Discussiones Mathematicae Graph Theory 34 (2014) 683–690 doi:10.7151/dmgt.1752

THE CONNECTIVITY OF DOMINATION DOT-CRITICAL GRAPHS WITH NO CRITICAL VERTICES

Michitaka Furuya

Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan e-mail: michitaka.furuya@gmail.com

Abstract

An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number.

In A note on the domination dot-critical graphs, Discrete Appl. Math. **157** (2009) 3743–3745, Chen and Shiu constructed for each even integer $k \geq 4$ infinitely many k-dot-critical graphs G with no critical vertices and $\kappa(G) = 1$. In this paper, we refine their result and construct for integers $k \geq 4$ and $l \geq 1$ infinitely many k-dot-critical graphs G with no critical vertices, $\kappa(G) = 1$ and $\lambda(G) = l$. Furthermore, we prove that every 3-dotcritical graph with no critical vertices is 3-connected, and it is best possible.

Keywords: dot-critical graph, critical vertex, connectivity.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. We let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For $u \in V(G)$, we let $N_G(u)$ and $N_G[u]$ denote the open neighborhood and the closed neighborhood of u, respectively; thus $N_G[u] = N_G(u) \cup \{u\}$. For $uv \in E(G)$, we let G/uv denote the graph obtained from G by contracting uand v into a single vertex x_{uv} . Formally, G/uv is the graph obtained by adding a new vertex x_{uv} to $G - \{u, v\}$ and joining x_{uv} to those vertices of $G - \{u, v\}$ which are adjacent to at least one of u and v in G. We let $\kappa(G)$ and $\lambda(G)$ denote the connectivity and the edge-connectivity of G, respectively. For $X \subseteq V(G)$, we let G[X] denote the subgraph of G induced by X. For terms and symbols not defined here, we refer the reader to [3].

Let again G be a graph. For two subsets X, Y of V(G), we say that X dominates Y if $Y \subseteq \bigcup_{x \in X} N_G[x]$. A subset of V(G) which dominates V(G) is called a dominating set of G. The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$. A dominating set of G having cardinality $\gamma(G)$ is called a γ -set of G. An edge uv of G is said to be dot-critical if $\gamma(G/uv) < \gamma(G)$, and we say that G is dot-critical if every edge of G is dot-critical. If G is dot-critical and $\gamma(G) = k$, G is said to be k-dot-critical. A vertex u of G is said to be critical if $\gamma(G-u) < \gamma(G)$.

Burton and Sumner [1] posed a problem: For $k \ge 4$, what are the best upper bound for the diameter of a connected k-dot-critical graph with no critical vertices? Mojdeh and Mirzamani [5] conjectured that the diameter of connected k-dot-critical graphs with no critical vertices is at most 2k - 3. Recently, the author and Takatou [4] showed that the conjecture is true. Before that time, Rad [6] proved the conjecture for 2-connected graphs is true, and he posed a new problem.

Problem 1 (Rad [6]). For an integer $k \ge 2$, is it true that a connected k-dotcritical graph with no critical vertices is 2-connected?

If Problem 1 is true, then the Mojdeh-Mirzamani conjecture follows from Rad's result. However, Chen and Shiu [2] gave its negative answer that for each even integer $k \ge 4$, there exist infinitely many k-dot-critical graphs G with no critical vertices and $\kappa(G) = 1$. (In fact, they constructed graphs with edge-connectivity exactly 1.) In Section 2, we extend their result by removing the parity condition of k and adding an edge-connectivity condition as follows.

Theorem 2. For integers $k \ge 4$ and $l \ge 1$, there exist infinitely many k-dotcritical graphs with no critical vertices, $\kappa(G) = 1$ and $\lambda(G) = l$.

On the other hand, we prove the following theorem which affirms Problem 1 for $k \in \{2, 3\}$ in Section 3.

Theorem 3. For $k \in \{2,3\}$, every k-dot-critical graph with no critical vertices is 3-connected.

Moreover, we show that Theorem 3 is best possible. In our argument, we make use of the following lemmas, which are proved in [1].

Lemma 4 (Burton and Sumner [1]). A graph is 2-dot-critical with no critical vertices if and only if it is a complete multipartite graph whose partite sets contain at least three vertices.

Figure 1. Graph G(H, K; x, Y).

