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Abstract

An edge of a graph is called dot-critical if its contraction decreases the
domination number. A graph is said to be dot-critical if all of its edges are
dot-critical. A vertex of a graph is called critical if its deletion decreases the
domination number.

In A note on the domination dot-critical graphs, Discrete Appl. Math.
157 (2009) 3743-3745, Chen and Shiu constructed for each even integer
k > 4 infinitely many k-dot-critical graphs G with no critical vertices and
k(G) = 1. In this paper, we refine their result and construct for integers
k > 4 and I > 1 infinitely many k-dot-critical graphs G with no critical
vertices, K(G) = 1 and A(G) = I. Furthermore, we prove that every 3-dot-
critical graph with no critical vertices is 3-connected, and it is best possible.
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1. INTRODUCTION

All graphs considered in this paper are finite, simple, and undirected. Let G be
a graph. We let V(G) and E(G) denote the vertex set and the edge set of G,
respectively. For u € V(QG), we let Ng(u) and Ng[u] denote the open neighborhood
and the closed neighborhood of u, respectively; thus Ng[u] = Ng(u) U {u}. For
wv € E(G), we let G/uv denote the graph obtained from G by contracting u
and v into a single vertex x,,. Formally, G/uv is the graph obtained by adding
a new vertex oy, to G — {u,v} and joining z,, to those vertices of G — {u,v}
which are adjacent to at least one of u and v in G. We let x(G) and A(G) denote
the connectivity and the edge-connectivity of G, respectively. For X C V(G), we


http://dx.doi.org/10.7151/dmgt.1752

684 M. Furuya

let G[X] denote the subgraph of G induced by X. For terms and symbols not
defined here, we refer the reader to [3].

Let again G be a graph. For two subsets X,Y of V(G), we say that X
dominates Y if Y C J,cx Na[z]. A subset of V(G) which dominates V(G) is
called a dominating set of G. The minimum cardinality of a dominating set of G
is called the domination number of G, and is denoted by v(G). A dominating set
of G having cardinality v(G) is called a 7y-set of G. An edge uv of G is said to be
dot-critical if v(G/uv) < v(G), and we say that G is dot-critical if every edge of
G is dot-critical. If G is dot-critical and v(G) =k, G is said to be k-dot-critical.
A vertex u of G is said to be critical if v(G — u) < v(G).

Burton and Sumner [1] posed a problem: For k > 4, what are the best
upper bound for the diameter of a connected k-dot-critical graph with no critical
vertices? Mojdeh and Mirzamani [5] conjectured that the diameter of connected
k-dot-critical graphs with no critical vertices is at most 2k — 3. Recently, the
author and Takatou [4] showed that the conjecture is true. Before that time,
Rad [6] proved the conjecture for 2-connected graphs is true, and he posed a new
problem.

Problem 1 (Rad [6]). For an integer k > 2, is it true that a connected k-dot-
critical graph with no critical vertices is 2-connected?

If Problem 1 is true, then the Mojdeh-Mirzamani conjecture follows from Rad’s
result. However, Chen and Shiu [2] gave its negative answer that for each even
integer k > 4, there exist infinitely many k-dot-critical graphs G with no critical
vertices and k(G) = 1. (In fact, they constructed graphs with edge-connectivity
exactly 1.) In Section 2, we extend their result by removing the parity condition
of k and adding an edge-connectivity condition as follows.

Theorem 2. For integers k > 4 and | > 1, there exist infinitely many k-dot-
critical graphs with no critical vertices, K(G) =1 and \(G) = L.

On the other hand, we prove the following theorem which affirms Problem 1 for
k € {2,3} in Section 3.

Theorem 3. For k € {2,3}, every k-dot-critical graph with no critical vertices
s 3-connected.

Moreover, we show that Theorem 3 is best possible. In our argument, we make
use of the following lemmas, which are proved in [1].

Lemma 4 (Burton and Sumner [1]). A graph is 2-dot-critical with no critical
vertices if and only if it is a complete multipartite graph whose partite sets contain
at least three vertices.
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Figure 1. Graph G(H, K;x,Y).

