Coloring Conjecture. For every graph G, χ′′(G) ≤ 2 + ∆(G).

Inspired by the graph colorings described above, we introduce a proper edge
coloring of a graph that induces a proper vertex coloring where the colors belong
to Zk for some integer k ≥ 2. We refer to the books [4, 5] for graph theory notation
and terminology not described in this paper. All graphs under consideration here
are connected graphs of order at least 3.

2. Twin Chromatic Index

For a connected graph G of order at least 3, a proper edge coloring c : E(G) → Zk

for some integer k ≥ 2 is sought for which the induced vertex coloring c′ : V (G) →
Zk defined by

c′(v) =
∑

e∈Ev

c(e) in Zk,

(where the indicated sum is computed in Zk) results in a proper vertex coloring
of G. We refer to such a coloring as a twin edge k-coloring or simply a twin edge

coloring of G. The minimum k for which G has a twin edge k-coloring is called
the twin chromatic index of G and is denoted by χ′

t(G). Since a twin edge coloring
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is not only a proper edge coloring of G but induces a proper vertex coloring of
G, it follows that

χ′

t(G) ≥ max{χ(G), χ′(G)}.

Since max{χ(G), χ′(G)} = χ′(G) except when G is a complete graph of even
order, we have χ′

t(G) ≥ χ′(G) except possibly when G is a complete graph of
even order.

While χ′

t(G) does not exist if G is the connected graph of order 2, every
connected graph of order at least 3 has a twin edge coloring. To see this, let
G be a connected graph of size m ≥ 2. If m = 2, then assign the colors 1
and 2 in Z3 to the two edges of G. If m ≥ 3, then assign the m elements
0, 1, 2, 4, . . . , 2m−2 ∈ Z2m−1 to the m edges of G in a one-to-one manner so that
the color 0 is assigned to a pendant edge if G has such an edge. Hence the sets
of edges colored by nonzero elements in Z2m−1 that are incident with every two
adjacent vertices are distinct. Since the base 2 representations of the colors of
these vertices are different, it follows that adjacent vertices are assigned distinct
colors in Z2m−1 . Thus, this coloring is a twin edge coloring. This observation
yields the following.

Proposition 2.1. If G is a connected graph of order at least 3 and size m, then

χ′

t(G) exists. Furthermore, χ′

t(G) ≤ 2m−1 if m ≥ 3.

To illustrate the concept of twin edge colorings, we determine the twin chromatic
indexes of two familiar classes of graphs, namely paths and cycles. We begin with
paths.

Proposition 2.2. If Pn is a path of order n ≥ 3, then χ′

t(Pn) = 3.

Proof. Let Pn = (v1, v2, . . . , vn) be a path of order n ≥ 3 where ei = vivi+1 for
i = 1, 2, . . . , n− 1. Since χ′(Pn) = 2, it follows that χ′

t(Pn) ≥ χ′(Pn) = 2. First,
we show that χ′

t(Pn) 6= 2. Let c be a proper edge coloring of Pn using the colors
of Z2. Then c(ei) = 1 ∈ Z2 for some i ∈ {1, 2, . . . , n − 1} and so c(ei−1) = 0
if i ≥ 2 and c(ei+1) = 0 if i ≤ n − 2. However then, c′(vi) = c′(vi+1) = 1 and
so c is not a twin edge 2-coloring. Thus, as claimed, χ′

t(Pn) ≥ 3. It remains to
show that Pn has a twin edge 3-coloring. A coloring c : E(Pn) → Z3 is defined
as follows.

• For n ≡ 0 (mod 3) or n ≡ 1 (mod 3), let c(ej) = r if j ≡ r (mod 3) for
r = 0, 1, 2. For example, if n = 6, then (c(e1), c(e2), . . . , c(e5)) = (1, 2, 0, 1, 2);
while if n = 7, then (c(e1), c(e2), . . . , c(e6)) = (1, 2, 0, 1, 2, 0). If n ≡ 0 (mod 3),
then for 1 ≤ i ≤ n,

(1) c′(vi) =







0 if i ≡ 2 (mod 3),
1 if i ≡ 1 (mod 3),
2 if i ≡ 0 (mod 3).
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If n ≡ 1 (mod 3), then c′(vi) is given in (1) for 1 ≤ i ≤ n − 1 and c′(vn) = 0.
Hence (c′(v1), c

′(v2), . . . , c
′(v6)) = (1, 0, 2, 1, 0, 2) and (c′(v1), c

′(v2), . . . , c
′(v7)) =

(1, 0, 2, 1, 0, 2, 0).

