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1. Introduction

A graph G is a probe interval graph if there is a partition of V (G) into sets P and
N and a collection {Iv : v ∈ V (G)} of (open or closed) intervals of R such that, for
u, v ∈ V (G), uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅ and at least one of u, v belongs
to P . The sets P and N are called the probes and nonprobes, respectively, and
{Iv = (lv, rv) : v ∈ V (G)} together with the partition into probes and nonprobes
will be referred to in this paper as a representation. An interval graph is a probe
interval graph with N = ∅, and this class of graphs has been studied extensively;
see the texts by Fishburn [9], Golumbic [12], and Roberts [20] for introductions
and other references.

The probe interval graph model was invented in order to aid with the task
called physical mapping faced in connection with the human genome project, cf.
work of Zhang and Zhang et al. [17, 22, 23]. In DNA sequencing projects, a
contig is a set of overlapping DNA segments derived from a single genetic source.
In order for DNA to be more easily studied, small fragments of it, called clones,
are taken from multiple copies of the same genome. Physical mapping is the
process of determining how DNA contained in a group of clones overlap without
having to sequence all the DNA in the clones. Once the map is determined,
the clones can be used as a resource to efficiently contain stretches of genome.
If we are interested in overlap information between each pair of clones, we can
use an interval graph to model this problem: vertices are clones and adjacency
represents overlap. Using the probe interval graph model we can use any subset
of clones, label them as probes, and test for overlap between a pair of clones if and
only if at least one of them is a probe. This way there is flexibility, in contrast
to the interval graph model, since all DNA fragments need not be known at time
of construction of the probe interval graph model. Consequently, the size of the
data set, which by nature can be quite large, is reduced.

We consider probe interval graphs as a combinatorial problem and focus on
their structure. Here is a brief discussion of some of the recent results on the
structure of probe interval graphs and where to find them. The paper by Mc-
Morris, Wang and Zhang [17] has results similar to those for interval graphs found
in [11] by Fulkerson and Gross and [12] by Golumbic; e.g., probe interval graphs
are weakly chordal, analogous to interval graphs being chordal, and, as maximal
cliques are consecutively orderable in interval graphs, so-called quasi-maximal
cliques are in probe interval graphs (see [17]). The neighborhood of graph classes
surrounding probe interval graphs is discussed in [7] by Brown and Lundgren,
[5] by Brown, Flink and Lundgren, [13] by Golumbic and Lipshteyn, and [14]
by Golumbic and Trenk. Relationships between bipartite probe interval graphs,
interval bigraphs and the complements of circular arc graphs are presented in [7].

One way to characterize and describe the structure of a hereditary class of
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graphs is via a complete list of minimal forbidden induced subgraphs; we will
call such a characterization a FISC (for forbidden induced subgraph characteri-
zation). A requisite for a FISC for a class of graphs is that any induced subgraph
of a graph from that class still belongs to that class. We say a property of a
class of graphs is hereditary if the property remains after taking vertex-deleted
subgraphs, that is, if any induced subgraph keeps the property. A FISC is often
tantamount to an efficient recognition algorithm and is potentially an elegant and
concise way of completely describing the structure of the graph class, as in the
celebrated result of Beineke for line graphs ([1]). FISCs have been obtained for
probe interval graphs which are forests by Sheng in [21], for unit probe interval
graphs which are forests by Brown, Lundgren, and Sheng in [8], for bipartite
unit probe interval graphs by Brown and Langley in [6], and all of these FISCs
are arguably concise. Conciseness, however, is not a possible characteristic for
a FISC for probe interval graphs in general. Definitive evidence for this was es-
tablished in [19] by Pržulj and Corneil where a large list of forbidden induced
subgraphs for the probe interval graphs which are 2-trees was developed. This
paper extends the results in [19] and, in a sense, completes them. Specifically, we
add to Pržulj and Corneil’s list of forbidden subgraphs and characterize the probe
interval graphs which are 2-trees. Our characterization is not a FISC, but rather
along the lines of the characterization a cycle-free graph is an interval graph if

and only if it is a caterpillar which follows from [15].

The forbidden induced subgraphs developed by Pržulj and Corneil in [19] are
those in Figure 1 together with T3 and H in Figure 2. In this paper, we develop
graphs which should be added to this list. Specifically, we develop a family of
these new forbidden graphs in Section 3, and name six others in Section 5. But
we make some observations about which graphs to include in the list, as there
is a bit of inconsistency in the qualifications for the graphs included in the list
of [19], at least as far as what one may want from a list of forbidden induced
subgraphs for a class of graphs. The inconsistency is hard to avoid and may be
a reflection of a choice by Pržulj and Corneil to try to keep the list as small as
possible while keeping to the spirit of a FISC which, strictly speaking, needs to
be carefully interpreted for 2-tree probe interval graphs. The property of being
a probe interval graph is hereditary, but the property of being a 2-tree is not.
G1− v,G2− v, and G3− v in Figure 1 are not probe interval graphs but also not
2-trees; G1−x, G2−x, and G3−x are probe interval graphs and 2-trees. We note
that Fj may be extended beyond j = 4 and Fj , for any j ∈ {1, 2, 3, 4}, is not an
induced subgraph of, say, F7 and each Fk, for k > 4, is not a probe interval graph.
So, not including Fk, for k > 4, in any list L of forbidden subgraphs will yield the
possibility of being given a 2-tree and a decision problem regarding membership
to {2-trees}∩{probe interval graphs} which may yield a false negative if L is the
basis for the decision. We discuss this in more detail in Section 5.
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We have obtained a characterization of 2-tree probe interval graphs which uses
and develops concepts of generalized paths introduced by Beineke and Pippert in
[2], and of specialized k-trees introduced by Proskurowski in [18]. This approach
allows us to name precisely the class of graphs which are 2-tree probe interval.

