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Abstract

Several authors have studied the graphs for which every edge is a chord of
a cycle; among 2-connected graphs, one characterization is that the deletion
of one vertex never creates a cut-edge. Two new results: among 3-connected
graphs with minimum degree at least 4, every two adjacent edges are chords
of a common cycle if and only if deleting two vertices never creates two
adjacent cut-edges; among 4-connected graphs, every two edges are always
chords of a common cycle.
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1. Introduction

An edge ab is a chord of a cycle C if a and b are nonconsecutive vertices of C,
and ab is a cut-edge of a connected graph if deleting ab creates a subgraph that is
not connected (equivalently, if ab is in no cycle). Two edges are adjacent if they
share an endpoint and are nonadjacent otherwise.

The 2-connected graphs such that every edge is a chord of a cycle were
independently characterized, in rather different ways, in [4, 7]. Proposition 1 is
rephrased from [7].

Proposition 1. The following are equivalent for every 2-connected graph.

(1a) Every edge is a chord of a cycle.

(1b) Deleting one vertex never creates a cut-edge.

http://dx.doi.org/10.7151/dmgt.1755
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Paralleling Proposition 1, Theorem 3 will show that, in a 3-connected graph with
minimum degree at least 4, every two adjacent edges are chords of a common
cycle if and only if deleting two vertices never creates two adjacent cut-edges.
Theorem 5 will show that, in a 4-connected graph, every two edges are always
chords of a common cycle.

If S ⊆ V (G), then G − S denotes the subgraph of G induced by V (G) − S,
and G − v denotes G − {v} when v ∈ V (G). For a vertex v 6∈ S ⊆ V (G), a
v-to-S path is a v-to-w path where w ∈ S; for a subgraph H, a v-to-H path is
a v-to-V (H) path. Proposition 2 collects five properties of k-connected graphs
that will be used in proofs.

Proposition 2. For every k-connected graph with k ≥ 2 the following hold.

(a) Every two vertices are the endpoints of k internally disjoint paths.

(b) If vertex v 6∈ S ⊆ V (G) and |S| ≥ k, then there exist k internally disjoint

v-to-S paths π1, . . . , πk that have k distinct endpoints in S such that each

|V (πi) ∩ S| = 1.

(c) Every k vertices are in a common cycle.

(d) If S is a set of vertex-disjoint paths that have a total of s edges and if T is

a set of t ≥ 1 vertices where s+ t = k, then the paths in S and the vertices

in T all lie in a common cycle.

(e) For every k + 1 vertices v0, . . . , vk, there is v0-to-vk path through all of the

vertices in {v1, . . . , vk−1}.

Proof. Property (a) is Menger’s Theorem from [6]. Property (b) follows by
creating a new vertex w that has neighborhood S, and then applying (a) to v

and w in the larger k-connected graph. Property (c) is a standard result from [2].
Property (d) is from [1] (although Theorem 9 of [2] is the special case of (c) when
S consists of two nonadjacent edges). Property (e) is from [8] (also see solution
6.68 in [5]).

2. Two Adjacent Chords

Observe that two adjacent edges ab and bc of a 4-connected graph are always
chords of a common cycle, since b will be incident with two additional edges
bu, bv 6∈ {ab, bc}, and so by Proposition 2(d) there will be a cycle C that contains
bu and bv as well as a and c. Thus a, b, c ∈ V (C) and ab, bc 6∈ E(C), and so ab

and bc are chords of C.

A minimal edge cutset (sometimes called an edge cutset or a cocycle or a
bond) of a connected graph is an inclusion-minimal set of edges whose deletion
would create a graph that is not connected. Thus, {e} is a minimal edge cutset
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if and only if e is a cut-edge. Also, if {e,f} is a minimal edge cutset, then neither
e nor f is a cut-edge.

Figure 1 illustrates several ideas that will occur in Theorem 3: Edges ab and
bc cannot be chords of a common cycle C, since otherwise E(C) would have to
contain both bu and bv, which would prevent C from containing both a and c.
Deleting the vertices u and v would create the two adjacent cut-edges ab and bc.
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Figure 1. The adjacent edges ab and bc are not chords of a common cycle

in this 3-connected graph with minimum degree 4.

Theorem 3. The following are equivalent for every 3-connected graph with min-

imum degree at least 4:

(3a) Every two adjacent edges are chords of a common cycle.