Lemma 5 (Burton and Sumner [1]). Let G be a graph with no critical vertices, and let $e = uv \in E(G)$. Then e is dot-critical if and only if u and v belong to a common γ -set of G.

Further, we frequently use the following lemma.

Lemma 6. Let G be a graph with no critical vertices. If $S \subseteq V(G)$ dominates at least |V(G)| - 1 vertices of G, then $|S| \ge \gamma(G)$.

Proof. If S is a dominating set of G, then $|S| \ge \gamma(G)$. Thus we may assume that S dominates exactly |V(G)| - 1 vertices of G (i.e. $|V(G) - (\bigcup_{x \in S} N_G[x])| = 1$). Write $V(G) - (\bigcup_{x \in S} N_G[x]) = \{y\}$. Then S is a dominating set of G - y. Since y is not a critical vertex of G, we have $|S| \ge \gamma(G - y) \ge \gamma(G)$.

2. Dot-critical Graphs with a Cutvertex and Given Edge-connectivity

In this section, we show Theorem 2 by constructing some dot-critical graphs.

We first give a general construction of dot-critical graphs G with no critical vertices and $\kappa(G) = 1$. Let H be a connected dot-critical graph with no critical vertices, and let x be a vertex of H. Let K be a complete bipartite graph with partite sets X_1 and X_2 , and let Y be a non-empty set. We define the graph G(H, K; x, Y) by $V(G(H, K; x, Y)) = V(H) \cup V(K) \cup Y$ and $E(G(H, K; x, Y)) = E(H) \cup E(K) \cup \{uy \mid u \in X_1 \cup \{x\}, y \in Y\}$ (see Figure 1).

Lemma 7. If H - x has no critical vertex and $|X_i| \ge 3$ for $i \in \{1, 2\}$, then G = G(H, K; x, Y) is a dot-critical graph with no critical vertices and $\gamma(G) = \gamma(H) + 2$.

Proof. We start with a claim.

Claim 8. Let $S \subseteq V(G)$. (i) If S dominates V(H) in G, then $|S \cap V(H)| \ge \gamma(H)$. (ii) If S dominates at least |V(K)| - 1 vertices of K in G, then $|S \cap (V(K) \cup Y)| \ge 2$.

Proof. (i) Recall that H contains no critical vertices. Since S dominates V(H), $S \cap V(H)$ dominates $V(H) - \{x\}$ in H. This together with Lemma 6 implies that $|S \cap V(H)| \ge \gamma(H)$.

(ii) Since every vertex in Y is adjacent to exactly $|X_1| (\leq |V(K)| - 3)$ vertices of K in G, if $S \cap Y \neq \emptyset$, then $|S \cap (V(K) \cup Y)| \geq 2$, as desired. Thus we may assume that $S \cap Y = \emptyset$. Then $S \cap V(K)$ dominates at least |V(K)| - 1 vertices of K. Since K is a 2-dot-critical graph with no critical vertices by Lemma 4, $|S \cap (V(K) \cup Y)| = |S \cap V(K)| \geq \gamma(K) = 2$ by Lemma 6.

We show that $\gamma(G) = \gamma(H) + 2$. Let S be a γ -set of H, and let $u \in X_1$ and $y \in Y$. Note that $\{u, y\}$ dominates $V(K) \cup Y$. Hence $S \cup \{u, y\}$ is a dominating set of G, and so $\gamma(G) \leq |S| + 2 = \gamma(H) + 2$. Let S' be a γ -set of G. Since S' dominates V(H) and V(K) in G, $\gamma(G) = |S'| = |S' \cap V(H)| + |S' \cap (V(K) \cup Y)| \geq \gamma(H) + 2$ by Claim 8. Consequently, we get $\gamma(G) = \gamma(H) + 2$.