2. Preliminaries

We discuss finite simple graphs and if G is a graph, we will denote the vertex set
of G by V (G) and the edge set of G by E(G). The neighborhood of a vertex v of
graph G, that is, the set {u ∈ V (G) : uv ∈ E(G)}, will be denoted by NG(v). A
subgraph of G on k vertices which is complete will be called a k-clique. Recall
from the introduction the definition of a probe interval graph. We will be using
the notation Iv for the interval corresponding to vertex v, and Iv = (lv, rv), that
is, lv and rv will be used to denote the left- and right-endpoints of the interval
corresponding to vertex v. If G is a probe interval graph and V (G) partitioned
into P and N and vertices corresponding to I = {Iv : v ∈ V (G)}, we refer to I
together with P an N as G’s representation.

A 2-tree may be recursively defined as follows:

• K2 is a 2-tree;

• Suppose G is a 2-tree; create G′ by adding a vertex to G adjacent to both
vertices of some K2 of G.

In the direction of obtaining a FISC (forbidden induced subgraph characteriza-
tion) for the 2-trees which are probe interval graphs Pržulj and Corneil in [19]
established a list of 62 forbidden subgraphs. The graphs in Figure 1 plus the
graphs T3 and H in Figure 2 are the 62 graphs.

The graphs T3 and H in Figure 2 are the two graphs which Sheng determined
provide a FISC for cycle-free probe interval graphs, see [21], and T2 will be referred
to often in the development of our results.

The conciseness of the characterization for cycle-free probe interval graphs
is encouraging in that it suggests one may find a concise characterization for
a more general class of graphs than forests. This turns out to be the case to
some extent. Indeed, in [8] a FISC for forests which are unit probe interval
graphs (probe interval graphs which can be represented using only unit-length
intervals, or intervals such that none properly contains another) was given which
lists T2, two caterpillars and one infinite family of caterpillars, and, according
to the results in [6], five more graphs suffice for a FISC for unit probe interval
graphs which are bipartite. Dropping the unit restriction and generalizing beyond
forests which are probe interval graphs has been less than encouraging, as far as
a concise FISC is concerned. In [7] it is shown that any FISC for the bipartite
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Figure 1. 60 of the forbidden induced subgraphs for 2-tree probe interval graphs deter-
mined by Pržulj and Corneil, where i ∈ {1, . . . , 6}, j ∈ {1, 2, 3, 4}, and k ∈ {1, . . . , 5}.

probe interval graphs in which the probe-nonprobe partition can correspond to
the graph’s bipartition (note that this need not be the case) includes sixteen
graphs and twelve infinite families of graphs.

Recognition of probe interval graphs falls into two general categories: parti-
tioned and non-partitioned, that is, G is given without knowing which vertices are
to be probes and nonprobes, or G is given with the partition of V (G) into probes
and nonprobes. The best known recognition algorithm for the non-partitioned
case is a polynomial time one, while for the partitioned case a linear-time recog-
nition algorithm has been demonstrated by McConnell and Nussbaum in [16]. In
[4] it is shown that the bipartite probe interval graphs enjoy a non-partitioned
recognition algorithm which is linear in the number of vertices plus the number
of edges, however, the structural results given show that any FISC will be quite
complicated.

In this paper, we impose no restriction, such as unit, on the representation
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Figure 2. T2, T3, and H.

and generalize in a different direction than the bipartite one. As Pržulj and
Corneil did, we consider the 2-trees which are probe interval graphs. We show
that the list given in [19] (described above) should include, depending on how you
count, at least seven more graphs. We present these graphs and discuss the issues
surrounding the proper way to enumerate the size of the list in Section 5. In lieu
of a FISC, which will have to overcome the nuance of describing a non-hereditary
class, we use results of Flesch and Lundgren in [10] to give a characterization
which precisely names the structure of 2-trees which are probe interval graphs.
We will now describe this structure.

We recall a notion of Beineke and Pippert’s in [2] which generalizes the idea
of a path.

Definition. A 2-path of G is an alternating sequence of distinct 2- and 3-cliques
of G, (e0, t1, e1, t2, e2, . . . , tp, ep), starting and ending with a 2-clique and such
that ti contains exactly two of the distinct 2-cliques: ei−1 and ei (1 ≤ i ≤ p).
The length of the 2-path is the number p of 3-cliques. The letters e and t are used
to remind us of edges and triangles (K3s) and we will keep to this convention in
the sequel.

We now classify a few structures in 2-trees and define some derived graphs we
will use. A vertex v of a 2-tree G is a 2-leaf of G if NG(v) is an edge of G. Let
G be a 2-tree and define G1− to be G − PG, where PG is the set of 2-leaves of
G; iteratively, G2− = G1− − PG1− . It will turn out that if G is a 2-tree probe
interval graph, then G2− must be a 2-path. For those graphs G where G2− is a
2-path and for the purposes of our characterization, we need to classify certain
vertices. These classifications will help with the partition of V (G) into probes
and nonprobes.