(3b) Deleting two vertices never creates two adjacent cut-edges.

Proof. Assume G is a 3-connected graph with minimum degree at least 4.

First suppose G satisfies condition (3a) and (arguing by contradiction) S =
{v1, v2} ⊂ V (G) where G− S has adjacent cut-edges ab and bc. By (3a), ab and
bc are chords of a cycle C of G, with a, b, c partitioning C into internally disjoint
subpaths C[a, b], C[b, c], and C[a, c] with the indicated endpoints. Since ab is a
cut-edge of G − S, one of v1, v2 is an internal vertex of C[a, b] and the other is
an internal vertex of C[a, c] (so that a is separated from bc when ab is deleted
from G−S). Similarly, since bc is a cut-edge of G−S, one of v1, v2 is an internal
vertex of C[b, c] and the other is an internal vertex of C[a, c]. Therefore, one of
v1, v2 would have to be in two of C[a, b], C[b, c], C[a, c] (contradicting that these
subpaths are internally disjoint).

Conversely, suppose G satisfies condition (3b) and (arguing by contradiction)
the adjacent edges ab and bc of G are not chords of a common cycle. Let G′ be
the subgraph of G obtained by deleting ab and bc. The argument below will
make repeated use of a, b, c not all being on a common cycle of G′ (otherwise,
such a cycle would also be a cycle of G that has chords ab and bc, contradicting
(3b)). Thus, by Proposition 2(c), G′ is not 3-connected. Since deleting b from
the 3-connected graph G would leave a 2-connected graph and since b has degree
at least 4 in G, deleting both ab and bc from G would leave a 2-connected graph.
Therefore, G′ is 2-connected (but not 3-connected), say with a separating set
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S = {v1, v2}. Since S is not a separating set of the 3-connected graph G and
E(G′) = E(G) − {ab, bc}, and since (3b) implies that ab and bc are not both
cut-edges of G− S, one of the following cases must occur.

Case 1. Exactly one of ab and bc is a cut-edge of G− S.

Case 2. {ab, bc} is a minimal edge cutset of G− S.

Case 1. Exactly one of ab and bc is a cut-edge of G−S; to be specific, suppose
ab (but not bc) is a cut-edge of G − S, with a in one connected component of
G′ − S and b and c in the other. Since b has degree at least 4 in the 3-connected
graph G, there is a cycle C of G by Proposition 2(d) such that C contains two
edges incident with b different from ab and bc, and C also contains a. Thus,
a, b, v1, v2 ∈ V (C) and ab, bc 6∈ E(C), which implies that C is also a cycle of G′,
and so c 6∈ V (C). Vertices a, b, v1, v2 partition C into four subpaths C[a, vi] and
C[b, vi] with the indicated endpoints.

By Proposition 2(b), G′ has internally disjoint c-to-C paths π1 and π2 that
have distinct endpoints in C with each |V (πi)∩V (C)| = 1. The two endpoints of
π1 and π2 in C (call them w1 and w2, respectively) cannot be on the same a-to-b
subpath of C (otherwise, the edges in C ∪ π1 ∪ π2 would contain a cycle of G′

through all three of a, b, c); thus, in particular, w1 6= b 6= w2. For each i ∈ {1, 2},
partition C[b, vi] into subpaths C[b, wi] and C[vi, wi] with the indicated endpoints.

Among all such cycles C and paths π1, π2 as just described, assume further
that the two subpaths C[b, wi] have minimum lengths. That minimality implies
that there is no path in G′ between an internal vertex x of C[vi, wi] and a vertex
y 6= wi of C[b, wi] (such an x-to-y path could replace the x-to-y subpath of C[b, vi],
and then the y-to-wi subpath of C[b, wi] could be adjoined to πi). Thus, every
c-to-b path in G′ intersects {w1, w2}. Moreover, there is no path in G′ between
an internal vertex of C[vi, wi] and an internal vertex of C[b, wj ] with j 6= i (such
a path would combine with π1 and π2 and subpaths of C to form a cycle of G′

through all three of a, b, c). Thus, G′ has no path between an internal vertex of
C[v1, w1] or C[v2, w2] and an internal vertex of C[b, w1] ∪C[b, w2], which implies
that every a-to-b path in G′ intersects {w1, w2}. Therefore, every a-to-b and
every b-to-c path in G′ intersects {w1, w2}, and so ab and bc would be adjacent
cut-edges of G− {w1, w2} (contradicting (3b)).