Next, we show that G has no critical vertex. Let $v \in V(G)$, and let S^* be a γ -set of G - v. We show that $|S^*| \geq \gamma(H) + 2$. Since S^* dominates at least |V(K)| - 1 vertices of K in G, $|S^* \cap (V(K) \cup Y)| \geq 2$ by Claim 8(ii), and hence $|S^*| = |S^* \cap V(H)| + |S^* \cap (V(K) \cup Y)| \geq |S^* \cap V(H)| + 2$. Thus it suffices to show that $|S^* \cap V(H)| \geq \gamma(H)$. Since H has no critical vertex, if $S^* \cap V(H)$ dominates at least |V(H)| - 1 vertices of H, then we have $|S^* \cap V(H)| \geq \gamma(H)$ by Lemma 6, as desired. Thus we may assume that $S^* \cap V(H)$ dominates at most |V(H)| - 2 vertices of H. Since $S^* \cap V(H)$ dominates $V(H) - \{x, v\}$, this implies that $v \in V(H)$, $x \neq v$ and neither x nor v belongs to $S^* \cap V(H)$. In particular, $S^* \cap V(H)$ is a dominating set of $H - \{x, v\}$, and hence $|S^* \cap V(H)| \geq \gamma(H - \{x, v\})$. Since H - x has no critical vertex, $\gamma(H - \{x, v\}) \geq \gamma(H - x) \geq \gamma(H)$. This leads to $|S^* \cap V(H)| \geq \gamma(H)$. Consequently, G has no critical vertex.

Finally we show that G is dot-critical. Let $e = vv' \in E(G)$. By Lemma 5, it suffices to show that there exists a dominating set of G with cardinality $\gamma(H) + 2$ containing both v and v'. Since H is a dot-critical graph with no critical vertices, there exists a γ -set of H containing both x and x' where $x' \in N_H(x)$ by Lemma 5. In particular, there exists a γ -set T of H containing x. Let T' be a set which consists of a vertex in X_1 and a vertex in Y. Note that T' dominates $V(K) \cup Y$ in G.

Case 1. $v, v' \in V(H)$. Since H is a dot-critical graph with no critical vertices, there exists a γ -set S_1 of H containing both v and v' by Lemma 5. Then $S_1 \cup T'$ is a dominating set of G with cardinality $\gamma(H) + 2$ containing both v and v'.

Case 2. $v, v' \in V(K) \cup Y$. We can check that $\{v, v'\}$ dominates $V(K) \cup Y$ in G. Hence $T \cup \{v, v'\}$ is a dominating set of G with cardinality $\gamma(H) + 2$ containing

Figure 2. Graph $H_m(p)$ for odd integer m.

both v and v'.

Case 3. $|\{v, v'\} \cap V(H)| = |\{v, v'\} \cap (V(K) \cup Y)| = 1$. We may assume that $\{v, v'\} \cap V(H) = \{v\}$. Then this forces v = x and $v' \in Y$. Let $u' \in X_1$. Then $T \cup \{v', u'\}$ is a dominating set of G with cardinality $\gamma(H) + 2$ containing both v and v'.

This completes the proof of Lemma 7.

Proof of Theorem 2. We give two constructions of graphs $H_m(p)$ $(m \ge 2, p \ge 5)$ depending on the parity of m.

Let $m \geq 2$ be an even integer. The following example can be found in [5]. Let $p \geq 5$ be an integer. Let Z_0, \ldots, Z_{2m-3} be disjoint sets with $|Z_i| = p$ ($0 \leq i \leq 2m-3$). We define the graph $H_m(p)$ by $V(H_m(p)) = \bigcup_{0 \leq j \leq 2m-3} Z_j$ and $E(H_m(p)) = \bigcup_{0 \leq j \leq 2m-4} \{uv \mid u \in Z_j, v \in Z_{j+1}\}.$

Let $m \ge 3$ be an odd integer. The following example was constructed in [4]. Let $p \ge 5$ be an integer. Set $Z_0 = \{a\}$ and $Z_1 = \{b_{i,h} \mid 0 \le i \le p, 1 \le h \le 3\}$, and for each $2 \le j \le 2m - 3$, set $Z_j = \{c_i^{(j)} \mid 1 \le i \le p\}$. We define the graph $H_m(p)$ by $V(H_m(p)) = \bigcup_{0 \le j \le 2m - 3} Z_j$ and $E(H_m(p)) = (\bigcup_{0 \le j \le 2m - 4} \{uv \mid u \in X_j, v \in X_{j+1}\}) - \{b_{i,h}c_i^{(2)} \mid 1 \le i \le p, 1 \le h \le 3\}$ (see Figure 2).

Then for integers $m \geq 2$ and $p \geq 5$, $H_m(p)$ is an *m*-dot-critical graph with no critical vertices and $H_m(p) - x$ has no critical vertex for every $x \in \mathbb{Z}_{2m-3}$ (see [4, 5]). Furthermore, we can verify that $H_m(p)$ is *p*-edge-connected by a tedious argument (and we omit its details).