Suppose G is a 2-tree such that G2− is the 2-path (e0, t1, e1,t2, . . . ,tp, ep),
such that e0 and ep are defined in the following way. Let a0 be a 2-leaf of G1−

such that NG1−(a0) ⊂ t1 and ap be a 2-leaf of G1− such that NG1−(ap) ⊂ tp.
Define e0 = NG1−(a0) and ep = NG1−(ap). This will be our intended meaning for
e0 and ep for the rest of the paper. Note that there may be an ambiguity in which
edge of G2− is to be e0 or ep, but this choice may always be made arbitrarily as
it does not affect any results. We now describe two sets of 2-leaves in G and G1−

respectively.
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• ∂1G = {v ∈ V (G) : v is a 2-leaf of G,NG(v) 6= ei (0 ≤ i ≤ p)};

• ∂2G = {v ∈ V (G1−) : v is a 2-leaf of G1−, NG1−(v) 6= ei (0 ≤ i ≤ p)}.

Interval p-graphs are the graphs in which vertices correspond to intervals (of, say,
the real line) of p possible colors and edges correspond to nonempty intersections
of differently colored intervals. Flesch and Lundgren showed in [10] that the class
of 2-trees that have interval p-representations are spiny interior 2-lobsters, and in
[3] it is shown that any p-chromatic probe interval graph is an interval p-graph.
These relationships allow us to streamline our investigation and so we name the
class of 2-trees in which probe interval graphs are necessarily confined: the spiny
interior 2-lobsters.

Definition. A 2-tree G is a 2-lobster if G2− is a 2-path. A spiny interior 2-lobster
is a 2-lobster G with ∂2G = ∅.

To bring us closer to the class of 2-trees which are probe interval graphs, we refine
the classification of vertices in ∂1G into the sets ∂1

1G and ∂2
1G:

• ∂1
1G = {v ∈ ∂1G : NG(v) ⊆ V (G2−)};

• ∂2
1G = {v ∈ ∂1G : NG(v) 6⊆ V (G2−)}.

Now, certain vertices which are not adjacent to these 2-leaves will be particularly
important and we identify those now. The sets we now define are sets of vertices
of G2−. To define the sets, we will speak of a vertex v being grown from edge xy,
denoted vaxy, if v can be regarded as having been added to G in some step of the
recursive construction of G via the edge xy. We will use this relation recursively
as well, that is, aabcacd denotes that bacd and then aabc; note that a is not
adjacent to d. For example, see the graph in Figure 4 called the 3-sun. In that
graph, we may regard d as being grown from bf which may be regarded as grown
from fc (or bc); that is, dabfafc (or dabfabc), and aabcafc. The following
definitions apply to spiny interior 2-lobster G.

• W 1: a vertex v belongs to W 1 if some x ∈ ∂1
1G satisfies xa(ti− v) for some

ti (1 ≤ i ≤ p).

• W 2: a vertex v belongs to W 2 if some y ∈ ∂2
1G satisfies yaxzaei, where

ei = xv, for some ei (1 ≤ i ≤ p− 1).

• W 3: vertex v belongs to W 3 if some y ∈ ∂2
1G satisfies yaxzaei, where

ei = xv (i ∈ {0, p}).

• W 3′ : vertex v belongs to W 3′ if some pair y, s ∈ ∂2
1G satisfy yaxzaei and

saxraei, where i = 0 or i = p, and z 6= r.
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Figure 3. Examples of vertices of ∂1
1G, ∂2

1G, W 1(G), W 2(G), W 3(G), and W 3
′

(G).
Vertices labeled with 1 belong to ∂1

1G, those labeled with 2 to ∂2
1G; vertices labeled with

W a, W a,b, or W a,b,c belong to W a, W a ∩W b, W a ∩W b ∩W c, respectively.

• W = W 1 ∪W 2 ∪W 3.

In Figure 3 we illustrate these classifications of vertices. Notice that W 3 will
never be empty, because G2− eliminates two vertices on either end of the longest
2-path in G.

We are now ready to identify the class of 2-trees which are probe interval
graphs: the sparse spiny interior 2-lobsters.

Definition. Let G be a spiny interior 2-lobster with G2− the 2-path (e0, t1, e1,
t2, . . . , tp,ep). The following two conditions hold if and only if G is a sparse spiny

interior 2-lobster (ssi2-lobster):

1. No ti, 1 ≤ i ≤ p, has two vertices in W 1 ∪W 2 ∪W 3′ .

2. No ti, i ∈ {1, p}, has three vertices x, y, and z such that x, y ∈ W 3 and if
e0 = xy or ep = xy then z ∈ W 1 ∪W 2 ∪W 3′ .

3. Foundation for the Characterization

We recall some definitions and results from [21] and [19] which will be useful for
our characterization.

An asteroidal triple (AT) in a graph G is a set of three vertices with the
property that between each pair of vertices there is a path connecting them which
does not intersect the neighborhood of the third. A collection of sets {X,Y, Z} is
an asteroidal collection (AC) if for each x ∈ X, each y ∈ Y , and each z ∈ Z, the
triple {x, y, z} is an asteroidal triple. Each of these sets X, Y , and Z is called an
asteroidal set (AS). The following results in [19] and [21] are for determining the
probe-nonprobe partition in a probe interval graph.
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Lemma 1 [21]. If G is a probe interval graph, then at least one vertex of every

asteroidal triple must be a nonprobe.

Lemma 2 [21]. If T2 is an induced subgraph of a probe interval graph, then the

vertex of degree 3 in the induced T2 must be a nonprobe.