Lemma 5 (Burton and Sumner [1]). Let G be a graph with no critical vertices,
and let e = wv € E(G). Then e is dot-critical if and only if u and v belong to a
common y-set of G.

Further, we frequently use the following lemma.

Lemma 6. Let G be a graph with no critical vertices. If S C V(G) dominates
at least |V (G)| — 1 vertices of G, then |S| > ~v(G).

Proof. 1f S is a dominating set of G, then |S| > ~v(G). Thus we may assume that
S dominates exactly [V (G)| — 1 vertices of G (i.e. |V(G) — (U,eg Nalz])| = 1).
Write V(G) — (U,es Nal]) = {y}. Then S is a dominating set of G —y. Since
y is not a critical vertex of G, we have |S| > ~v(G —y) > v(G). |

2. DOT-CRITICAL GRAPHS WITH A CUTVERTEX AND GIVEN
EDGE-CONNECTIVITY

In this section, we show Theorem 2 by constructing some dot-critical graphs.
We first give a general construction of dot-critical graphs G with no critical
vertices and k(G) = 1. Let H be a connected dot-critical graph with no critical
vertices, and let x be a vertex of H. Let K be a complete bipartite graph with
partite sets X; and Xo, and let Y be a non-empty set. We define the graph
GH,K;z,Y)by V(G(H,K;z,Y)) =V(H)UV(K)UY and E(G(H,K;z,Y)) =
EH)UEK)U{uy|ue X;U{z},y € Y} (see Figure 1).

Lemma 7. If H — x has no critical verter and |X;| > 3 for i € {1,2}, then
G = G(H,K;x,Y) is a dot-critical graph with no critical vertices and v(G) =
v(H) + 2.

Proof. We start with a claim.

Claim 8. Let S C V(G).
(i) If S dominates V(H) in G, then |SNV(H)| > v(H).
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(ii) If S dominates at least |V (K)|—1 vertices of K in G, then |SN(V(K)UY)| >
2.

Proof. (i) Recall that H contains no critical vertices. Since S dominates V(H),
SNV (H) dominates V(H)—{z} in H. This together with Lemma 6 implies that
ISNV(H)| = ~(H).

(ii) Since every vertex in Y is adjacent to exactly | X |(< |V(K)| —3) vertices
of Kin G, if SNY # 0, then |SN (V(K)UY)| > 2, as desired. Thus we may
assume that SNY = (. Then SN V(K) dominates at least |V (K)| — 1 vertices
of K. Since K is a 2-dot-critical graph with no critical vertices by Lemma 4,
ISN(V(K)UY)|=|SNV(K)| > ~(K) =2 by Lemma 6. O

We show that v(G) = v(H)+2. Let S be ay-set of H, and let u € X; andy € Y.
Note that {u,y} dominates V(K)UY. Hence S U {u,y} is a dominating set of
G, and so v(G) < |S|+2 =~v(H)+2. Let S’ be a y-set of G. Since S’ dominates
V(H) and V(K) in G, v(G) = |S'| = [NV (H)|+ [N (V(K)UY)| > ~v(H)+2
by Claim 8. Consequently, we get v(G) = v(H) + 2.

Next, we show that G has no critical vertex. Let v € V(G), and let S* be
a vy-set of G —v. We show that [S*| > v(H) + 2. Since S* dominates at least
|[V(K)| — 1 vertices of K in G, [S* N (V(K)UY)| > 2 by Claim 8(ii), and hence
IS*| = |S*NV(H)|+ |S*N(V(K)UY)| > |S*NV(H)| 4+ 2. Thus it suffices to
show that |S* N V(H)| > ~(H). Since H has no critical vertex, if S* NV (H)
dominates at least |V (H)| —1 vertices of H, then we have |S*NV (H)| > ~(H) by
Lemma 6, as desired. Thus we may assume that S* NV (H) dominates at most
|V (H)|— 2 vertices of H. Since S* NV (H) dominates V(H) —{z, v}, this implies
that v € V(H), © # v and neither = nor v belongs to S* N V(H). In particular,
S*NV (H) is a dominating set of H—{x, v}, and hence |S*NV (H)| > v(H—{z, v}).
Since H — x has no critical vertex, v(H — {x,v}) > v(H —x) > v(H). This leads
to |S*NV(H)| > v(H). Consequently, G has no critical vertex.

