PAIRS OF EDGES AS CHORDS AND AS CUT-EDGES

Terry A. McKee
Department of Mathematics and Statistics
Wright State University Dayton, Ohio 45435 USA
e-mail: terry.mckee@wright.edu

Abstract

Several authors have studied the graphs for which every edge is a chord of a cycle; among 2-connected graphs, one characterization is that the deletion of one vertex never creates a cut-edge. Two new results: among 3 -connected graphs with minimum degree at least 4 , every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges; among 4-connected graphs, every two edges are always chords of a common cycle.

Keywords: cycle, chord, cut-edge.
2010 Mathematics Subject Classification: 05C75.

1. Introduction

An edge $a b$ is a chord of a cycle C if a and b are nonconsecutive vertices of C, and $a b$ is a cut-edge of a connected graph if deleting $a b$ creates a subgraph that is not connected (equivalently, if $a b$ is in no cycle). Two edges are adjacent if they share an endpoint and are nonadjacent otherwise.

The 2-connected graphs such that every edge is a chord of a cycle were independently characterized, in rather different ways, in [4, 7]. Proposition 1 is rephrased from [7].

Proposition 1. The following are equivalent for every 2-connected graph.
(1a) Every edge is a chord of a cycle.
(1b) Deleting one vertex never creates a cut-edge.

Paralleling Proposition 1, Theorem 3 will show that, in a 3-connected graph with minimum degree at least 4, every two adjacent edges are chords of a common cycle if and only if deleting two vertices never creates two adjacent cut-edges. Theorem 5 will show that, in a 4-connected graph, every two edges are always chords of a common cycle.

If $S \subseteq V(G)$, then $G-S$ denotes the subgraph of G induced by $V(G)-S$, and $G-v$ denotes $G-\{v\}$ when $v \in V(G)$. For a vertex $v \notin S \subseteq V(G)$, a v-to-S path is a v-to- w path where $w \in S$; for a subgraph H, a v-to- H path is a v-to- $V(H)$ path. Proposition 2 collects five properties of k-connected graphs that will be used in proofs.

Proposition 2. For every k-connected graph with $k \geq 2$ the following hold.
(a) Every two vertices are the endpoints of k internally disjoint paths.
(b) If vertex $v \notin S \subseteq V(G)$ and $|S| \geq k$, then there exist k internally disjoint v-to-S paths π_{1}, \ldots, π_{k} that have k distinct endpoints in S such that each $\left|V\left(\pi_{i}\right) \cap S\right|=1$.
(c) Every k vertices are in a common cycle.
(d) If S is a set of vertex-disjoint paths that have a total of s edges and if T is a set of $t \geq 1$ vertices where $s+t=k$, then the paths in S and the vertices in T all lie in a common cycle.
(e) For every $k+1$ vertices v_{0}, \ldots, v_{k}, there is $v_{0}-$ to- v_{k} path through all of the vertices in $\left\{v_{1}, \ldots, v_{k-1}\right\}$.

Proof. Property (a) is Menger's Theorem from [6]. Property (b) follows by creating a new vertex w that has neighborhood S, and then applying (a) to v and w in the larger k-connected graph. Property (c) is a standard result from [2]. Property (d) is from [1] (although Theorem 9 of [2] is the special case of (c) when S consists of two nonadjacent edges). Property (e) is from [8] (also see solution 6.68 in [5]).

2. Two Adjacent Chords

Observe that two adjacent edges $a b$ and $b c$ of a 4-connected graph are always chords of a common cycle, since b will be incident with two additional edges $b u, b v \notin\{a b, b c\}$, and so by Proposition $2(\mathrm{~d})$ there will be a cycle C that contains $b u$ and $b v$ as well as a and c. Thus $a, b, c \in V(C)$ and $a b, b c \notin E(C)$, and so $a b$ and $b c$ are chords of C.

A minimal edge cutset (sometimes called an edge cutset or a cocycle or a bond) of a connected graph is an inclusion-minimal set of edges whose deletion would create a graph that is not connected. Thus, $\{e\}$ is a minimal edge cutset
if and only if e is a cut-edge. Also, if $\{e, f\}$ is a minimal edge cutset, then neither e nor f is a cut-edge.