• For n ≡ 2 (mod 3), let c(ej) = 2 + r if j ≡ r (mod 3) for r = 0, 1, 2. Then
c′(v1) = c′(vn) = 0 and for 2 ≤ i ≤ n− 1,

c′(vi) =







0 if i ≡ 0 (mod 3),
1 if i ≡ 2 (mod 3),
2 if i ≡ 1 (mod 3).

For example, if n = 8, then (c(e1), c(e2), . . . , c(e7)) = (0, 1, 2, 0, 1, 2, 0) and (c′(v1),
c′(v2), . . . , c

′(v8)) = (0, 1, 0, 2, 1, 0, 2, 0). Therefore, χ′

t(Pn) ≥ 3 and so χ′

t(Pn) = 3
for n ≥ 3.

To determine the twin chromatic indexes of cycles, the following observation will
be useful.

Observation 2.3. If a connected graph G contains two adjacent vertices of degree

∆(G), then χ′

t(G) ≥ 1 + ∆(G).

Proposition 2.4. If Cn is a cycle of order n ≥ 3, then

χ′

t(Cn) =







3 if n ≡ 0 (mod 3),
4 if n 6≡ 0 (mod 3) and n 6= 5,
5 if n = 5.

Proof. Let Cn = (v1, v2, . . . , vn, vn+1 = v1) where ei = vivi+1 for i = 1, 2, . . . , n
and en+1 = e1. By Observation 2.3, χ′

t(Cn) ≥ 3. First, suppose that n ≡ 0
(mod 3) and so n = 3k for some positive integer k. Define the coloring c :
E(Cn) → Z3 by c(ei) ≡ 2 + r (mod 3) if i ≡ r (mod 3) for r = 0, 1, 2. Then for
1 ≤ i ≤ n,

c′(vi) =







0 if i ≡ 0 (mod 3),
1 if i ≡ 2 (mod 3),
2 if i ≡ 1 (mod 3).

For example, if n = 6, then (c(e1), c(e2), . . . , c(e6)) = (0, 1, 2, 0, 1, 2) and (c′(v1),
c′(v2), . . . , c

′(v6)) = (2, 1, 0, 2, 1, 0). Hence χ′

t(Cn) = 3 when n ≡ 0 (mod 3).

Next, suppose that n 6≡ 0 (mod 3) and n 6= 5. First, we make an observation,
namely, if c is a twin edge coloring of Cn and |i − j| = 2, then c(ei) 6= c(ej).
Suppose, say, that c(e1) = c(e3). However then, c′(v2) = c(e1) + c(e2) = c(e2) +
c(e3) = c′(v3), which is impossible. This implies that if n 6≡ 0 (mod 3), then
χ′

t(Cn) ≥ 4. To show that χ′

t(Cn) ≤ 4, define the coloring c : E(Cn) → Z4 as
follows.



618 E. Andrews, L. Helenius, D. Johnston, J. VerWys and P. Zhang

• For n ≡ 1 (mod 3), let c(ei) ≡ 2 + r (mod 3) if i ≡ r (mod 3) for r = 0, 1, 2
and 1 ≤ i ≤ n−1 and c(en) = 3. Then c′(v1) = 3, c′(vn) = 1 and for 2 ≤ i ≤ n−1,

(2) c′(vi) =







1 if i ≡ 2 (mod 3),
2 if i ≡ 1 (mod 3),
3 if i ≡ 0 (mod 3).

(In particular, c′(v2) = 1 and c′(vn−1) = 3.) For example, if n = 7, then
(c(e1), c(e2), . . . , c(e7)) = (0, 1, 2, 0, 1, 2, 3) and (c′(v1), c

′(v2), . . . , c
′(v7)) = (3, 1, 3,

2, 1, 3, 1). Hence χ′

t(Cn) = 4 when n ≡ 1 (mod 3).

• Let n ≡ 2 (mod 3) and n ≥ 8. If n = 8, let (c(e1), c(e2), . . . , c(e8)) =
(0, 1, 2, 3, 0, 1, 2, 3); while if n ≥ 11, let c(ei) ≡ 2 + r (mod 3) if i ≡ r (mod 3) for
r = 0, 1, 2 and 1≤ i ≤ n−9 and let (c(en−8), c(en−7), . . . , c(en)) = (0, 1, 2, 3, 0, 1, 2,
3).