Finally we show that G is dot-critical. Let e = vv’ € F(G). By Lemma 5, it
suffices to show that there exists a dominating set of G with cardinality v(H ) + 2
containing both v and v'. Since H is a dot-critical graph with no critical vertices,
there exists a y-set of H containing both x and 2’ where 2’ € Ny (x) by Lemma 5.
In particular, there exists a y-set T of H containing z. Let T’ be a set which
consists of a vertex in X and a vertex in Y. Note that 7" dominates V(K)UY
in G.

Case 1. v,v' € V(H). Since H is a dot-critical graph with no critical vertices,
there exists a y-set S; of H containing both v and v' by Lemma 5. Then S; UT’
is a dominating set of G with cardinality v(H) 4 2 containing both v and v'.

Case 2. v,v" € V(K)UY. We can check that {v,v'} dominates V(K)UY in
G. Hence TU{v,v'} is a dominating set of G with cardinality v(H)+2 containing
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Figure 2. Graph H,,(p) for odd integer m.

both v and '.

Case 3. [{v, '} NV (H)| = [{v,o'} N (V(K)UY)| =1. We may assume that
{v,v'} NV (H) = {v}. Then this forces v = z and v' € Y. Let ' € X;. Then
T U{v',u'} is a dominating set of G with cardinality v(H) + 2 containing both v
and v'.

This completes the proof of Lemma, 7. [

Proof of Theorem 2. We give two constructions of graphs H,,(p) (m > 2,p >
5) depending on the parity of m.

Let m > 2 be an even integer. The following example can be found in [5].
Let p > 5 be an integer. Let Zy, ..., Zoy,_3 be disjoint sets with |Z;| = p (0 <
i < 2m — 3). We define the graph Hp,(p) by V(Hn(p)) = Up<j<om—3 Z; and
E(Hm(p)) = Uo<jcomafuv|u € Zjv e Zja}

Let m > 3 be an odd integer. The following example was constructed in
[4]. Let p > 5 be an integer. Set Zy = {a} and Z; = {b;, | 0 < i <
p,1 < h < 3}, and for each 2 < j < 2m — 3, set Z; = {cgj)|1§i§p
We define the graph Hp,(p) by V(Hm(p)) = Up<j<om—3Z; and E(Hn(p))

(2

<U0§j§2m—4{uv |ue Xj,ve X]’+1}) —{bmci ) |1<i<p,1<h< 3} (see Fig-
ure 2).

Then for integers m > 2 and p > 5, H,,(p) is an m-dot-critical graph with
no critical vertices and H,,(p) — = has no critical vertex for every x € Zy,,_3 (see
[4, 5]). Furthermore, we can verify that H,,(p) is p-edge-connected by a tedious
argument (and we omit its details).

Fix two integers £ > 4 and [ > 1. Let p; and po be integers with p; >
max{l/,5} and ps > max{l,3}. Let K be a complete bipartite graph which is

——
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isomorphic to K, ;,, and let X; and X3 be the partite sets of K. Let Y be
a set with |Y| = [. We consider the graph G = G(K, Hi_2(p1);x,Y) where
T € Zy(x—2)-3- Then by Lemma 7, G is a k-dot-critical graph with no critical
vertices. Since G is connected and G — z is disconnected, we have x(G) = 1.

Claim 9. \(G) = I.