Corollary 3 [19]. At least one asteroidal set of an asteroidal collection in a probe

interval graph G must consist entirely of nonprobes. Thus at least one asteroidal

set of a probe interval graph must be an independent set.

Lemma 4 [19]. In every asteroidal triple of a probe interval graph G there must

exist a nonprobe vertex u such that there exists a path between the other two

asteroidal triple vertices that avoids N(u) and has a nonprobe internal vertex.

Corollary 5 [19]. Up to isomorphism, there exists only one probe-nonprobe par-

tition of vertices of the 3-sun of Figure 4.

To conserve notation, in all of what follows, we will drop the V (·) notation and
simply write ti or ei and use + and − to denote ∪ and \; so for example, ti−ei+v
means V (ti) \ V (ei) ∪ {v}, where v is a vertex.

Lemma 6. Let G be a spiny interior 2-lobster with a probe interval representa-

tion. Any wx ∈ W 1 must be a nonprobe.

Proof. Let G be a spiny interior 2-lobster with a probe interval representation
with G2− = (e0, t1, e1, t2, . . . , tp, ep), and let x ∈ ∂1

1G with NG(x) = ti − wx.
The graph G2− is a subgraph of a 2-path of length p+ 4 in G; label this 2-path
G2−∗ = (e−2, t−1, e−1, t0, e0, t1, . . . , ep, tp+1, ep+1, tp+2, ep+2). Let a ∈ ti−2− ei−2,
b ∈ ti−1 − ei−1, c ∈ ti+1 − ei, d ∈ ti+2 − ei+1, r ∈ ti − ei, s ∈ ti − ei−1. With
X = {x}, Y = {a, b}, and Z = {c, d}, we have {X,Y, Z} is an AC. By Corollary
3, since ab ∈ E(G) and cd ∈ E(G), the AS X = {x} must contain all nonprobes.
Now consider the subgraph H induced by the vertices {b, c, r, s, x, wx}, which is
isomorphic to the 3-sun. By Corollary 5, since x must be a nonprobe, wx must
also be a nonprobe.

The next lemma is to the end of showing that any vertex in W 2 must be a
nonprobe.

Lemma 7. Up to isomorphism, there are exactly three probe-nonprobe partitions

of vertices of the probe interval graph Q in Figure 4.

Proof. Label the vertices of the probe interval graph Q as in the Figure 4 and
reserve the sets P and N for the probes and nonprobes, respectively. The vertices
{a, g, h} form an AT. By Lemma 4, there must exist a nonprobe AT vertex u with
a path between the other two AT vertices that avoids NQ(u) and has a nonprobe
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Figure 4. GraphsQ and the 3-sun with their possible (P,N)-partitions up to isomorphism.
The white vertices are nonprobes, black are probes, and the grey can be either a probe
or nonprobe.

internal vertex. Assume that h is the AT vertex with this property. The only
vertex in the neighborhood of h is d, so the internal vertex that must also be a
nonprobe can be either b, f , or c.

Assume that b is this nonprobe vertex, and thus a and c must be probes.
In a probe interval representation of G, Ih and Ic must not overlap, since they
are not adjacent and c ∈ P . Furthermore, d is adjacent to both h and c. Now,
without loss of generality, let rh < lc and hence ld < rh and rd > lc. Now both b
and f are adjacent to d but not adjacent to one another or to h. Assume that f
is a probe, so If and Ib must not overlap. If If ⊂ Id, then Ig ∩ Id 6= ∅, which is
a contradiction since d is a probe and d and g are not adjacent. Thus, since f is
not adjacent to h, we must have rb < lf . However, this forces Ia ∩ Id 6= ∅, since
a is adjacent to both c and b, which is a contradiction.

Let us assume then that f is a nonprobe and that rb < rf . Since a and g are
adjacent to c and not to d, then rd < la and rd < lg. Thus, we have Ia ∩ If 6= ∅,
which is a contradiction. We also get a contradiction if f ∈ N and rf < rb, so if
h ∈ N then b ∈ P .

Similar arguments yield contradictions if we assume h and f must be the
nonprobes that satisfy Lemma 4, so it is also true that if h ∈ N , then f /∈ N .
Hence it must be the case that N = {h, c} and P = {a, b, d, f, g} (see Q

′

in
Figure 4). With this probe-nonprobe partition and the interval assignment Ic =
(0, 6), Ia = (0, 2), Ib = (1, 2.5), Id = (2, 4), If = (3.5, 5), Ig = (4, 6), Ih = (2.5, 3.5),
we can see that this is a probe interval representation.

Now we start with the AT nonprobe vertex being a, which forces b, c ∈ P .
By Lemma 4, either d or f must be a nonprobe. Assume that f is a nonprobe,
which means that d and g are probes. We also know from above that h must be a
probe if f is a nonprobe, and thus the only vertices that are nonprobes are a and
f . Since NQ(a) 6⊆ NQ(f) and NQ(f) 6⊆ NQ(a), neither Ia ⊆ If nor If ⊆ Ia. We
know that Ia and If must overlap, or else the probe interval representation would
be an interval representation, which is a contradiction since G contains an AT.
Without loss of generality, let la < lf . Since b ∈ NQ(a), but b /∈ NQ(f), we know
that rb < lf . However, d is adjacent to both b and f , so ld < rb and rd > lf . This
forces Ia ∩ Id 6= ∅, a contradiction. Therefore, d must be the nonprobe vertex.
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Hence either N = {a, d}, P = {b, c, f, h, g} or N = {a, d, g}, P = {b, c, f, h}
(see Q in Figure 4). With either (P,N)-partition and the interval assignment
Ic = (2, 6), Ia = (2, 3), Ib = (2, 3), Id = (1, 4), If = (3, 5), Ig = (4, 6), Ih = (0, 2),
we can see that both are probe interval representations.