Fix two integers $k \ge 4$ and $l \ge 1$. Let p_1 and p_2 be integers with $p_1 \ge \max\{l, 5\}$ and $p_2 \ge \max\{l, 3\}$. Let K be a complete bipartite graph which is

isomorphic to K_{p_2,p_2} , and let X_1 and X_2 be the partite sets of K. Let Y be a set with |Y| = l. We consider the graph $G = G(K, H_{k-2}(p_1); x, Y)$ where $x \in Z_{2(k-2)-3}$. Then by Lemma 7, G is a k-dot-critical graph with no critical vertices. Since G is connected and G - x is disconnected, we have $\kappa(G) = 1$.

Claim 9. $\lambda(G) = l$.

Proof. Let $F \subseteq E(G)$ with $|F| \leq l-1$. First, we show that for each $u \in V(G)$, there exists a path of G - F joining u and x. Since $H_{k-2}(p_1)$ is l-edge-connected, if $u \in V(H_{k-2}(p_1))$, then there exists a path of $H_{k-2}(p_1) - F$ joining u and x. Thus we may assume that $u \in V(K) \cup Y$. Since $|F| \leq l-1$ and |Y| = l, $N_{G-F}(x) \cap Y \neq \emptyset$. Let $v \in N_{G-F}(x) \cap Y$. Since $G[V(K) \cup Y]$ is isomorphic to K_{p_2,p_2+l} , $G[V(K) \cup Y]$ is l-edge-connected. Hence there exists a path P of $G[V(K) \cup Y] - F$ joining u and v. By combining P with the edge vx, we can construct a path of G - F joining u and x. Consequently, there exists a path of G - F joining u and x for $u \in V(G)$, and hence G - F is connected. Since F is arbitrary, this implies that G is l-edge-connected. On the other hand, since the set F' of edges between x and Y satisfies that |F'| = l and G - F' is disconnected, G is not (l+1)-edge-connected. Therefore we have $\lambda(G) = l$.

Since p_1 and p_2 are arbitrary, there exist infinitely many connected k-dot-critical graphs G with no critical vertices, $\kappa(G) = 1$ and $\lambda(G) = l$. Therefore Theorem 2 holds.

3. DOT-CRITICAL GRAPHS WITH SMALL DOMINATION NUMBER

In this section, we prove Theorem 3 and its best possibility. By Lemma 4, every 2-dot-critical graph with no critical vertices is 3-connected. Thus it suffices to show the following theorem.

Theorem 10. Every 3-dot-critical graph with no critical vertices is 3-connected.

Proof. Let G be a 3-dot-critical graph with no critical vertices.

Claim 11. The graph G is connected.

Proof. Suppose that G is disconnected. Then there exists a component C of G with $\gamma(C) = 1$. Let $u \in V(C)$ be a vertex which dominates V(C). If $V(C) = \{u\}$, then u is a critical vertex of G, which contradicts the assumption that G has no critical vertex. Thus $N_C(u) \neq \emptyset$. Let $v \in N_C(u)$. By Lemma 5, there exists a γ -set S of G containing both u and v. Then $S - \{v\}$ is a dominating set of G with cardinality 2, which is a contradiction.

Let X be a minimum cutset of G. Suppose that $|X| \leq 2$.

688

Claim 12. The graph G - X contains no isolated vertex.

Proof. Suppose that G - X contains an isolated vertex u. Let $x \in X$. By the minimality of $X, ux \in E(G)$. By Lemma 5, there exists a γ -set S of G containing both u and x. Then $S - \{u\}$ dominates $V(G) - (X - \{x\})$. In particular, $S - \{u\}$ dominates at least |V(G)| - 1 vertices of G, which contradicts Lemma 6.

Let C_1 and C_2 be two vertex-disjoint non-empty graphs such that $V(C_1) \cup V(C_2) = V(G) - X$ and there exists no edge of G between $V(C_1)$ and $V(C_2)$ (i.e. C_i is a graph which consists of the union of some components of G - X).

Claim 13. Let $i \in \{1, 2\}$.

(i) There exists a vertex of G which dominates $V(C_i)$.

(ii) Every vertex of G dominating $V(C_i)$ belongs to $V(C_i) - (\bigcup_{x \in X} N_G(x))$.

