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Abstract

An edge of a graph is called dot-critical if its contraction decreases the
domination number. A graph is said to be dot-critical if all of its edges are
dot-critical. A vertex of a graph is called critical if its deletion decreases the
domination number.

In A note on the domination dot-critical graphs, Discrete Appl. Math.
157 (2009) 3743–3745, Chen and Shiu constructed for each even integer
k ≥ 4 infinitely many k-dot-critical graphs G with no critical vertices and
κ(G) = 1. In this paper, we refine their result and construct for integers
k ≥ 4 and l ≥ 1 infinitely many k-dot-critical graphs G with no critical
vertices, κ(G) = 1 and λ(G) = l. Furthermore, we prove that every 3-dot-
critical graph with no critical vertices is 3-connected, and it is best possible.
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1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be
a graph. We let V (G) and E(G) denote the vertex set and the edge set of G,
respectively. For u ∈ V (G), we letNG(u) andNG[u] denote the open neighborhood

and the closed neighborhood of u, respectively; thus NG[u] = NG(u) ∪ {u}. For
uv ∈ E(G), we let G/uv denote the graph obtained from G by contracting u
and v into a single vertex xuv. Formally, G/uv is the graph obtained by adding
a new vertex xuv to G − {u, v} and joining xuv to those vertices of G − {u, v}
which are adjacent to at least one of u and v in G. We let κ(G) and λ(G) denote
the connectivity and the edge-connectivity of G, respectively. For X ⊆ V (G), we
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let G[X] denote the subgraph of G induced by X. For terms and symbols not
defined here, we refer the reader to [3].

Let again G be a graph. For two subsets X,Y of V (G), we say that X
dominates Y if Y ⊆

⋃

x∈X NG[x]. A subset of V (G) which dominates V (G) is
called a dominating set of G. The minimum cardinality of a dominating set of G
is called the domination number of G, and is denoted by γ(G). A dominating set
of G having cardinality γ(G) is called a γ-set of G. An edge uv of G is said to be
dot-critical if γ(G/uv) < γ(G), and we say that G is dot-critical if every edge of
G is dot-critical. If G is dot-critical and γ(G) = k, G is said to be k-dot-critical.
A vertex u of G is said to be critical if γ(G− u) < γ(G).

Burton and Sumner [1] posed a problem: For k ≥ 4, what are the best
upper bound for the diameter of a connected k-dot-critical graph with no critical
vertices? Mojdeh and Mirzamani [5] conjectured that the diameter of connected
k-dot-critical graphs with no critical vertices is at most 2k − 3. Recently, the
author and Takatou [4] showed that the conjecture is true. Before that time,
Rad [6] proved the conjecture for 2-connected graphs is true, and he posed a new
problem.

Problem 1 (Rad [6]). For an integer k ≥ 2, is it true that a connected k-dot-
critical graph with no critical vertices is 2-connected?

If Problem 1 is true, then the Mojdeh-Mirzamani conjecture follows from Rad’s
result. However, Chen and Shiu [2] gave its negative answer that for each even
integer k ≥ 4, there exist infinitely many k-dot-critical graphs G with no critical
vertices and κ(G) = 1. (In fact, they constructed graphs with edge-connectivity
exactly 1.) In Section 2, we extend their result by removing the parity condition
of k and adding an edge-connectivity condition as follows.

Theorem 2. For integers k ≥ 4 and l ≥ 1, there exist infinitely many k-dot-
critical graphs with no critical vertices, κ(G) = 1 and λ(G) = l.

On the other hand, we prove the following theorem which affirms Problem 1 for
k ∈ {2, 3} in Section 3.

Theorem 3. For k ∈ {2, 3}, every k-dot-critical graph with no critical vertices

is 3-connected.

Moreover, we show that Theorem 3 is best possible. In our argument, we make
use of the following lemmas, which are proved in [1].

Lemma 4 (Burton and Sumner [1]). A graph is 2-dot-critical with no critical

vertices if and only if it is a complete multipartite graph whose partite sets contain

at least three vertices.
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Figure 1. Graph G(H,K;x, Y ).

Lemma 5 (Burton and Sumner [1]). Let G be a graph with no critical vertices,

and let e = uv ∈ E(G). Then e is dot-critical if and only if u and v belong to a

common γ-set of G.

Further, we frequently use the following lemma.

Lemma 6. Let G be a graph with no critical vertices. If S ⊆ V (G) dominates

at least |V (G)| − 1 vertices of G, then |S| ≥ γ(G).

Proof. If S is a dominating set of G, then |S| ≥ γ(G). Thus we may assume that
S dominates exactly |V (G)| − 1 vertices of G (i.e. |V (G) − (

⋃

x∈S NG[x])| = 1).
Write V (G)− (

⋃

x∈S NG[x]) = {y}. Then S is a dominating set of G− y. Since
y is not a critical vertex of G, we have |S| ≥ γ(G− y) ≥ γ(G).