A similar argument yields a contradiction if we assume the AT nonprobe
vertex is g. However, these probe-nonprobe partitions are isomorphic to the ones
above. Thus there are exactly three probe-nonprobe partitions of vertices of
probe interval graph Q in Figure 4 up to isomorphism.

Now we can prove that the vertices of W 2 must be nonprobes.

Lemma 8. Let G be a spiny interior 2-lobster with a probe interval representa-

tion. Any wy ∈ W 2 must be a nonprobe.

Proof. Let G be a spiny interior 2-lobster with probe interval representation,
P the set of probes, N the nonprobes, and G2− = (e0, t1,e1,t2, . . . ,tp, ep). Let
y ∈ ∂2

1 such that NG2−(y) = ei − wy for wy ∈ W 2(G); from the definition of
W 2, i 6= 0, p. The graph G2− is a subgraph of a 2-path of length p + 4 in G;
label this 2-pathG2−∗ = (e−2, t−1, e−1, t0, e0, t1, . . . , ep, tp+1, ep+1, tp+2, ep+2). Let
a ∈ ti−2 − ei−2, b ∈ ti−1 − ei−1, c ∈ ti+2 − ei+1, d ∈ ti+3 − ei+2, r ∈ ti+1 − ei, and
NG(y) = ei+u−wy. We have three cases to consider. Either both b, c /∈ NG(wy),
exactly one of b or c /∈ NG(wy), or b, c ∈ NG(wy).

Case 1. The vertices b, c /∈ NG(wy). If both b, c /∈ NG(wy), then the graph
induced by vertices {b, s, wy, r, c, u, y} is T2. By Lemma 2, wy must be a nonprobe.

Case 2. Exactly one of b or c ∈ NG(wy). Without loss of generality, assume
b ∈ NG(wy) and c /∈ NG(wy). Label vertex v such that v ∈ ti, but v /∈ ei−1,
which implies that v ∈ ei. With Y = {y}, X = {a, b}, and Z = {c, d}, {X,Y, Z}
is an AC. Since ab ∈ E(G) and cd ∈ E(G), the AS Y = {y} must contain all
nonprobes by Corollary 3. We know that y /∈ NG(r) since r /∈ ei. We know that
u, y, r, c, v /∈ NG(b) because b /∈ ei−1. Thus the graph H induced by the vertices
{b, wy, r, c, v, u, y} is isomorphic to Q in Figure 4, with wy

∼= d and y ∼= a. By
Lemma 7 and the fact that y ∈ N , wy is a nonprobe.

Case 3. The vertices b, c ∈ NG(wy). Let ei = wyf ; with Y = {y}, X = {a, b},
and Z = {c, d}, {X,Y, Z} is an AC. Since ab ∈ E(G) and cd ∈ E(G), the AS
Y = {y} must contain all nonprobes by Corollary 3. Now consider the subgraph
H induced by the vertices {b, s, f, y, wy, r, c}, which is isomorphic to Q

′

in Figure
4 with wy

∼= c and y ∼= h. By Lemma 7 and the fact that y ∈ N , the vertex wy

is a nonprobe.

Now, to the end of proving our main result, we develop a new family of forbidden
subgraphs not given in [19].
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Lemma 9. The graphs Hi, i ∈ Z+ are not probe interval graphs.

Proof. Label Hi, i ∈ Z+ as in Figure 5. The subgraph induced by the vertices
{wy, wx, r, g, y, f, h} is T2. Thus by Lemma 2, wy is a nonprobe. Now consider the
subgraph induced by {r, b, x, d1, wx, wy}, which is a 3-sun with wy as a nonprobe.
By Corollary 5, b must also be a nonprobe. Lastly, with X = {x}, Y = {r},
and Z = {g, y}, {X,Y, Z} is an AC. By Lemma 3 and the fact that g and y
are adjacent, either r or x must be a nonprobe. However, we already said that b
must be a nonprobe, and both r and x are adjacent to b, which is a contradiction.
Therefore, no Hi, i ∈ Z+ is a probe interval graph.

Figure 5. Hi, i ∈ Z+.

4. Characterization

We have established most of the structural results sufficient for our characteriza-
tion of 2-tree probe interval graphs.

Lemma 10. Let G be a 2-tree. If G is an ssi2-lobster, then G is a probe interval

graph.