Proof. (i) Let $u \in V(C_{3-i})$. By Claim 12, $N_{C_{3-i}}(u) \neq \emptyset$. Let $v \in N_{C_{3-i}}(u)$. By Lemma 5, there exists a γ -set S of G containing both u and v. Then the unique vertex in $S - \{u, v\}$ dominates $V(C_i)$.

(ii) Let w_i be a vertex which dominates $V(C_i)$. By (i), there exists a vertex w_{3-i} which dominates $V(C_{3-i})$. If $w_i \in \bigcup_{x \in X} N_G[x]$, then w_i dominates a vertex in X, and hence $\{w_1, w_2\}$ dominates at least |V(G)| - 1 vertices of G, which contradicts Lemma 6. Thus $w_i \notin \bigcup_{x \in X} N_G[x]$. Consequently, we have $w_i \in V(C_i) - (\bigcup_{x \in X} N_G(x))$.

By Claim 13, for each $i \in \{1, 2\}$, there exists a vertex $w_i \in V(C_i) - (\bigcup_{x \in X} N_G(x))$ which dominates $V(C_i)$. Let $i \in \{1, 2\}$ and $w \in N_{C_i}(w_i)$. We show that w is adjacent to all vertices in X. By Lemma 5, there exists a γ -set S of G containing both w_i and w. Then the unique vertex a in $S - \{w_i, w\}$ dominates $V(C_{3-i})$. By Claim 13(ii), $a \in V(C_{3-i}) - (\bigcup_{x \in X} N_G(x))$. Since S is a dominating set of G and neither w_i nor a belongs to $\bigcup_{x \in X} N_G(x)$, w is adjacent to all vertices in X. Recall that w_i dominates $V(C_i)$. Since i and w are arbitrary, every vertex in X dominates $(V(C_1) \cup V(C_2)) - \{w_1, w_2\}$. Let $x \in X$ and $x' \in V(C_1) - \{w_1\}$. Then $\{x, x'\}$ is a dominating set of $G - w_2$, which contradicts Lemma 6. This completes the proof of Theorem 10.

Next, we construct for $k \in \{2,3\}$, infinitely many k-dot-critical graphs with no critical vertices and connectivity exactly 3. Let $p \ge 4$ be an integer. Set $X_0 = \{x\}, X_1 = \{y_{i,h} \mid 1 \le i \le 3, 1 \le h \le 3\}, X_2 = \{z_1, z_2, z_3\}$ and $X_3 = \{w_i \mid 1 \le i \le p\}$. We define the graph $H'_2(p)$ by $V(H'_2(p)) = X_2 \cup X_3$ and $E(H'_2(p)) = \{uv \mid u \in X_2, v \in X_3\}$ (i.e. $H'_2(p) = K_{3,p}$). Furthermore, we define the graph $H'_3(p)$ by $V(H'_3(p)) = \bigcup_{0 \le j \le 3} X_j$ and $E(H'_3(p)) = \left(\bigcup_{0 \le j \le 2} \{uv \mid u \in X_j, v \in X_{j+1}\}\right) - \{y_{i,h}z_i \mid 1 \le i \le 3, 1 \le h \le 3\}$ (see Figure 3). Then for each $k \in \{2,3\}$, it is

Figure 3. Graph $H'_3(p)$.

easy to verify that $H'_k(p)$ is a k-dot-critical graph with no critical vertices and $\kappa(H'_k(p)) = 3$. Therefore Theorem 3 is best possible.

Acknowledgment

The author is grateful to referees for their careful reading.

References

- T. Burton and D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11–18. doi:10.1016/j.disc.2005.06.029
- [2] X. Chen and W.C. Shiu, A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743–3745. doi:10.1016/j.dam.2009.07.014
- [3] R. Diestel, Graph Theory 4th Edition (Verlag, Heidelberg, Springer, 2010).
- M. Furuya and M. Takatou, Upper bound on the diameter of a domination dotcritical graph, Graphs Combin. 29 (2013) 79–85. doi:10.1007/s00373-011-1095-1
- [5] D.A. Mojdeh and S. Mirzamani, On the diameter of dot-critical graphs, Opuscula Math. 29 (2009) 165–175.
- [6] N.J. Rad, On the diameter of a domination dot-critical graph, Discrete Appl. Math. 157 (2009) 1647–1649. doi:10.1016/j.dam.2008.10.015

Received 8 July 2013 Revised 20 September 2013 Accepted 30 September 2013