Figure 1 illustrates several ideas that will occur in Theorem 3: Edges $a b$ and $b c$ cannot be chords of a common cycle C, since otherwise $E(C)$ would have to contain both $b u$ and $b v$, which would prevent C from containing both a and c. Deleting the vertices u and v would create the two adjacent cut-edges $a b$ and $b c$.

Figure 1. The adjacent edges $a b$ and $b c$ are not chords of a common cycle in this 3 -connected graph with minimum degree 4 .

Theorem 3. The following are equivalent for every 3-connected graph with minimum degree at least 4:
(3a) Every two adjacent edges are chords of a common cycle.
(3b) Deleting two vertices never creates two adjacent cut-edges.
Proof. Assume G is a 3-connected graph with minimum degree at least 4.
First suppose G satisfies condition (3a) and (arguing by contradiction) $S=$ $\left\{v_{1}, v_{2}\right\} \subset V(G)$ where $G-S$ has adjacent cut-edges $a b$ and $b c$. By (3a), $a b$ and $b c$ are chords of a cycle C of G, with a, b, c partitioning C into internally disjoint subpaths $C[a, b], C[b, c]$, and $C[a, c]$ with the indicated endpoints. Since $a b$ is a cut-edge of $G-S$, one of v_{1}, v_{2} is an internal vertex of $C[a, b]$ and the other is an internal vertex of $C[a, c]$ (so that a is separated from $b c$ when $a b$ is deleted from $G-S$). Similarly, since $b c$ is a cut-edge of $G-S$, one of v_{1}, v_{2} is an internal vertex of $C[b, c]$ and the other is an internal vertex of $C[a, c]$. Therefore, one of v_{1}, v_{2} would have to be in two of $C[a, b], C[b, c], C[a, c]$ (contradicting that these subpaths are internally disjoint).

Conversely, suppose G satisfies condition (3b) and (arguing by contradiction) the adjacent edges $a b$ and $b c$ of G are not chords of a common cycle. Let G^{\prime} be the subgraph of G obtained by deleting $a b$ and $b c$. The argument below will make repeated use of a, b, c not all being on a common cycle of G^{\prime} (otherwise, such a cycle would also be a cycle of G that has chords $a b$ and $b c$, contradicting (3b)). Thus, by Proposition 2(c), G^{\prime} is not 3 -connected. Since deleting b from the 3 -connected graph G would leave a 2 -connected graph and since b has degree at least 4 in G, deleting both $a b$ and $b c$ from G would leave a 2 -connected graph. Therefore, G^{\prime} is 2 -connected (but not 3 -connected), say with a separating set
$S=\left\{v_{1}, v_{2}\right\}$. Since S is not a separating set of the 3-connected graph G and $E\left(G^{\prime}\right)=E(G)-\{a b, b c\}$, and since (3b) implies that $a b$ and $b c$ are not both cut-edges of $G-S$, one of the following cases must occur.

Case 1. Exactly one of $a b$ and $b c$ is a cut-edge of $G-S$.
Case 2. $\{a b, b c\}$ is a minimal edge cutset of $G-S$.
Case 1. Exactly one of $a b$ and $b c$ is a cut-edge of $G-S$; to be specific, suppose $a b$ (but not $b c$) is a cut-edge of $G-S$, with a in one connected component of $G^{\prime}-S$ and b and c in the other. Since b has degree at least 4 in the 3 -connected graph G, there is a cycle C of G by Proposition $2(\mathrm{~d})$ such that C contains two edges incident with b different from $a b$ and $b c$, and C also contains a. Thus, $a, b, v_{1}, v_{2} \in V(C)$ and $a b, b c \notin E(C)$, which implies that C is also a cycle of G^{\prime}, and so $c \notin V(C)$. Vertices a, b, v_{1}, v_{2} partition C into four subpaths $C\left[a, v_{i}\right]$ and $C\left[b, v_{i}\right]$ with the indicated endpoints.