Case 2. {ab, bc} is a minimal edge cutset of G − S, where a and c are in
one connected component of G′ − S, and b is in the other. The argument is
essentially the same as for Case 1, except with the roles of vertices a and b

interchanged (but with the role of the edge bc unchanged). There again is a
cycle C with through a and b (and v1, v2, but not c) of G

′. There are internally
disjoint c-to-C paths π1 and π2 with endpoints w1 and w2 where, in this case,
each C[a, vi] is partitioned into subpaths C[a, wi] and C[vi, wi] with the two
subpaths C[a, wi] having minimum lengths. Every a-to-b and every b-to-c path
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in G′ again intersects {w1, w2}. Therefore, ab and bc would be adjacent cut-edges
of G− {w1, w2} (contradicting (3b)).

Being 3-connected with minimum degree at least 4 is a reasonable hypothesis for
Theorem 3 for the following reasons. Being 4-connected would be too strong,
since conditions (3a) and (3b) would always hold. The graph in Figure 2 is
a 2-connected graph with minimum degree 4 that satisfies (3b) but not (3a).
The graph formed by inserting all four diametrical chords into an 8-cycle is a
3-connected graph with minimum degree 3 that satisfies (3b) but not (3a).
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Figure 2. A 2-connected graph in which the adjacent edges ab and bc are not

chords of a common cycle (in fact, bc is not a chord of a cycle).

3. Two Arbitrary Chords

Lemma 4. In every 4-connected graph, every two nonadjacent edges are chords

of a common cycle.

Proof. Suppose G is a 4-connected graph and (arguing by contradiction) the
nonadjacent edges ab and cd of G are not chords of a common cycle. Let G′ be
the subgraph of G obtained by deleting ab and cd. The argument below will make
repeated use of a, b, c, d not all being on a common cycle of G′ (otherwise, such
a cycle would also be a cycle of G that has chords ab and cd, contradicting the
assumption). Thus, by Proposition 2(c), G′ is not 4-connected. Since deleting
any two of a, b, c, d from the 4-connected graph G would leave a 2-connected
graph, every two vertices of G will still be in a common cycle of G′. Therefore, G′

is 2-connected (but not 4-connected), say with a minimum-cardinality separating
set S where |S| ∈ {2, 3} (and so G′ is |S|-connected). Since S is not a separating
set of the 4-connected graph G and E(G′) = E(G)−{ab, cd}, one of the following
cases must occur:

Case 1. Exactly one of ab and cd is a cut-edge of G− S.
Case 2. {ab, cd} is a minimal edge cutset of G− S.
Case 3. ab and cd are both cut-edges of G− S.

Case 1. Exactly one of ab and cd is a cut-edge ofG−S; to be specific, suppose
ab (but not cd) is a cut-edge of G−S where, without loss of generality, a is in one
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connected component of G−S and b, c, d are in the other. If |S| = 2, then a and c

would be in different connected components of G−(S∪{b}) (contradicting that G
is 4-connected). Therefore, |S| = 3 and G′ is 3-connected. By Proposition 2(a),
G′ has three internally disjoint a-to-b paths π1, π2, π3. Let Θ = π1 ∪ π2 ∪ π3. If
c and d were both on the same path πi, then πi together with either one of the
other two a-to-b paths in Θ would form a cycle of G′ through all four of a, b, c, d.
Similarly, if c and d were on two separate paths πi and πj , then πi ∪ πj would be
a cycle of G′ through all four of a, b, c, d. Therefore, c and d cannot both be in
V (Θ).

Suppose for the moment that c ∈ V (Θ) (and so d 6∈ V (Θ)); without loss of
generality, suppose c ∈ V (π1). By Proposition 2(b), the 3-connected graph G′