Consequently, if n = 8, then (c′(v1), c
′(v2), . . . , c

′(v8)) = (3, 1, 3, 1, 3, 1, 3, 1);
while if n ≥ 11, then c′(v1) = 3, c′(vi) is the same as in (2) for 2 ≤ i ≤ n− 9 and
(c′(vn−8), c

′(vn−7), . . . , c
′(vn)) = (3, 1, 3, 1, 3, 1, 3, 1). For example, if n = 11, then

(c(e1), c(e2), . . . , c(e11))=(0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3) and (c′(v1), c
′(v2), . . . , c

′(v11))
= (3, 1, 3, 2, 1, 3, 1, 3, 1, 3, 1). Hence χ′

t(Cn) = 4 when n ≡ 2 (mod 3).
Finally, we show that χ′

t(C5) = 5. We have already observed that χ′

t(C5) ≥ 3.
Let C5 = (v0, v1, v2, v3, v4, v5 = v0) and let c : E(C5) → Z5 be defined
by c(vivi+1) = i for 0 ≤ i ≤ 4. Since c′(v0) = 4, c′(v1) = 1, c′(v2) = 3,
c′(v3) = 0 and c′(c4) = 2, it follows that c is a twin edge 5-coloring of C5 and
so χ′

t(C5) ≤ 5. We now show that χ′

t(C5) ≥ 5. Suppose that there is a twin
edge k-coloring where k = 3 or k = 4. Then some element a ∈ Zk must be used
twice, say c(v0v1) = c(v2v3) = a. Suppose that c(v1v2) = b, where b 6= a. Then
c′(v1) = c′(v2) = a + b, which is a contradiction. Thus, χ′

t(C5) = 5.

3. Complete Graphs

We now investigate twin edge colorings of complete graphs Kn starting with the
case n being odd. The following observation will be useful later.

Observation 3.1. Let n ≥ 2 be an integer. If n is odd, then
(

n
2

)

= 0 in Zn and

if n is even, then
(

n
2

)

= n
2 in Zn.

Lemma 3.2. If n ≥ 3 is an odd integer, then χ′

t(Kn) = n.

Proof. By Observation 2.3, χ′

t(Kn) ≥ 1+∆(Kn) = n. To show that χ′

t(Kn) ≤ n,
let V (Kn) = {v0, v1, . . . , vn−1} and arrange the vertices v0, v1, . . . , vn−1 consecu-
tively in a regular n-gon and join every two vertices by a straight line segment,
producing Kn. For each i (0 ≤ i ≤ n − 1), assign to vi−1vi+1 and those edges
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parallel to vi−1vi+1 the color i. Then vi has the color
(

n
2

)

− i, resulting in a proper
vertex coloring of Kn. Thus χ′

t(Kn) = n.

When n ≥ 4 is even, however, χ′

t(Kn) 6= n.

Lemma 3.3. If n ≥ 4 is an even integer, then χ′

t(Kn) ≥ n + 1.

Proof. Since χ′

t(Kn) ≥ 1 + ∆(Kn) = n by Observation 2.3, it remains to show
that χ′

t(Kn) 6= n. Assume, to the contrary, that χ′

t(Kn) = n. Then there is a
proper edge coloring of Kn using the colors in Zn that results in a proper vertex
coloring of Kn. Since every vertex of Kn has degree n − 1, the edges incident
with each vertex of Kn are colored with an (n − 1)-element subset of Zn. For
example, if v is a vertex of Kn, then there is exactly one element a ∈ Zn that is
not used in coloring the edges incident with v. Consequently, at most n

2 −1 edges
of Kn are colored a, implying that there exists some other vertex u of Kn none of
whose incident edges are colored a. However then, c′(u) = c′(v) =

(

n
2

)

− a, which
is impossible since u and v are adjacent in Kn. Thus χ′

t(Kn) ≥ n + 1.

If n ≥ 4 is an even integer, then either n ≡ 0 (mod 4) or n ≡ 2 (mod 4). We
consider these two situations, beginning with n ≡ 0 (mod 4).

Lemma 3.4. If n ≥ 4 is an integer with n ≡ 0 (mod 4), then χ′

t(Kn) = n + 1.

Proof. By Lemma 3.3, it suffices to show that Kn has a twin edge (n + 1)-
coloring. Let V (Kn) = {v0, v1, . . . , vn−1} and arrange the vertices v0, v1, . . . , vn−1

consecutively in a regular n-gon and join every two vertices by a straight line
segment, thereby producing Kn.

Since n ≡ 0 (mod 4) and n ≥ 4, it follows that n = 4k for some positive
integer k. For k = 1, the coloring c : E(K4) → Z5 defined by c(v0v1) = c(v2v3) =
0, c(v0v2) = 1, c(v0v3) = 2, c(v1v2) = 3 and c(v1v3) = 4 is a twin edge 5-coloring
of K4 and so we may assume that k ≥ 2. First, let M0,M1, . . . ,M2k−1 be 2k
pairwise edge-disjoint matchings of size 2k − 1 in K4k where each matching Mi