By Proposition $2(\mathrm{~b}), G^{\prime}$ has internally disjoint c-to- C paths π_{1} and π_{2} that have distinct endpoints in C with each $\left|V\left(\pi_{i}\right) \cap V(C)\right|=1$. The two endpoints of π_{1} and π_{2} in C (call them w_{1} and w_{2}, respectively) cannot be on the same a-to- b subpath of C (otherwise, the edges in $C \cup \pi_{1} \cup \pi_{2}$ would contain a cycle of G^{\prime} through all three of a, b, c); thus, in particular, $w_{1} \neq b \neq w_{2}$. For each $i \in\{1,2\}$, partition $C\left[b, v_{i}\right]$ into subpaths $C\left[b, w_{i}\right]$ and $C\left[v_{i}, w_{i}\right]$ with the indicated endpoints.

Among all such cycles C and paths π_{1}, π_{2} as just described, assume further that the two subpaths $C\left[b, w_{i}\right]$ have minimum lengths. That minimality implies that there is no path in G^{\prime} between an internal vertex x of $C\left[v_{i}, w_{i}\right]$ and a vertex $y \neq w_{i}$ of $C\left[b, w_{i}\right]$ (such an x-to- y path could replace the x-to- y subpath of $C\left[b, v_{i}\right]$, and then the y-to- w_{i} subpath of $C\left[b, w_{i}\right]$ could be adjoined to π_{i}). Thus, every c-to- b path in G^{\prime} intersects $\left\{w_{1}, w_{2}\right\}$. Moreover, there is no path in G^{\prime} between an internal vertex of $C\left[v_{i}, w_{i}\right]$ and an internal vertex of $C\left[b, w_{j}\right]$ with $j \neq i$ (such a path would combine with π_{1} and π_{2} and subpaths of C to form a cycle of G^{\prime} through all three of $a, b, c)$. Thus, G^{\prime} has no path between an internal vertex of $C\left[v_{1}, w_{1}\right]$ or $C\left[v_{2}, w_{2}\right]$ and an internal vertex of $C\left[b, w_{1}\right] \cup C\left[b, w_{2}\right]$, which implies that every a-to- b path in G^{\prime} intersects $\left\{w_{1}, w_{2}\right\}$. Therefore, every a-to- b and every b-to- c path in G^{\prime} intersects $\left\{w_{1}, w_{2}\right\}$, and so $a b$ and $b c$ would be adjacent cut-edges of $G-\left\{w_{1}, w_{2}\right\}$ (contradicting (3b)).

Case 2. $\{a b, b c\}$ is a minimal edge cutset of $G-S$, where a and c are in one connected component of $G^{\prime}-S$, and b is in the other. The argument is essentially the same as for Case 1 , except with the roles of vertices a and b interchanged (but with the role of the edge $b c$ unchanged). There again is a cycle C with through a and b (and v_{1}, v_{2}, but not c) of G^{\prime}. There are internally disjoint c-to- C paths π_{1} and π_{2} with endpoints w_{1} and w_{2} where, in this case, each $C\left[a, v_{i}\right]$ is partitioned into subpaths $C\left[a, w_{i}\right]$ and $C\left[v_{i}, w_{i}\right]$ with the two subpaths $C\left[a, w_{i}\right]$ having minimum lengths. Every a-to- b and every b-to- c path
in G^{\prime} again intersects $\left\{w_{1}, w_{2}\right\}$. Therefore, $a b$ and $b c$ would be adjacent cut-edges of $G-\left\{w_{1}, w_{2}\right\}$ (contradicting (3b)).

Being 3-connected with minimum degree at least 4 is a reasonable hypothesis for Theorem 3 for the following reasons. Being 4 -connected would be too strong, since conditions (3a) and (3b) would always hold. The graph in Figure 2 is a 2-connected graph with minimum degree 4 that satisfies (3b) but not (3a). The graph formed by inserting all four diametrical chords into an 8 -cycle is a 3 -connected graph with minimum degree 3 that satisfies (3b) but not (3a).

Figure 2. A 2-connected graph in which the adjacent edges $a b$ and $b c$ are not chords of a common cycle (in fact, $b c$ is not a chord of a cycle).