Proof. Suppose G is a sparse spiny interior 2-lobster such that G2− = (e0, t1, e1,
. . . , tp, ep). Reserve the sets P and N for the probes and nonprobes, respectively.
By definition of e0 and ep, we know that both contain at least one vertex in W 3.
If e0 contains exactly one vertex in W 3, label it w. Similarly if ep contains exactly
one vertex in W 3, label it a. If both vertices of e0 (or ep) are in W 3− (W 1∪W 2∪
W 3′), then label the vertex in e0 and e1 as w (or ep and ep−1 as a). If not then by
the first condition of an ssi2-lobster, both vertices of e0 (and ep) are not in the set
W 1∪W 2∪W 3′ . Thus choose a vertex w ∈ e0 such that w ∈ W 3−(W 1∪W 2∪W 3′),
and choose a vertex a ∈ ep such that a ∈ W 3 − (W 1 ∪ W 2 ∪ W 3′). Let y ∈ ∂2

1

such that NG(y) = {NG1−(z), z} − {w} = {e0, z} − {w}. Label e0 = wx, and
notice that NG1−(z) = {w, x} and y ∈ NG(x). Similarly let d ∈ ∂2

1 such that
NG(d) = {NG1−(c), c} − {a} = {ep, c} − {a}, and label ep = ab. Now we let
e−2 = yz, t−1 = {x, y, z}, e−1 = zx, t0 = {z, w, x}, tp+1 = {a, b, c}, ep+1 = bc,
tp+2 = {b, c, d}, and ep+2 = cd.
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Make each vertex v ∈ W 1∪W 2∪W 3′∪(W 3−{w, a}) and each vertex z ∈ ∂1−{y, d}
a nonprobe. If w or a is in W 1 ∪W 2 ∪W 3′ then it will be a nonprobe; however,
if it is just in W 3−W 3′ then it will be a probe. By the first condition of an ssi2-
lobster, no clique contains two vertices from W 1 ∪W 2 ∪W 3′ , and by the second
condition if a clique contains a vertex from (W 3−{w, a}) then it does not contain
a vertex from W 1 ∪ W 2 ∪ W 3′ . Hence no clique in G2− contains two nonprobe
vertices; therefore, by the definition of a 2-tree, no two nonprobe vertices of G2−

are adjacent. Furthermore, no two vertices of ∂1 are adjacent, and if a vertex
of ∂1 is adjacent to a vertex of W 1 ∪W 2 ∪W 3′ ∪ (W 3 − {w, a}) then there is a
clique with two vertices in W 1∪W 2∪W 3′ and G is not an ssi2-lobster. Thus this
probe-nonprobe partition has no adjacencies between nonprobe vertices. Now we
must assign intervals using this partition.

Let G2−∗ = (e−2, t−1, e−1, t0, e0, t1, e1, . . . , tp, ep, tp+1, ep+1, tp+2, ep+2), and
for each v ∈ G2−∗ assign an ordered pair (m,n) such that tm is the first clique
that contains v and tn is the last. Assign the interval Ivm,n = (m,n + 1

2) to
each v ∈ G2−∗. Notice that the interval (i + 1

2 , i + 1) contains only the ver-
tices from ei, and the interval (i, i + 1

2) contains only the vertices from ti. For
each ei ∈ G2−∗, let Mi = {v ∈ V (G) : v /∈ V (G2−∗) and NG2−∗(v) = ei} and
enumerate the vertices of Mi as x(i,1) to x(i,|Mi|). Assign the interval Ix(i,j)

=
(

i+ 1
2 + j−1

2|Mi|
, i+ 1

2 + j
2|Mi|

)

to each x(i,j) ∈ Mi for all Mi. For each x(i,j) ∈ Mi

let Mi,j = {v ∈ ∂2
1 : x(i,j) ∈ N(v)} and enumerate the vertices of M(i,j) as y(i,j,1)

to y(i,j,|M(i,j)|). Assign the interval Iy(i,j,k) =
(

i+ 1
2 + j−1

2|Mi|
, i+ 1

2 + j
2|Mi|

)

to each

y(i,j,k) ∈ M(i,j). Recall that these vertices are nonprobes, so their intersecting in-
tervals do not yield adjacencies. Since the spiny interior 2-lobster is sparse, each
y(i,j,k) ∈ M(i,j) in not adjacent to a distinct vertex of ei, which is a nonprobe.
Therefore, no adjacency results between each y(i,j,k) and its non-adjacency in ei.

For each ti, 1 ≤ i ≤ p, let Qi = {v ∈ ∂1
1 : NG(v) ⊂ ti}, and let Q0 = {v ∈

∂2
1 : NG(v) = zw} and Qp+1 = {v ∈ ∂2

1 : NG(v) = ac}. Enumerate the vertices of
Qi, 0 ≤ i ≤ p+ 1 as c(i,1) to c(i,|Qi|). Assign the interval Ic(i,j) = (i, i+ 1

2). Recall
that these vertices are nonprobes, so their intersecting intervals do not yield
adjacencies. Since G is an ssi2-lobster, the vertex wi ∈ ti with wi /∈ NG2−∗(c(i,j))
is the same for all j, and wi is a nonprobe since it is in W 1. Therefore no
adjacency results between each c(i,j) and wi for all j. Thus G has a probe interval
representation.

Theorem 11. If G be a 2-tree, then G is a probe interval graph if and only if it

is an ssi2-lobster.

Proof. Let G be a 2-tree that has a probe interval representation with P the set
of probes and N the nonprobes. Assume that it is not an ssi2-lobster. Thus it is
either not a spiny interior 2-lobster or it is a spiny interior 2-lobster that is not
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sparse. If it is not a spiny interior 2-lobster, then it is not an interval p-graph,
[10]. Since p-chromatic probe interval graphs are contained in interval p-graphs,
it is not a probe interval graph.