(0 ≤ i ≤ 2k − 1) consists of those 2k − 1 edges perpendicular to viv2k+i. Then

H = K4k −
(

⋃2k−1
i=0 Mi

)

is therefore a (2k)-regular graph. The graph H has a

1-factorization {F1, F2, . . . , F2k} where Fi (1 ≤ i ≤ 2k) consists of the edge vivi+1

and those edges parallel to vivi+1. Let X1 = {v0v2k−1, v1v2k−2, . . . , vk−1vk} and
X ′

1 = {v2kv4k−1, v2k+1v4k−2, . . . , v3k−1v3k}. Thus |X1| = |X ′

1| = k and E(Fk−1) =
X1 ∪X ′

1. Define a coloring c : E(K4k) → Z4k+1 as follows. If k = 2, let

c(e) =



















0 if e ∈ X ′

1,

i− 1 if e ∈ E(Fi) where 2 ≤ i ≤ 2k,

2k if e ∈ X1,

2k + j + 1 if e ∈ Mj where 0 ≤ j ≤ 2k − 1.
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If k ≥ 3, let

c(e) =



























0 if e ∈ X ′

1,

i if e ∈ E(Fi) where 1 ≤ i ≤ k − 2,
i− 1 if e ∈ E(Fi) where k ≤ i ≤ 2k,
2k if e ∈ X1,

2k + j + 1 if e ∈ Mj where 0 ≤ j ≤ 2k − 1.

Then c is a proper edge coloring. For 0 ≤ i ≤ 2k − 1,

c′(vi) =
[

(

4k+1
2

)

− 2k
]

− (2k + i + 1) + 2k = −(2k + i + 1) in Z4k+1;

while for 2k ≤ i ≤ 4k − 1,

c′(vi) =
[

(

4k+1
2

)

− 2k
]

− (i + 1) + 0 = −(2k + i + 1) in Z4k+1.

Thus (c′(v0), c
′(v1), . . . , c

′(v4k−1)) = (2k, 2k − 1, . . . , 1, 0, 4k, 4k − 1, . . . , 2k + 2).
That is, each color in Z4k+1 (except 2k + 1) is used exactly once. Therefore,
c′ : V (K4k) → Z4k+1 is a proper vertex coloring of G and so χ′

t(Kn) = n + 1.

Lemma 3.5. If n ≥ 6 is an integer with n ≡ 2 (mod 4), then χ′

t(Kn) = n + 1.

Proof. Since χ′

t(Kn) ≥ n + 1 by Lemma 3.3, it suffices to show that Kn has a
twin edge (n + 1)-coloring when n ≥ 6 with n ≡ 2 (mod 4). Let n = 4k + 2
for some positive integer k and let V (K4k+2) = {v0, v1, . . . , v4k+1}. Arrange the
vertices v1, v2, . . . , v4k+1 consecutively in a regular (4k + 1)-gon, place v0 in the
center of the (4k + 1)-gon and then join every two vertices by a straight line
segment, thereby producing K4k+2.

Let F = {F1, F2, . . . , F4k+1} be the 1-factorization of K4k+2, in which Fi

is the 1-factor of K4k+2 that consists of the edge v0v2k+1+i and the 2k edges
perpendicular to v0v2k+1+i when 1 ≤ i ≤ 2k and Fi consists of the edge v0vi−2k

and the 2k edges perpendicular to v0vi−2k where 2k + 1 ≤ i ≤ 4k + 1. Also, let
Mi = E(Fi) (1 ≤ i ≤ 4k+1) denote the perfect matching of K4k+2 resulting from
Fi. Observe that the edge vivi+1 belongs to Mi for 1 ≤ i ≤ 4k and v4k+1v1 ∈
M4k+1.

We now define an edge coloring c1 (described below) that assigns the 4k + 1
colors in Z4k+3 − {0, 1} to the 4k + 1 matchings M1,M2, . . . ,M4k+1 such that

(i) c1 assigns exactly one color to all edges in Mi for each i (1 ≤ i ≤ 4k + 1)
and

(ii) c1(e) 6= c1(f) if e ∈ Mi, f ∈ Mj where i 6= j.
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• For an even integer i with 2 ≤ i ≤ 4k, let

c1(e) =

{

(2k + 3) − i if e ∈ Mi and 2 ≤ i ≤ 2k,

i− 2k if e ∈ Mi and 2k + 2 ≤ i ≤ 4k.

• For i = 1 or i = 2k + 1, let

c1(e) =

{

2k + 3 if e ∈ M1,

2k + 2 if e ∈ M2k+1.

• For the remaining 2k−1 matchings M3,M5, . . . ,M2k−1 and M2k+3,M2k+5,
. . . ,M4k+1, the coloring c1 assigns the remaining 2k − 1 colors 2k + 4, 2k +
5, . . . , 4k + 2 to these matchings in an arbitrary way such that distinct colors
are assigned to the edges in distinct matchings.