3. Two Arbitrary Chords

Lemma 4. In every 4 -connected graph, every two nonadjacent edges are chords of a common cycle.
Proof. Suppose G is a 4 -connected graph and (arguing by contradiction) the nonadjacent edges $a b$ and $c d$ of G are not chords of a common cycle. Let G^{\prime} be the subgraph of G obtained by deleting $a b$ and $c d$. The argument below will make repeated use of a, b, c, d not all being on a common cycle of G^{\prime} (otherwise, such a cycle would also be a cycle of G that has chords $a b$ and $c d$, contradicting the assumption). Thus, by Proposition 2(c), G^{\prime} is not 4 -connected. Since deleting any two of a, b, c, d from the 4 -connected graph G would leave a 2 -connected graph, every two vertices of G will still be in a common cycle of G^{\prime}. Therefore, G^{\prime} is 2 -connected (but not 4 -connected), say with a minimum-cardinality separating set S where $|S| \in\{2,3\}$ (and so G^{\prime} is $|S|$-connected). Since S is not a separating set of the 4 -connected graph G and $E\left(G^{\prime}\right)=E(G)-\{a b, c d\}$, one of the following cases must occur:

Case 1. Exactly one of $a b$ and $c d$ is a cut-edge of $G-S$.
Case 2. $\{a b, c d\}$ is a minimal edge cutset of $G-S$.
Case 3. ab and $c d$ are both cut-edges of $G-S$.
Case 1. Exactly one of $a b$ and $c d$ is a cut-edge of $G-S$; to be specific, suppose $a b$ (but not $c d$) is a cut-edge of $G-S$ where, without loss of generality, a is in one
connected component of $G-S$ and b, c, d are in the other. If $|S|=2$, then a and c would be in different connected components of $G-(S \cup\{b\})$ (contradicting that G is 4 -connected). Therefore, $|S|=3$ and G^{\prime} is 3 -connected. By Proposition 2(a), G^{\prime} has three internally disjoint a-to- b paths $\pi_{1}, \pi_{2}, \pi_{3}$. Let $\Theta=\pi_{1} \cup \pi_{2} \cup \pi_{3}$. If c and d were both on the same path π_{i}, then π_{i} together with either one of the other two a-to- b paths in Θ would form a cycle of G^{\prime} through all four of a, b, c, d. Similarly, if c and d were on two separate paths π_{i} and π_{j}, then $\pi_{i} \cup \pi_{j}$ would be a cycle of G^{\prime} through all four of a, b, c, d. Therefore, c and d cannot both be in $V(\Theta)$.

Suppose for the moment that $c \in V(\Theta)$ (and so $d \notin V(\Theta)$); without loss of generality, suppose $c \in V\left(\pi_{1}\right)$. By Proposition 2(b), the 3-connected graph G^{\prime} has internally disjoint d-to- Θ paths $\tau_{1}, \tau_{2}, \tau_{3}$ that have distinct endpoints (say t_{1}, t_{2}, t_{3}, respectively) in Θ with each $V\left(\tau_{i}\right) \cap \Theta=\left\{t_{i}\right\}$. Each t_{i} is in one of the four following paths: the a-to- c subpath of π_{1}, the c-to- b subpath of π_{1}, the path π_{2}, or the path π_{3}. If, say, t_{1} and t_{2} are in the same one of these four paths, then subpaths of that path π_{i} through t_{1} and t_{2} would combine with $\tau_{1} \cup \tau_{2}$ and a path $\pi_{j} \neq \pi_{i}$ to form a cycle of G^{\prime} through all four of a, b, c, d. If, say, t_{1} is in the a-to- c subpath of π_{1} and t_{2} is in the c-to- b subpath of π_{1} and t_{3} is in π_{3}, then the a-to- t_{2} subpath of π_{1}, the t_{2}-to- t_{3} path $\tau_{2} \cup \tau_{3}$, and the t_{3}-to- b subpath of π_{3} would combine with π_{2} to form a cycle of G^{\prime} through all four of a, b, c, d. If, say, $t_{2} \in V\left(\pi_{2}\right)$ and $t_{3} \in V\left(\pi_{3}\right)$, then π_{1} would combine with the b-to- t_{2} subpath of π_{2}, the t_{2}-to- t_{3} path $\tau_{2} \cup \tau_{3}$, and the t_{3}-to- a subpath of π_{3} to form a cycle of G^{\prime} through all four of a, b, c, d. Thus and similarly, no matter where t_{1}, t_{2}, t_{3} are located in Θ, there would be a cycle of G^{\prime} through all four of a, b, c, d.