Therefore, assume that G is a spiny interior 2-lobster that is not sparse.
Let G2− = (e0, t1, e1, . . . , tp, ep). If the first condition of being an ssi2-lobster is
violated, then either there is a ti with two vertices wx and wy in W −W 3, there is
a ti with two vertices wx and wy with wx ∈ W −W 3 and wy ∈ W 3′ , or there is a
ti with two vertices wx and wy such that wx, wy ∈ W 3′ . If the second condition of
being an ssi2-lobster is violated, then there is a ti, i ∈ {1, p}, with three vertices
wx, wy, and wz such that wx, wz ∈ W 3 and if e0 = wxwz or ep = wxwz, then
wy ∈ W 1 ∪W 2 ∪W 3′ .

Case 1. There is a ti with two vertices wx and wy in W −W 3. In this case,
wx and wy are nonprobes by Lemmas 6 and 8, which is a contradiction since
wxwy ∈ E(G).

Case 2. There is a ti with two vertices wx and wy such that wx ∈ W −W 3

and wy ∈ W 3′ . Let NG(y) = {NG2−(z), z}− {wy} = {ep, z}− {wy} and NG(s) =
{NG2−(r), r} − {wy} = {ep, r} − {wy} for y, s ∈ ∂2

1G and distinct z, r ∈ V (G).
Since wx and wy are both in ti, wy ∈ ej , i ≤ j ≤ p. If wy /∈ ei−1, there is a vertex
g such that ei−1 ⊂ NG(g) and wy /∈ NG(g). Let ei−1 = wxh. The subgraph H
induced by the vertices {wy, h, g, y, s, z, r} is T2 with wy the vertex of degree 3,
and hence a nonprobe by Lemma 2 (see A1 in Figure 6). By Lemmas 6 and 8,
wx is a nonprobe, which is a contradiction since wxwy ∈ E(G).

Therefore, let us assume that wy ∈ ei−1. Since wy is in both ei−1 and ei, this
precludes wx from being inW 1 since vertices in this set must be in two consecutive
ejs. This means that wxwy = ei for i 6= 0 and i 6= p. Let ep = wyf and b ∈ ei−1

and consider the subgraph H induced be the vertices {wy, f, z, y, r, s, b}, which is
isomorphic to Q in Figure 4 with wy

∼= d (see A2 in Figure 6). By Lemmas 6 and
8, wx is a nonprobe. Since wxb ∈ E(G), b must be a probe. Thus by Lemma 7,
wy must be a nonprobe, a contradiction.

Figure 6. Labeled examples for Case 2 in the proof of Theorem 11.

Case 3. There is a ti with two vertices wx and wy such that wx, wy ∈ W 3′ .
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Let NG(y) = {NG2−(z), z} − {wy} = {ei, z} − {wy} and NG(s) = {NG2−(r), r} −
{wy} = {ei, r} − {wy} for y, s ∈ ∂2

1G and distinct z, r ∈ V (G), (i = 0 or
i = p), and NG(x) = {NG2−(v), v} − {wx} = {ei, v} − {wx} and NG(c) =
{NG2−(d), d} − {wx} = {ei, d} − {wx} for x, c ∈ ∂2

1G and distinct v, d ∈ V (G),
(i = 0 or i = p). First consider the case that neither wxwy 6= e0 nor ep. Then
the subgraph H induced by the vertices {wy, y, z, s, r, wx, v} is isomorphic to T2

with wy the vertex of degree 3. Similarly, the subgraph H induced by the ver-
tices {wx, v, d, x, c, wy, z} is isomorphic to T2 with wx the vertex of degree 3 (see
A3 in Figure 7). By Lemma 2, both wx and wy must be nonprobes, which is a
contradiction since they are adjacent.

Therefore, let us assume without loss of generality that wxwy = ep and that
wx /∈ ep−1. Let a ∈ tp such that a 6= wx, wy, and notice that there exists a vertex
b such that a, wy ∈ NG(b), but b /∈ NG(wx). Thus the subgraph H induced by
the vertices {wx, v, x, c, d, a, b} is T2 with wx the vertex of degree 3. By Lemma
2, wx must be a nonprobe. If NG1−(z) = NG1−(r) = e0, then e0 = wyf and
the subgraph H induced by the vertices {wy, z, y, r, s, d, f} is isomorphic to Q in
Figure 4 (see A4 in Figure 7). Since d ∈ NG(wx) and wx is a nonprobe, d must
be a probe. By Lemma 7, this forces wy to be a nonprobe, a contradiction.

If NG1−(z) = NG1−(r) = ep, then let g be a vertex such that g /∈ tp and g ∈
NG(b). We know such a vertex exists since G2− has at least one ti. The subgraph
H induced by the vertices {wy, y, z, s, r, wx, b} is isomorphic to Q in Figure 4. By
Lemma 7 and the fact that wx is a nonprobe, b must also be a nonprobe. If g ∈
NG(wy), consider the subgraph H induced by the vertices {wy, y, z, s, r, wx, g},
which is again isomorphic to Q in Figure 4. Hence, by Lemma 7, wx and g must
be nonprobes, but this is a contradiction since bg ∈ E(G). If g /∈ NG(wy) consider
the subgraph H induced by the vertices {wy, y, z, s, r, wx, b, g}. The set {g, y, s}
is an AT (see A5 in Figure 7). By Lemma 1, one of these vertices must be a
nonprobe. Since g is adjacent to b, which is a nonprobe, the nonprobe AT vertex
must be either y or s. However, both of these vertices are adjacent to wx, which
has already been shown to be a nonprobe, a contradiction.

Figure 7. Labeled examples for Case 3 in the proof of Theorem 11.