2. Dot-critical Graphs with a Cutvertex and Given

Edge-connectivity

In this section, we show Theorem 2 by constructing some dot-critical graphs.
We first give a general construction of dot-critical graphs G with no critical

vertices and κ(G) = 1. Let H be a connected dot-critical graph with no critical
vertices, and let x be a vertex of H. Let K be a complete bipartite graph with
partite sets X1 and X2, and let Y be a non-empty set. We define the graph
G(H,K;x, Y ) by V (G(H,K;x, Y )) = V (H)∪V (K)∪Y and E(G(H,K;x, Y )) =
E(H) ∪ E(K) ∪ {uy | u ∈ X1 ∪ {x}, y ∈ Y } (see Figure 1).

Lemma 7. If H − x has no critical vertex and |Xi| ≥ 3 for i ∈ {1, 2}, then

G = G(H,K;x, Y ) is a dot-critical graph with no critical vertices and γ(G) =
γ(H) + 2.

Proof. We start with a claim.

Claim 8. Let S ⊆ V (G).
(i) If S dominates V (H) in G, then |S ∩ V (H)| ≥ γ(H).
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(ii) If S dominates at least |V (K)|−1 vertices of K in G, then |S∩(V (K)∪Y )| ≥
2.

Proof. (i) Recall that H contains no critical vertices. Since S dominates V (H),
S∩V (H) dominates V (H)−{x} in H. This together with Lemma 6 implies that
|S ∩ V (H)| ≥ γ(H).

(ii) Since every vertex in Y is adjacent to exactly |X1|(≤ |V (K)|−3) vertices
of K in G, if S ∩ Y 6= ∅, then |S ∩ (V (K) ∪ Y )| ≥ 2, as desired. Thus we may
assume that S ∩ Y = ∅. Then S ∩ V (K) dominates at least |V (K)| − 1 vertices
of K. Since K is a 2-dot-critical graph with no critical vertices by Lemma 4,
|S ∩ (V (K) ∪ Y )| = |S ∩ V (K)| ≥ γ(K) = 2 by Lemma 6.

We show that γ(G) = γ(H)+2. Let S be a γ-set of H, and let u ∈ X1 and y ∈ Y .
Note that {u, y} dominates V (K) ∪ Y . Hence S ∪ {u, y} is a dominating set of
G, and so γ(G) ≤ |S|+2 = γ(H)+2. Let S′ be a γ-set of G. Since S′ dominates
V (H) and V (K) in G, γ(G) = |S′| = |S′ ∩V (H)|+ |S′ ∩ (V (K)∪Y )| ≥ γ(H)+2
by Claim 8. Consequently, we get γ(G) = γ(H) + 2.

Next, we show that G has no critical vertex. Let v ∈ V (G), and let S∗ be
a γ-set of G − v. We show that |S∗| ≥ γ(H) + 2. Since S∗ dominates at least
|V (K)| − 1 vertices of K in G, |S∗ ∩ (V (K) ∪ Y )| ≥ 2 by Claim 8(ii), and hence
|S∗| = |S∗ ∩ V (H)| + |S∗ ∩ (V (K) ∪ Y )| ≥ |S∗ ∩ V (H)| + 2. Thus it suffices to
show that |S∗ ∩ V (H)| ≥ γ(H). Since H has no critical vertex, if S∗ ∩ V (H)
dominates at least |V (H)|−1 vertices of H, then we have |S∗∩V (H)| ≥ γ(H) by
Lemma 6, as desired. Thus we may assume that S∗ ∩ V (H) dominates at most
|V (H)|− 2 vertices of H. Since S∗∩V (H) dominates V (H)−{x, v}, this implies
that v ∈ V (H), x 6= v and neither x nor v belongs to S∗ ∩ V (H). In particular,
S∗∩V (H) is a dominating set ofH−{x, v}, and hence |S∗∩V (H)| ≥ γ(H−{x, v}).
Since H −x has no critical vertex, γ(H −{x, v}) ≥ γ(H −x) ≥ γ(H). This leads
to |S∗ ∩ V (H)| ≥ γ(H). Consequently, G has no critical vertex.

Finally we show that G is dot-critical. Let e = vv′ ∈ E(G). By Lemma 5, it
suffices to show that there exists a dominating set of G with cardinality γ(H)+2
containing both v and v′. Since H is a dot-critical graph with no critical vertices,
there exists a γ-set of H containing both x and x′ where x′ ∈ NH(x) by Lemma 5.
In particular, there exists a γ-set T of H containing x. Let T ′ be a set which
consists of a vertex in X1 and a vertex in Y . Note that T ′ dominates V (K) ∪ Y
in G.