Therefore, $c \notin V(\Theta)$ and, similarly, $d \notin V(\Theta)$. By Proposition 2(b), G^{\prime} again has internally disjoint d-to- Θ paths $\tau_{1}, \tau_{2}, \tau_{3}$ that have distinct endpoints (say t_{1}, t_{2}, t_{3}, respectively) in Θ with each $V\left(\tau_{i}\right) \cap V(\Theta)=\left\{t_{i}\right\}$. Let $H=\Theta \cup \tau_{1} \cup \tau_{2} \cup \tau_{3}$. By the argument in the preceding paragraph, assume that no two of t_{1}, t_{2}, t_{3} are in the same π_{i}, and so, without loss of generality, suppose each $t_{i} \in V\left(\pi_{i}\right)$ and let H_{i} be the subgraph of H formed by $\pi_{i} \cup \tau_{i}$. Vertex $c \notin V(H)$ (otherwise, much as in the preceding paragraph, H would contain a cycle of G^{\prime} through all four of $a, b, c, d)$. Thus, by Proposition $2(\mathrm{~b}), G^{\prime}$ has internally disjoint c-to- H paths $\sigma_{1}, \sigma_{2}, \sigma_{3}$ that have distinct endpoints (say s_{1}, s_{2}, s_{3}, respectively) in H with each $V\left(\sigma_{i}\right) \cap V(H)=\left\{s_{i}\right\}$.

Suppose for the moment that two of s_{1}, s_{2}, s_{3} are in the same subgraph H_{i}; without loss of generality, say $s_{1}, s_{2} \in V\left(H_{3}\right)$. Each of s_{1} and s_{2} is in one of the three following paths: the a-to- t_{3} subpath of π_{3}, the t_{3}-to- b subpath of π_{3}, or the t_{3}-to- d path τ_{3}. In each of the resulting nine possibilities, all or part of the s_{1}-to- s_{2} subpath of H_{3} could be replaced with $\sigma_{1} \cup \sigma_{2}$ to form an a-to- c-to- d path that would combine with subpaths of $H_{1} \cup H_{2}$ to form a cycle of G^{\prime} through all four of a, b, c, d.

By the preceding paragraph, suppose no two of s_{1}, s_{2}, s_{3} are in the same subgraph H_{i} of H; specifically suppose f is a permutation of $\{1,2,3\}$ such that each s_{i} is in $H_{f(i)}$. Each s_{i} might be in the a-to- $t_{f(i)}$ subpath of $\pi_{f(i)}$ or in the $t_{f(i)}$-to- b subpath of $\pi_{f(i)}$ or the $t_{f(i)}$-to- d path $\tau_{f(i)}$. In each of the resulting cases, two of the paths $\sigma_{1}, \sigma_{2}, \sigma_{3}$ would combine with a subgraph of H to form a cycle of G^{\prime} through all four of a, b, c, d.

Case 2. $\{a b, c d\}$ is a minimal edge cutset of $G-S$. Without loss of generality, say $G^{\prime}-S$ has connected components $H_{a c}^{\circ}$ and $H_{b d}^{\circ}$ where vertices a, c are in the subgraph $H_{a c}$ of G^{\prime} that is induced by $V\left(H_{a c}^{\circ}\right) \cup S$ and vertices b, d are in the subgraph $H_{b d}$ of G^{\prime} that is induced by $V\left(H_{b d}^{\circ}\right) \cup S$.