has internally disjoint d-to-Θ paths τ1, τ2, τ3 that have distinct endpoints (say
t1, t2, t3, respectively) in Θ with each V (τi) ∩ Θ = {ti}. Each ti is in one of the
four following paths: the a-to-c subpath of π1, the c-to-b subpath of π1, the path
π2, or the path π3. If, say, t1 and t2 are in the same one of these four paths,
then subpaths of that path πi through t1 and t2 would combine with τ1 ∪ τ2 and
a path πj 6= πi to form a cycle of G′ through all four of a, b, c, d. If, say, t1 is
in the a-to-c subpath of π1 and t2 is in the c-to-b subpath of π1 and t3 is in π3,
then the a-to-t2 subpath of π1, the t2-to-t3 path τ2 ∪ τ3, and the t3-to-b subpath
of π3 would combine with π2 to form a cycle of G′ through all four of a, b, c, d. If,
say, t2 ∈ V (π2) and t3 ∈ V (π3), then π1 would combine with the b-to-t2 subpath
of π2, the t2-to-t3 path τ2 ∪ τ3, and the t3-to-a subpath of π3 to form a cycle of
G′ through all four of a, b, c, d. Thus and similarly, no matter where t1, t2, t3 are
located in Θ, there would be a cycle of G′ through all four of a, b, c, d.

Therefore, c 6∈ V (Θ) and, similarly, d 6∈ V (Θ). By Proposition 2(b), G′ again
has internally disjoint d-to-Θ paths τ1, τ2, τ3 that have distinct endpoints (say
t1, t2, t3, respectively) in Θ with each V (τi)∩V (Θ) = {ti}. LetH = Θ∪τ1∪τ2∪τ3.
By the argument in the preceding paragraph, assume that no two of t1, t2, t3 are
in the same πi, and so, without loss of generality, suppose each ti ∈ V (πi) and let
Hi be the subgraph of H formed by πi ∪ τi. Vertex c 6∈ V (H) (otherwise, much
as in the preceding paragraph, H would contain a cycle of G′ through all four
of a, b, c, d). Thus, by Proposition 2(b), G′ has internally disjoint c-to-H paths
σ1, σ2, σ3 that have distinct endpoints (say s1, s2, s3, respectively) in H with each
V (σi) ∩ V (H) = {si}.

Suppose for the moment that two of s1, s2, s3 are in the same subgraph Hi;
without loss of generality, say s1, s2 ∈ V (H3). Each of s1 and s2 is in one of the
three following paths: the a-to-t3 subpath of π3, the t3-to-b subpath of π3, or
the t3-to-d path τ3. In each of the resulting nine possibilities, all or part of the
s1-to-s2 subpath of H3 could be replaced with σ1∪σ2 to form an a-to-c-to-d path
that would combine with subpaths of H1 ∪H2 to form a cycle of G′ through all
four of a, b, c, d.
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By the preceding paragraph, suppose no two of s1, s2, s3 are in the same subgraph
Hi of H; specifically suppose f is a permutation of {1, 2, 3} such that each si is
in Hf(i). Each si might be in the a-to-tf(i) subpath of πf(i) or in the tf(i)-to-b
subpath of πf(i) or the tf(i)-to-d path τf(i). In each of the resulting cases, two of
the paths σ1, σ2, σ3 would combine with a subgraph of H to form a cycle of G′

through all four of a, b, c, d.

Case 2. {ab, cd} is a minimal edge cutset ofG−S. Without loss of generality,
say G′ − S has connected components H◦

ac and H◦

bd where vertices a, c are in the
subgraph Hac of G′ that is induced by V (H◦

ac) ∪ S and vertices b, d are in the
subgraph Hbd of G′ that is induced by V (H◦

bd) ∪ S.

First suppose |S| = 2 with S = {v1, v2}. By Proposition 2(a), there is a set
Σ = {σ1, σ2, σ3, σ4} of four internally disjoint a-to-c paths in G, at most one of
which can contain both the edges ab and cd.

Claim. Hac contains a v1-to-v2 path through a and c inside Hac.

Proof. First suppose three paths in Σ contain none of v1, v2, b, d. Apply Propo-
sition 2(b) to v = v1 (respectively, to v = v2) and the union S of the vertex
sets of those three paths from Σ to obtain v1-to-S paths π11, π12 (and v2-to-S
paths π21, π22) in the 2-connected graph G′. The union of those three paths from
Σ and the paths π11, π12, π21, π22 will contain a v1-to-v2 path through a and c

inside Hac.