Case 4. There is a ti, i ∈ {1, p}, with three vertices wx, wy, and wz such that
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wx, wz ∈ W 3 and if e0 = wxwz or ep = wxwz then wy ∈ W 1∪W 2∪W 3′ . Without
loss of generality, let ep = wxwz, ep−1 = wxwy, NG(x) = {NG2−(v), v} − {wx} =
{ep, v}−{wx} and NG(z) = {NG2−(d), d}−{wz} = {ep, d}−{wz} for x, z ∈ ∂2

1G
and v, d ∈ V (G). We first consider the case that v = d. If wy ∈ W 3′ , let
NG(y) = {NG2−(c), c} − {wy} = {e0, c} − {wy} and NG(s) = {NG2−(r), r} −
{wy} = {e0, r} − {wy} for y, s ∈ ∂2

1G and distinct c, r ∈ V (G). The subgraph
induced by all the vertices of G2− and {r, s, c, y, v, x, z} is isomorphic to Hi in
Figure 5 for some i ∈ Z+, and hence by Lemma 3, G is not a probe interval
graph.

Now assume v = d and wy ∈ W 1 ∪W 2, and recall that by Lemmas 6 and 8,
wy must be a nonprobe. The graph H induced by the vertices {wy, wz, wx, v, z, x}
is isomorphic to the 3-sun. With wy already a nonprobe, we know that v must
also be a nonprobe by Corollary 5. Since wy is in W 1 ∪W 2, the clique tp−1 must
exist on G2−, so without loss of generality we let tp−1 = {a, wy, wx}. The set
{a, z, x} is an AT. By Lemma 1, one of these vertices must be a nonprobe, but
since a is adjacent to wy, the nonprobe must be either z or x. However, both
z and x are adjacent to v, which has already been shown to be a nonprobe, a
contradiction.

Now consider the case v 6= d. If wy ∈ W 3′ , the subgraph H induced by the
vertices {wy, c, y, r, s, wz, x} is isomorphic to T2 with wy the vertex of degree 3,
and by Lemma 2, wy must be a nonprobe. By Lemmas 6 and 8, if wy ∈ W 1∪W 2,
then wy is a nonprobe. In either case, there is a vertex r that is either a 2-leaf of
G1− or in tp−1 such that wx, wy ∈ NG(r). Now consider the subgraph H induced
by the vertices {wx, wy, wz, d, x, z, r}, which is isomorphic to Q in Figure 4. By
Lemma 7, wy cannot be a nonprobe, a contradiction.

Every case yields a contradiction, so if G is not a sparse spiny interior 2-
lobster, then it is not a probe interval graph.

Now let G be a ssi2-lobster. By Lemma 10, G has a probe interval represen-
tation.

5. Extended List of Forbidden Subgraphs

We now present graphs which cannot be induced subgraphs of any 2-tree probe
interval graph and are not included in the list, call it L, of forbidden induced
subgraphs developed by Pržulj and Corneil in [19]. There is some inconsistency
in what qualifies a graph for membership to L, but in so far as we believe we have
captured the intention behind L, we’ll add to it and create L∗, where L∗ should
be sufficient to decide whether any given 2-tree is a probe interval graph. L will
not suffice for this because if we are given F5 from Figure 1 there is no induced
subgraph to find in F5 from the list which will indicate F5 is not a probe interval
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graph. Clearly L ⊆ L∗.
Recall Hi of Figure 5 and that any Hi is not a probe interval graph by Lemma

3. Pržulj and Corneil exclude graphs Fk, for k > 4 because vertices z5, . . . , zk
can be removed and not create a probe interval graph. So F5, F6 and so on are
not minimal. Regarding Hi, from Hk (k > 1) we may remove d2, . . . , dk and still
have a graph which is not a probe interval graph. So, in the spirit of Pržulj and
Corneil, we include H1 in L. But any Hk for k > 1 is not a probe interval graph
yet has no subgraph isomorphic to any of L ∪ {H1}, so H2, H3 and so on should
be included in L∗.

Figure 8. New forbidden subgraphs.

Now consider the graphs Ni, 1 ≤ i ≤ 6, in Figure 8. Each Ni is not a probe
interval graph since each has t1 with two vertices in W 2. If v is any vertex of
Ni, for 1 ≤ i ≤ 6, Ni − v is not a 2-tree or has a probe interval representation.
For example, N1 − x is neither a probe interval graph, nor is it a 2-tree; N1 − y,
however, is an ssi2-lobster and is therefore a probe interval graph. So each Ni is
not minimal in the typical way one seeks in a FISC, but we believe the list has
properties consistent with the spirit of L. To wit, G1, G2, G3 in Figure 1 have
vertices whose removal will produce a graph which is not a probe interval graph
and not a 2-tree, and vertices whose removal will leave a 2-tree which is a probe
interval graph. So N1, N2, . . . , N6 should be included in L.

Coming back to L∗, consider the graph S in Figure 1. It can be regarded as
a family of graphs, since a k-fan can be inserted at u and, for each k, give a graph
which is not a probe interval graph with no induced subgraph from L (details
are in [19].) Similar arguments can be made about the eight classes of graphs
in Figure 1 and so should be included in L∗. In all we have 10 infinite classes
of graphs in L∗: the eight in Figure 1 plus S extended as just discussed, plus
Hi, i ≥ 1. Therefore, L, the list of forbidden induced subgraphs for 2-tree probe
interval graphs in the spirit of Pržulj and Corneil, contains at least 69 graphs,
and L∗ contains 27 graphs and 10 families.
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