First suppose $|S|=2$ with $S=\left\{v_{1}, v_{2}\right\}$. By Proposition 2(a), there is a set $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ of four internally disjoint a-to- c paths in G, at most one of which can contain both the edges $a b$ and $c d$.

Claim. $H_{a c}$ contains a v_{1}-to-v path through a and c inside $H_{a c}$.

Proof. First suppose three paths in Σ contain none of v_{1}, v_{2}, b, d. Apply Proposition 2(b) to $v=v_{1}$ (respectively, to $v=v_{2}$) and the union S of the vertex sets of those three paths from Σ to obtain v_{1}-to- S paths π_{11}, π_{12} (and v_{2}-to- S paths π_{21}, π_{22}) in the 2 -connected graph G^{\prime}. The union of those three paths from Σ and the paths $\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}$ will contain a v_{1}-to- v_{2} path through a and c inside $H_{a c}$.

Now suppose instead that one path in Σ, say σ_{1}, contains v_{1} but not v_{2} and two other paths $\sigma_{2}, \sigma_{3} \in \Sigma$ contain none of v_{1}, v_{2}, b, d. Apply Proposition 2(b) to $v=v_{2}$ and $S=V\left(\sigma_{1}\right) \cup V\left(\sigma_{2}\right) \cup V\left(\sigma_{3}\right)$ to obtain v_{2}-to- S paths π_{1}, π_{2} in the 2 -connected graph G^{\prime} where each π_{i} has endpoint $p_{i} \in S$ with $V\left(\pi_{i}\right) \cap S=\left\{p_{i}\right\}$. Each p_{i} is in one of the four following paths: the a-to- v_{1} subpath of σ_{1}, the v_{1}-to-c subpath of σ_{1}, the path σ_{2}, or the path σ_{3}. If p_{1} and p_{2} are both in the same one of these four paths, then one of the paths π_{1} and π_{2} will combine with subpaths of σ_{1}, σ_{2}, and σ_{3} to form a v_{1}-to- v_{2} path through a and c inside $H_{a c}$. Each of the remaining six possibilities with p_{1} and p_{2} in the different ones of those four paths will similarly lead to a v_{1}-to- v_{2} path through a and c inside $H_{a c}$.

Finally, if path $\sigma_{1} \in \Sigma$ contains v_{1} but not v_{2} and $\sigma_{2} \in \Sigma$ contains v_{2} but not v_{1} and $\sigma_{3} \in \Sigma$ contains none of v_{1}, v_{2}, b, d, then the v_{1}-to- a subpath of σ_{1} followed by σ_{3} followed by the c-to- v_{2} subpath of σ_{2} will be a v_{1}-to- v_{2} path through a and c inside $H_{a c}$.

Therefore, $H_{a c}$ does contain a v_{1}-to- v_{2} path through a and c, as claimed.
Similarly, $H_{b, d}$ contains a v_{1}-to- v_{2} path through b and d. But this contradicts that those two internally disjoint paths would form a cycle of G^{\prime} through all four of a, b, c, d.

To finish Case 2, now suppose $|S|=3$, say with $S=\left\{v_{1}, v_{2}, v_{3}\right\}$. By Proposition $2(\mathrm{c})$, for every $x \in\{a, b, c, d\}$ there is a cycle $C_{\bar{x}}$ of the 3 -connected graph G^{\prime} such that $C_{\bar{x}}$ contains the three vertices in $\{a, b, c, d\}-\{x\}$ (with two of the three in one of $H_{a c}$ and $H_{b d}$, and one in the other), but does not contain x. Although $C_{\bar{x}}$ might contain three vertices of S, exactly two of v_{1}, v_{2}, v_{3} will have one neighbor along $C_{\bar{x}}$ in $H_{a c}^{\circ}$ and the other neighbor along $C_{\bar{x}}$ in $H_{b d}^{\circ}$. There will be four pairs $C_{\bar{x}}, C_{\bar{y}}$ of such cycles that have $x \in\{a, c\}$ and $y \in\{b, d\}$. Since S contains only three pairs of vertices, there is an $x \in\{a, c\}$ and a $y \in\{b, d\}$ such that $C_{\bar{x}}$ and $C_{\bar{y}}$ both contain the same pair $v_{i}, v_{j} \in S$, with each of v_{i} and v_{j} having one neighbor along $C_{\bar{x}}$ from $H_{a c}^{\circ}$ and one neighbor along $C_{\bar{y}}$ from $H_{b d}^{\circ}$. But this contradicts that the v_{i}-to- v_{j} subpath of $C_{\bar{x}}$ through b and d inside of $H_{b d}$ and the v_{i}-to- v_{j} subpath of $C_{\bar{y}}$ through a and c inside of $H_{a c}$ would be internally disjoint paths that form a cycle of G^{\prime} through all four of a, b, c, d.