Hence, the 2k colors 2, 3, . . . , 2k+1 in Z4k+3 are used to color the edges in the
2k matchings M2,M4, . . . ,M4k; while the 2k + 1 colors 2k + 2, 2k + 3, . . . , 4k + 2
in Z4k+3 are used to color the edges in 2k + 1 matchings M1,M3, . . . ,M4k+1.
Therefore, c1 is a proper edge coloring of K4k+2. Since the colors 0 and 1 are not
used,

c′1(v) = 2 + 3 + · · · + (4k + 2) =
(

4k+3
2

)

− 0 − 1

for each v ∈ V (K4k+2).
Next, we define a new edge coloring c : E(K4k+2) → Z4k+3 from the coloring

c1 as follows. First, we partition M2k+1 into two sets X and Y where

X = {viv4k+3−i : i is odd and 3 ≤ i ≤ 2k + 1},

Y = {v0v1} ∪ {viv4k+3−i : i is even and 2 ≤ i ≤ 2k}.

For each e ∈ E(K4k+2), let

(3) c(e) =















0 if e ∈ {vivi+1 : i is even and 0 ≤ i ≤ 4k},

1 if e ∈ {v1v2} ∪X,

c1(e) otherwise.

Let b =
(

4k+3
2

)

− 1, where then b = −1 in Z4k+3 and let c′ : V (K4k+2) → Z4k+3

be the vertex coloring induced by c. Then

• For i = 0, 1, 2,

c′(v0) = b− (2k + 2),

c′(v1) = b− (2k + 2) − (2k + 3) + 1 = b− 1,

c′(v2) = b− (2k + 3) − (2k + 1) + 1 = b− 0.
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• For 3 ≤ i ≤ 2k + 1,

c′(vi) =

{

b− (2k + 3 − i) if i is even,

b− (2k + 2) − (2k + 4 − i) + 1 = b− (2 − i) if i is odd.

• For 2k + 2 ≤ i ≤ 4k + 1,

c′(vi) =

{

b− (2k + 2) − (i− 2k) + 1 = b− (i + 1) if i is even,

b− (i− 1 − 2k) if i is odd.

For each i with 0 ≤ i ≤ 4k + 1, let c′(vi) = b − ai for 0 ≤ i ≤ 4k + 1. If
sc′ = (a0, a1, . . . , a4k+1) (where ai = b− c′(vi) for 0 ≤ i ≤ 4k + 1), then

sc′ = (2k + 2, 1, 0, 4k + 2, 2k − 1, 4k, 2k − 3, . . . , 2k + 8, 5,

2k + 6, 3, 2k + 4 = b− c′(v2k+1), 2k + 3, 2,

2k + 5, 4, . . . , 4k − 1, 2k − 2, 4k + 1, 2k).

For example, the sequences sc′ for n = 6, 10, 14 are the following:

(4, 1, 0, 6, 5, 2) for n = 6 and k = 1,

(6, 1, 0, 10, 3, 8, 7, 2, 9, 4) for n = 10 and k = 2,

(8, 1, 0, 14, 5, 12, 3, 10, 9, 2, 11, 4, 13, 6) for n = 14 and k = 3.

In conclusion, we observe that {c′(v) : v ∈ V (K4k+2)} = {b−i : 0 ≤ i ≤ 4k+2, i 6=
2k + 1} and so c is a twin edge (4k + 3)-coloring of K4k+2.

In summary, we have the following.

Theorem 3.6. For each integer n ≥ 3,

χ′

t(Kn) =

{

n if n is odd,
n + 1 if n is even.

4. Complete Bipartite Graphs

In this section we determine the twin chromatic indexes of the complete bipartite
graphs Ka,b where 1 ≤ a ≤ b, beginning with stars. For a star K1,b (b ≥ 2), a
twin edge coloring is the same as a modular edge-graceful labeling (see [9]) and
so we have the following result (see also Lemma 2 in [2]).

Proposition 4.1. If K1,b is a star of order b ≥ 2, then

χ′

t(K1,b) =

{

b + 1 if b 6≡ 1(mod 4),
b + 2 if b ≡ 1(mod 4).
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We now determine χ′

t(Ka,b) where 2 ≤ a ≤ b and b ∈ {a, a + 1}.

Lemma 4.2. If a ≥ 2 and b are integers with b ∈ {a, a+1}, then χ′

t(Ka,b) = a+2.

Proof. Let U = {u1, u2, . . . , ua} and V = {v1, v2, . . . , vb} be the partite sets of
Ka,b. We consider two cases, according to whether b = a or b = a + 1.