Case 1. v, v′ ∈ V (H). Since H is a dot-critical graph with no critical vertices,
there exists a γ-set S1 of H containing both v and v′ by Lemma 5. Then S1 ∪ T ′

is a dominating set of G with cardinality γ(H) + 2 containing both v and v′.

Case 2. v, v′ ∈ V (K)∪ Y . We can check that {v, v′} dominates V (K)∪ Y in
G. Hence T ∪{v, v′} is a dominating set of G with cardinality γ(H)+2 containing
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Figure 2. Graph Hm(p) for odd integer m.

both v and v′.

Case 3. |{v, v′} ∩ V (H)| = |{v, v′} ∩ (V (K) ∪ Y )| = 1. We may assume that
{v, v′} ∩ V (H) = {v}. Then this forces v = x and v′ ∈ Y . Let u′ ∈ X1. Then
T ∪ {v′, u′} is a dominating set of G with cardinality γ(H) + 2 containing both v
and v′.

This completes the proof of Lemma 7.

Proof of Theorem 2. We give two constructions of graphs Hm(p) (m ≥ 2, p ≥
5) depending on the parity of m.

Let m ≥ 2 be an even integer. The following example can be found in [5].
Let p ≥ 5 be an integer. Let Z0, . . . , Z2m−3 be disjoint sets with |Zi| = p (0 ≤
i ≤ 2m − 3). We define the graph Hm(p) by V (Hm(p)) =

⋃

0≤j≤2m−3 Zj and
E(Hm(p)) =

⋃

0≤j≤2m−4{uv | u ∈ Zj , v ∈ Zj+1}.
Let m ≥ 3 be an odd integer. The following example was constructed in

[4]. Let p ≥ 5 be an integer. Set Z0 = {a} and Z1 = {bi,h | 0 ≤ i ≤

p, 1 ≤ h ≤ 3}, and for each 2 ≤ j ≤ 2m − 3, set Zj =
{

c
(j)
i | 1 ≤ i ≤ p

}

.

We define the graph Hm(p) by V (Hm(p)) =
⋃

0≤j≤2m−3 Zj and E(Hm(p)) =
(

⋃

0≤j≤2m−4{uv | u ∈ Xj , v ∈ Xj+1}
)

−
{

bi,hc
(2)
i | 1 ≤ i ≤ p, 1 ≤ h ≤ 3

}

(see Fig-

ure 2).

Then for integers m ≥ 2 and p ≥ 5, Hm(p) is an m-dot-critical graph with
no critical vertices and Hm(p)−x has no critical vertex for every x ∈ Z2m−3 (see
[4, 5]). Furthermore, we can verify that Hm(p) is p-edge-connected by a tedious
argument (and we omit its details).

Fix two integers k ≥ 4 and l ≥ 1. Let p1 and p2 be integers with p1 ≥
max{l, 5} and p2 ≥ max{l, 3}. Let K be a complete bipartite graph which is
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isomorphic to Kp2,p2 , and let X1 and X2 be the partite sets of K. Let Y be
a set with |Y | = l. We consider the graph G = G(K,Hk−2(p1);x, Y ) where
x ∈ Z2(k−2)−3. Then by Lemma 7, G is a k-dot-critical graph with no critical
vertices. Since G is connected and G− x is disconnected, we have κ(G) = 1.

Claim 9. λ(G) = l.

Proof. Let F ⊆ E(G) with |F | ≤ l − 1. First, we show that for each u ∈ V (G),
there exists a path of G−F joining u and x. Since Hk−2(p1) is l-edge-connected,
if u ∈ V (Hk−2(p1)), then there exists a path of Hk−2(p1) − F joining u and
x. Thus we may assume that u ∈ V (K) ∪ Y . Since |F | ≤ l − 1 and |Y | = l,
NG−F (x) ∩ Y 6= ∅. Let v ∈ NG−F (x) ∩ Y . Since G[V (K) ∪ Y ] is isomorphic
to Kp2,p2+l, G[V (K) ∪ Y ] is l-edge-connected. Hence there exists a path P of
G[V (K) ∪ Y ] − F joining u and v. By combining P with the edge vx, we can
construct a path of G− F joining u and x. Consequently, there exists a path of
G− F joining u and x for u ∈ V (G), and hence G− F is connected. Since F is
arbitrary, this implies that G is l-edge-connected. On the other hand, since the
set F ′ of edges between x and Y satisfies that |F ′| = l and G−F ′ is disconnected,
G is not (l + 1)-edge-connected. Therefore we have λ(G) = l.

Since p1 and p2 are arbitrary, there exist infinitely many connected k-dot-critical
graphs G with no critical vertices, κ(G) = 1 and λ(G) = l. Therefore Theorem 2
holds.