Case 3. Both $a b$ and $c d$ are cut-edges of $G-S$. The assumption that G is 4-connected implies $|S|=3$, say with $S=\left\{v_{1}, v_{2}, v_{3}\right\}$. Without loss of generality, suppose $G^{\prime}-S$ has connected components $H_{a}^{\circ}, H_{b d}^{\circ}$, and H_{c}° where vertex a is in the subgraph H_{a} of G^{\prime} induced by $V\left(H_{a}^{\circ}\right) \cup S$, vertices b, d are in the subgraph $H_{b d}$ of G^{\prime} induced by $V\left(H_{b d}^{\circ}\right) \cup S$, and vertex c is in the subgraph H_{c} of G^{\prime} induced by $V\left(H_{c}^{\circ}\right) \cup S$. Argue as in the final, $|S|=3$ paragraph of the argument in Case 2, except now with $H_{a} \cup H_{c}$ in the role previously played by $H_{a, c}$. This leads to four cycles $C_{\bar{x}}$, each containing exactly two of v_{1}, v_{2}, v_{3} that have one neighbor along $C_{\bar{x}}$ in $H_{a} \cup H_{c}$ and the other in $H_{b d}$. There will again be an $x \in\{a, c\}$ and a $y \in\{b, d\}$ such that $C_{\bar{x}}$ and $C_{\bar{y}}$ both contain the same pair $v_{i}, v_{j} \in S$. But this again contradicts that the v_{i}-to- v_{j} subpath of $C_{\bar{x}}$ through b and d inside of $H_{b d}$ and the v_{i}-to- v_{j} subpath of $C_{\bar{y}}$ through a and c inside of $H_{a} \cup H_{c}$ would form a cycle of G^{\prime} through all four of a, b, c, d.

Figure 3 shows a 3 -connected graph with minimum degree 4 that has two nonadjacent edges that are not chords of a common cycle.

Figure 3. The nonadjacent edges $a b$ and $c d$ are not chords of a common cycle in this 3-connected graph.

Theorem 5. In every 4-connected graph, every two edges are chords of a common cycle.

Proof. Suppose G is a 4-connected graph, which implies that deleting two vertices will never create a cut-edge. Thus G satisfies condition (3b) and, since G has minimum degree at least 4, Theorem 3 implies that every two adjacent edges are chords of a common cycle. Lemma 4 implies the same is true for every two nonadjacent edges.

References

[1] T. Denley and H. Wu, A generalization of a theorem of Dirac, J. Combin. Theory (B) 82 (2001) 322-326. doi:10.1006/jctb.2001.2041
[2] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85. doi:10.1002/mana. 19600220107
[3] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 7387.
doi:10.1016/S0012-365X(00)00202-8
[4] W. Gu, X. Jia and H. Wu, Chords in graphs, Australas. J. Combin. 32 (2005) 117124.
[5] L. Lovász, Combinatorial Problems and Exercises, Corrected reprint of the 1993 Second Edition (AMS Chelsea Publishing, Providence, 2007).
[6] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
[7] T.A. McKee, Chords and connectivity, Bull. Inst. Combin. Appl. 47 (2006) 48-52.
[8] M.D. Plummer, On path properties versus connectivity I, in: Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, R.C. Mullin, et al. (Ed(s)), (Louisiana State Univ., Baton Rouge, 1971) 457-472.

Received 8 February 2013
Revised 19 September 2013
Accepted 19 September 2013