Case 1. b = a. By Observation 2.3, χ′

t(Ka,a) ≥ a + 1. First, we show that
χ′

t(Ka,a) 6= a+1. Suppose that χ′

t(Ka,a) = a+1. Then there is a twin edge (a+1)-
coloring c of Ka,a using the colors in Za+1. Hence c assigns exactly a colors to the
a incident edges of each vertex of Ka,a. Consider u1 and let t ∈ Za+1 such that
c assigns the colors in Za+1 − {t} to the edges incident with u1 (and so no edge
incident with u1 is colored t). We claim that for each vertex vj (1 ≤ j ≤ a), there
is an edge incident with vj that is colored t; for otherwise, we may assume that no
edge incident with v1 is colored t. However then, c assigns the colors in Za+1−{t}
to the edges incident with v1 and so c′(u1) = c′(v1), which is impossible. Thus,
as claimed, there is an edge incident with vj that is colored t for j = 1, 2, . . . , a.
Hence there are at least a edges of Ka,a that are colored t. Since no edge incident
with u1 is colored t, it follows that at least two edges colored t are incident with
the same vertex in U , which is a contradiction. Therefore, χ′

t(Ka,a) 6= a + 1 and
so χ′

t(Ka,a) ≥ a + 2.
Next, we show that Ka,a has a twin edge (a+2)-coloring. Since Ka,a is bipar-

tite and a-regular, Ka,a is 1-factorable. Let {F0, F1, . . . , Fa−1} be a 1-factorization
of Ka,a where

E(Fi) = {ujvj+i : 1 ≤ j ≤ a} for 0 ≤ i ≤ a− 1

(all subscripts are expressed as integers modulo a). For example, E(F0) = {ujvj :
1 ≤ j ≤ a}, E(F1) = {ujvj+1 : 1 ≤ j ≤ a} and E(Fa−1) = {ujvj+(a−1) : 1 ≤ j ≤
a}. We consider two cases, according to whether a is odd or a is even.

Subcase 1.1 a is odd. Then a = 2k + 1 for some positive integer k. Let Ma

and Ma+1 be the following matchings in Ka,a:

Ma = {u1v1, u3v2, u4v4, u6v6, . . . , u2kv2k},

Ma+1 = {u1v2, u3v3, u4v5, u6v7, . . . u2kv2k+1}.

Thus |Ma| = |Ma+1| = k + 1. For each i with 0 ≤ i ≤ a − 1, let Mi = E(Fi) −
(Ma ∪ Ma+1). Define a proper edge coloring c : E(Ka,a) → Za+2 by c(e) = i
if e ∈ Mi for 0 ≤ i ≤ a + 1. Since c′(u) =

(

a
2

)

or c′(u) =
(

a
2

)

− 4 if u ∈ U
and c′(v) =

(

a
2

)

− 1 or c′(v) =
(

a
2

)

− 2 if v ∈ V , it follows that c is a twin edge
(a + 2)-coloring. Therefore, χ′

t(Ka,a) = a + 2.

Subcase 1.2 a is even. Then a = 2k ≥ 2 for some positive integer k. Let Ma

and Ma+1 be the following matchings in Ka,a:

Ma = {u1v1, u3v3, . . . , u2k−1v2k−1},

Ma+1 = {u1v2, u3v4, . . . , u2k−1v2k}.



624 E. Andrews, L. Helenius, D. Johnston, J. VerWys and P. Zhang

Thus |Ma| = |Ma+1| = k. For each i with 0 ≤ i ≤ a − 1, let Mi = E(Fi) −
(Ma ∪ Ma+1). Define a proper edge coloring c : E(Ka,a) → Za+2 by c(e) = i if
e ∈ Mi for 0 ≤ i ≤ a + 1. Since c′(u) =

(

a
2

)

or c′(u) =
(

a
2

)

− 4 if u ∈ U and
c′(v) =

(

a
2

)

−2 if v ∈ V , it follows that c is a twin edge (a+2)-coloring. Therefore,
χ′

t(Ka,a) = a + 2.

Case 2. b = a+1. Since ∆(Ka,a+1) = a+1, it follows that χ′

t(Ka,a+1) ≥ a+1.
First, we show that χ′

t(Ka,a+1) 6= a + 1. Suppose that χ′

t(Ka,a+1) = a + 1. Then
there is a twin edge (a + 1)-coloring c of Ka,a+1 using colors in Za+1. Since
deg ui = a + 1 for 1 ≤ i ≤ a, it follows that c assigns all colors in Za+1 to the
a + 1 edges incident with each vertex ui. Thus, a edges in Ka,a+1 are colored 0.
Since |V | = a + 1, some vertex in V is not incident with any edge colored 0, say
v1. Consequently, c assigns the a colors in Za+1 − {0} to the a edges incident
with v1. However then, c′(v1) = c′(ui) =

(

a+1
2

)

for 1 ≤ i ≤ a, which is impossible.
Therefore, χ′

t(Ka,a+1) 6= a + 1 and χ′

t(Ka,a+1) ≥ a + 2.