3. Dot-critical Graphs with Small Domination Number

In this section, we prove Theorem 3 and its best possibility. By Lemma 4, every
2-dot-critical graph with no critical vertices is 3-connected. Thus it suffices to
show the following theorem.

Theorem 10. Every 3-dot-critical graph with no critical vertices is 3-connected.

Proof. Let G be a 3-dot-critical graph with no critical vertices.

Claim 11. The graph G is connected.

Proof. Suppose that G is disconnected. Then there exists a component C of G
with γ(C) = 1. Let u ∈ V (C) be a vertex which dominates V (C). If V (C) = {u},
then u is a critical vertex of G, which contradicts the assumption that G has no
critical vertex. Thus NC(u) 6= ∅. Let v ∈ NC(u). By Lemma 5, there exists a
γ-set S of G containing both u and v. Then S − {v} is a dominating set of G
with cardinality 2, which is a contradiction.

Let X be a minimum cutset of G. Suppose that |X| ≤ 2.
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Claim 12. The graph G−X contains no isolated vertex.

Proof. Suppose that G −X contains an isolated vertex u. Let x ∈ X. By the
minimality of X, ux ∈ E(G). By Lemma 5, there exists a γ-set S of G containing
both u and x. Then S−{u} dominates V (G)− (X−{x}). In particular, S−{u}
dominates at least |V (G)| − 1 vertices of G, which contradicts Lemma 6.

Let C1 and C2 be two vertex-disjoint non-empty graphs such that V (C1) ∪
V (C2) = V (G) − X and there exists no edge of G between V (C1) and V (C2)
(i.e. Ci is a graph which consists of the union of some components of G−X).

Claim 13. Let i ∈ {1, 2}.
(i) There exists a vertex of G which dominates V (Ci).

(ii) Every vertex of G dominating V (Ci) belongs to V (Ci)− (
⋃

x∈X NG(x)).

Proof. (i) Let u ∈ V (C3−i). By Claim 12, NC3−i
(u) 6= ∅. Let v ∈ NC3−i

(u). By
Lemma 5, there exists a γ-set S of G containing both u and v. Then the unique
vertex in S − {u, v} dominates V (Ci).

(ii) Let wi be a vertex which dominates V (Ci). By (i), there exists a vertex
w3−i which dominates V (C3−i). If wi ∈

⋃

x∈X NG[x], then wi dominates a vertex
in X, and hence {w1, w2} dominates at least |V (G)| − 1 vertices of G, which
contradicts Lemma 6. Thus wi 6∈

⋃

x∈X NG[x]. Consequently, we have wi ∈
V (Ci)− (

⋃

x∈X NG(x)).

By Claim 13, for each i ∈ {1, 2}, there exists a vertex wi ∈ V (Ci)−(
⋃

x∈X NG(x))
which dominates V (Ci). Let i ∈ {1, 2} and w ∈ NCi

(wi). We show that w is
adjacent to all vertices in X. By Lemma 5, there exists a γ-set S of G containing
both wi and w. Then the unique vertex a in S − {wi, w} dominates V (C3−i).
By Claim 13(ii), a ∈ V (C3−i) − (

⋃

x∈X NG(x)). Since S is a dominating set of
G and neither wi nor a belongs to

⋃

x∈X NG(x), w is adjacent to all vertices in
X. Recall that wi dominates V (Ci). Since i and w are arbitrary, every vertex in
X dominates (V (C1) ∪ V (C2)) − {w1, w2}. Let x ∈ X and x′ ∈ V (C1) − {w1}.
Then {x, x′} is a dominating set of G − w2, which contradicts Lemma 6. This
completes the proof of Theorem 10.

Next, we construct for k ∈ {2, 3}, infinitely many k-dot-critical graphs with no
critical vertices and connectivity exactly 3. Let p ≥ 4 be an integer. Set X0 =
{x}, X1 = {yi,h | 1 ≤ i ≤ 3, 1 ≤ h ≤ 3}, X2 = {z1, z2, z3} and X3 = {wi | 1 ≤ i ≤
p}. We define the graph H ′

2(p) by V (H ′
2(p)) = X2 ∪ X3 and E(H ′

2(p)) = {uv |
u ∈ X2, v ∈ X3} (i.e. H ′

2(p) = K3,p). Furthermore, we define the graph H ′
3(p)

by V (H ′
3(p)) =

⋃

0≤j≤3Xj and E(H ′
3(p)) =

(

⋃

0≤j≤2{uv | u ∈ Xj , v ∈ Xj+1}
)

−

{yi,hzi | 1 ≤ i ≤ 3, 1 ≤ h ≤ 3} (see Figure 3). Then for each k ∈ {2, 3}, it is
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Figure 3. Graph H ′

3
(p).

easy to verify that H ′
k(p) is a k-dot-critical graph with no critical vertices and

κ(H ′
k(p)) = 3. Therefore Theorem 3 is best possible.
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