Now suppose instead that one path in Σ, say σ1, contains v1 but not v2 and
two other paths σ2, σ3 ∈ Σ contain none of v1, v2, b, d. Apply Proposition 2(b)
to v = v2 and S = V (σ1) ∪ V (σ2) ∪ V (σ3) to obtain v2-to-S paths π1, π2 in the
2-connected graph G′ where each πi has endpoint pi ∈ S with V (πi) ∩ S = {pi}.
Each pi is in one of the four following paths: the a-to-v1 subpath of σ1, the v1-to-c
subpath of σ1, the path σ2, or the path σ3. If p1 and p2 are both in the same one
of these four paths, then one of the paths π1 and π2 will combine with subpaths
of σ1, σ2, and σ3 to form a v1-to-v2 path through a and c inside Hac. Each of
the remaining six possibilities with p1 and p2 in the different ones of those four
paths will similarly lead to a v1-to-v2 path through a and c inside Hac.

Finally, if path σ1 ∈ Σ contains v1 but not v2 and σ2 ∈ Σ contains v2 but not
v1 and σ3 ∈ Σ contains none of v1, v2, b, d, then the v1-to-a subpath of σ1 followed
by σ3 followed by the c-to-v2 subpath of σ2 will be a v1-to-v2 path through a and
c inside Hac.

Therefore, Hac does contain a v1-to-v2 path through a and c, as claimed.

Similarly, Hb,d contains a v1-to-v2 path through b and d. But this contradicts
that those two internally disjoint paths would form a cycle of G′ through all four
of a, b, c, d.
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To finish Case 2, now suppose |S| = 3, say with S = {v1, v2, v3}. By Proposi-
tion 2(c), for every x ∈ {a, b, c, d} there is a cycle Cx̄ of the 3-connected graph
G′ such that Cx̄ contains the three vertices in {a, b, c, d} − {x} (with two of the
three in one of Hac and Hbd, and one in the other), but does not contain x.
Although Cx̄ might contain three vertices of S, exactly two of v1, v2, v3 will have
one neighbor along Cx̄ in H◦

ac and the other neighbor along Cx̄ in H◦

bd. There
will be four pairs Cx̄, Cȳ of such cycles that have x ∈ {a, c} and y ∈ {b, d}. Since
S contains only three pairs of vertices, there is an x ∈ {a, c} and a y ∈ {b, d}
such that Cx̄ and Cȳ both contain the same pair vi, vj ∈ S, with each of vi and
vj having one neighbor along Cx̄ from H◦

ac and one neighbor along Cȳ from H◦

bd.
But this contradicts that the vi-to-vj subpath of Cx̄ through b and d inside of Hbd

and the vi-to-vj subpath of Cȳ through a and c inside of Hac would be internally
disjoint paths that form a cycle of G′ through all four of a, b, c, d.

Case 3. Both ab and cd are cut-edges of G − S. The assumption that G is
4-connected implies |S| = 3, say with S = {v1, v2, v3}. Without loss of generality,
suppose G′ −S has connected components H◦

a , H
◦

bd, and H◦

c where vertex a is in
the subgraph Ha of G

′ induced by V (H◦

a)∪S, vertices b, d are in the subgraph Hbd

of G′ induced by V (H◦

bd)∪S, and vertex c is in the subgraph Hc of G
′ induced by

V (H◦

c ) ∪ S. Argue as in the final, |S| = 3 paragraph of the argument in Case 2,
except now with Ha ∪ Hc in the role previously played by Ha,c. This leads to
four cycles Cx̄, each containing exactly two of v1, v2, v3 that have one neighbor
along Cx̄ in Ha ∪Hc and the other in Hbd. There will again be an x ∈ {a, c} and
a y ∈ {b, d} such that Cx̄ and Cȳ both contain the same pair vi, vj ∈ S. But this
again contradicts that the vi-to-vj subpath of Cx̄ through b and d inside of Hbd

and the vi-to-vj subpath of Cȳ through a and c inside of Ha ∪Hc would form a
cycle of G′ through all four of a, b, c, d.

Figure 3 shows a 3-connected graph with minimum degree 4 that has two non-
adjacent edges that are not chords of a common cycle.
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Figure 3. The nonadjacent edges ab and cd are not chords of

a common cycle in this 3-connected graph.

Theorem 5. In every 4-connected graph, every two edges are chords of a common

cycle.
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Proof. Suppose G is a 4-connected graph, which implies that deleting two ver-
tices will never create a cut-edge. Thus G satisfies condition (3b) and, since G

has minimum degree at least 4, Theorem 3 implies that every two adjacent edges
are chords of a common cycle. Lemma 4 implies the same is true for every two
nonadjacent edges.
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