Next, we show that Ka,a+1 has a twin edge (a+ 2)-coloring. Define a proper
edge coloring c : E(Ka,a+1) → Za+2 using only the colors in Za+2−{0} as follows.
For each i with 1 ≤ i ≤ a, let c(uivi+j) = j + 1 for each j with 0 ≤ j ≤ a. In
particular, c(uivi) = 1 for 1 ≤ i ≤ a. Thus, c′(ui) =

(

a+2
2

)

for 1 ≤ i ≤ a.

Furthermore, c′(vj) =
(

a+2
2

)

− (j + 1) for 1 ≤ j ≤ a and c′(va+1) =
(

a+2
2

)

− 1.

Since c′(vj) 6=
(

a+2
2

)

in Za+2 for 1 ≤ j ≤ a+1, it follows that c′ is a proper vertex
coloring of Ka,a+1. Therefore, χ′

t(Ka,a+1) = a + 2.

Finally, we determine χ′

t(Ka,b) for all integers a and b with a ≥ 2 and b ≥ a + 2.

Lemma 4.3. If a ≥ 2 and b are integers with b ≥ a + 2, then χ′

t(Ka,b) = b.

Proof. Since χ′

t(Ka,b) ≥ χ′(Ka,b) = ∆(Ka,b) = b, it suffices to show that Ka,b

has a twin edge b-coloring. Let U = {u1, u2, . . . , ua} and V = {v1, v2, . . . , vb} be
the partite sets of Ka,b. Suppose that

∑a−1

i=0
i =

(

a

2

)

≡ k (mod b) and
∑b−1

i=0
i =

(

b

2

)

≡ ℓ (mod b),

where 0 ≤ k, ℓ ≤ b− 1. We consider two cases, depending on whether a and b are
relatively prime.

Case 1. a and b are not relatively prime. Then d = gcd(a, b) ≥ 2 and b = pd
for some p ∈ N. For 0 ≤ i ≤ d − 1, let Xi = {i, i + a, i + 2a, . . . , i + (p − 1)a}
be a subset of Zb. In fact, X0, X1, . . . , Xd−1 are the cosets of the subgroup
X0 = {0, a, 2a, . . . , (p − 1)a} in the group Zb. Hence X = {X0, X1, . . . , Xd−1} is
a partition of Zb. Next, let X,X ′ ∈ X such that k ∈ X and ℓ ∈ X ′. We define a
coloring c : E(Ka,b) → Zb, according to whether X 6= X ′ or X = X ′.
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Subcase 1.1. X 6= X ′. For 1 ≤ i ≤ a and 1 ≤ j ≤ b, define c(uivj) =
i + j − 2 ∈ Zb. Then c′(ui) = ℓ ∈ X ′ for 1 ≤ i ≤ a and c′(vj) = k + (j − 1)a ∈ X
for 1 ≤ j ≤ b. Since X ∩ X ′ = ∅, it follows that c′(ui) 6= c′(vj) for all i, j with
1 ≤ i ≤ a and 1 ≤ j ≤ b. Thus c′ is a proper vertex coloring.

Subcase 1.2. X = X ′. Since d ≥ 2, it follows that k+1 /∈ X, say k+1 ∈ X ′′ ∈
X . For 1 ≤ i ≤ a−1 and 1 ≤ j ≤ b, define c(uivj) = i+ j−2 ∈ Zb. Furthermore,
define c(uavj) = a + j − 1 ∈ Zb for 1 ≤ j ≤ b. Then c′(ui) = ℓ ∈ X for 1 ≤ i ≤ a
and c′(vj) = (k + 1) + (j − 1)a ∈ X ′′ for 1 ≤ j ≤ b. Since X ∩X ′′ = ∅, it follows
that c′(ui) 6= c′(vj) for all i, j with 1 ≤ i ≤ a and 1 ≤ j ≤ b. Thus c′ is a proper
vertex coloring.

Case 2. a and b are relatively prime. Note that Zb = {ℓ, ℓ+a, . . . , ℓ+(b−1)a}.
We start with a proper edge coloring c1 : E(Ka,b) → Zb defined by c1(uivj) =
i + j − 2 for 1 ≤ i ≤ a and 1 ≤ j ≤ b. Then c′1(ui) = ℓ for 1 ≤ i ≤ a and
c′1(vj) = k + (j − 1)a ∈ X for 1 ≤ j ≤ b. Since a and b are relatively prime,
{c′1(vj) : 1 ≤ j ≤ b} = Zb. Therefore, there exists exactly one integer t with
1 ≤ t ≤ b such that c′1(vt) = ℓ. Thus c′1 is not a proper vertex coloring. We
now produce a twin edge b-coloring c from c1 as follows. Let r = ⌈a/2⌉ and
s = t + ⌊(b− 1)/2⌋ in Zb, where then 1 ≤ s ≤ b and s 6= t, and let c be the
coloring obtained from c1 by interchanging the colors of the edges urvt and urvs
in c1; that is,

c(e) =







c1(e) if e ∈ E(Ka,b) − {urvt, urvs},
c1(urvs) if e = urvt,
c1(urvt) if e = urvs.

We show that c′(ui) = ℓ for 1 ≤ i ≤ a and c′(vj) 6= ℓ for 1 ≤ j ≤ b.
By the defining property of c, it follows that c′(ui) = c′1(ui) = ℓ and c′(vj) =

c′1(vj) 6= ℓ for 1 ≤ j ≤ b and j 6= s, t. Thus, it remains to show that c′(vt) 6= ℓ
and c′(vs) 6= ℓ. Since ℓ = k + (t− 1)a and s = t + ⌊(b− 1)/2⌋, it follows that

c′(vt) = c′1(vt) − c1(urvt) + c1(urvs) = ℓ− (r + t− 2) + (r + s− 2)

= ℓ− t + s = ℓ− t + [t + ⌊(b− 1)/2⌋] = ℓ + ⌊(b− 1)/2⌋

c′(vs) = c′1(vs) − c1(urvs) + c1(urvt) = [k + (s− 1)a] − (r + s− 2) + (r + t− 2)

= [k + (s− 1)a] − s + t = [k + (s− 1)a] − ⌊(b− 1)/2⌋

= k + (t + ⌊(b− 1)/2⌋ − 1)a− ⌊(b− 1)/2⌋ = ℓ + (a− 1)⌊(b− 1)/2⌋.

We consider two cases, according to whether b is odd or b is even.

Subcase 2.1. b is odd. Then ⌊(b− 1)/2⌋ = b−1
2 . We claim that

c′(vt) = ℓ +
b− 1

2
6= ℓ in Zb,(4)

c′(vs) = ℓ + (a− 1)
b− 1

2
6= ℓ in Zb.(5)
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Since b is odd, ℓ = 0 in Zb by Observation 3.1, while b−1
2 6= 0 in Zb, which implies

that (4) holds. To verify (5), we show that b−1
2 (a − 1) 6≡ 0 (mod b). If this

were not the case, then b−1
2 (a − 1) = bx for some integer x. This implies that

2bx = (b−1)(a−1) = a−1 in Zb or a−1 ≡ 0 (mod b). However then, b | (a−1),
which is impossible.

Subcase 2.2. b is even. Then ⌊(b− 1)/2⌋ = b
2 − 1 and ℓ = b

2 in Zb by
Observation 3.1. Since a and b are relatively prime, it follows that a ≥ 3 is odd
and so b ≥ a + 3 ≥ 6. We claim that

c′(vt) = ℓ +

(

b

2
− 1

)

= b− 1 6= ℓ in Zb,(6)

c′(vs) = ℓ +

(

b

2
− 1

)

(a− 1) 6= ℓ in Zb .(7)

Since ℓ = b
2 in Zb and b − 1 6= b

2 in Zb, it follows that (6) holds. To verify

(7), we show that
(

b
2 − 1

)

(a − 1) 6≡ 0 (mod b). If this were not the case, then
b−2
2 (a − 1) = bx for some positive integer x. Since b is even, b = 2y for some

integer y ≥ 3. Then a = 2 xy
y−1 + 1. Since a is an integer and y ≥ 3, it follows

that (y − 1) ∤ y and so (y − 1) | x. Let x = (y − 1)z for some positive integer z.
However then, a = 2yz + 1 = bz + 1, which is impossible.

Thus c′ is a proper vertex coloring of Ka,b and so χ′

t(Ka,b) = b.

In summary, we have the following.

Theorem 4.4. For positive integers a and b with a ≤ b,

χ′

t(Ka,b) =







b if b ≥ a + 2 and a ≥ 2,
b + 1 if either a = 1 and b 6≡ 1 (mod 4) or b = a + 1 ≥ 3,
b + 2 if either a = 1 and b ≡ 1 (mod 4) or b = a ≥ 2.

For every connected graph G for which the twin chromatic index has been deter-
mined, we have seen that χ′

t(G) = ∆(G) + i for some i ∈ {0, 1, 2, 3}. This leads
us to conclude this paper by stating the following problem.

Problem 4.5. Is χ′

t(G) ≤ ∆(G) + 3 for every connected graph G of order at

least 3?
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