Proof. Let F C E(G) with |F| <1 — 1. First, we show that for each u € V(G),
there exists a path of G — F joining v and z. Since Hy_5(p1) is l-edge-connected,
if u € V(Hk_2(p1)), then there exists a path of Hi_s(p1) — F joining u and
x. Thus we may assume that v € V(K)UY. Since |F| <[ —1and |Y| =1,
Ne_p(z)NY # 0. Let v € Ng_p(z) NY. Since G[V(K) U Y] is isomorphic
to Kpy poti, GIV(K)UY] is l-edge-connected. Hence there exists a path P of
G[V(K)UY] — F joining u and v. By combining P with the edge vz, we can
construct a path of G — F' joining v and x. Consequently, there exists a path of
G — F joining u and x for u € V(G), and hence G — F' is connected. Since F is
arbitrary, this implies that G is l-edge-connected. On the other hand, since the
set F of edges between x and Y satisfies that |F'| = [ and G — F’ is disconnected,
G is not (I + 1)-edge-connected. Therefore we have A\(G) = I. 0

Since p; and py are arbitrary, there exist infinitely many connected k-dot-critical
graphs G with no critical vertices, k(G) = 1 and A(G) = [. Therefore Theorem 2
holds. ]

3. DOT-CRITICAL GRAPHS WITH SMALL DOMINATION NUMBER

In this section, we prove Theorem 3 and its best possibility. By Lemma 4, every
2-dot-critical graph with no critical vertices is 3-connected. Thus it suffices to
show the following theorem.

Theorem 10. FEvery 3-dot-critical graph with no critical vertices is 3-connected.

Proof. Let G be a 3-dot-critical graph with no critical vertices.

Claim 11. The graph G is connected.

Proof. Suppose that G is disconnected. Then there exists a component C' of G
with 7(C) = 1. Let u € V(C) be a vertex which dominates V(C). If V(C) = {u},
then w is a critical vertex of GG, which contradicts the assumption that G has no
critical vertex. Thus Ng(u) # 0. Let v € No(u). By Lemma 5, there exists a
v-set S of G containing both u and v. Then S — {v} is a dominating set of G
with cardinality 2, which is a contradiction. 0O

Let X be a minimum cutset of G. Suppose that |X| < 2.
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Claim 12. The graph G — X contains no isolated vertez.

Proof. Suppose that G — X contains an isolated vertex u. Let x € X. By the
minimality of X, uz € E(G). By Lemma 5, there exists a y-set S of G containing
both u and z. Then S — {u} dominates V(G) — (X — {z}). In particular, S — {u}
dominates at least |V (G)| — 1 vertices of G, which contradicts Lemma 6. 0

Let C; and Cy be two vertex-disjoint non-empty graphs such that V(Cy) U
V(C3) = V(G) — X and there exists no edge of G between V(C;) and V(C?)
(i.e. C; is a graph which consists of the union of some components of G — X).

Claim 13. Let i € {1,2}.
(i) There exists a vertex of G which dominates V(C;).

(i) Every verter of G dominating V (C;) belongs to V(C;) — (U,ex Na(x)).

Proof. (i) Let u € V(C3_;). By Claim 12, N¢,_,(u) # (0. Let v € N¢,_,(u). By
Lemma 5, there exists a v-set S of G containing both u and v. Then the unique
vertex in S — {u, v} dominates V (C;).

(ii) Let w; be a vertex which dominates V' (C;). By (i), there exists a vertex
w3—; which dominates V(C3—;). If w; € |,cx Ng|z], then w; dominates a vertex
in X, and hence {w;,ws} dominates at least |V(G)| — 1 vertices of G, which
contradicts Lemma 6. Thus w; ¢ |J,cx Nalz]. Consequently, we have w; €

V(Ci) = (Upex Na(2)). 0

By Claim 13, for each i € {1,2}, there exists a vertex w; € V(C;) — (U,ex Na())
which dominates V(C;). Let i € {1,2} and w € N¢,(w;). We show that w is
adjacent to all vertices in X. By Lemma 5, there exists a v-set S of G containing
both w; and w. Then the unique vertex a in S — {w;, w} dominates V(Cs_;).
By Claim 13(ii), a € V(C3-;) — (U,ex Na(x)). Since S is a dominating set of
G and neither w; nor a belongs to |J,.x Ng(x), w is adjacent to all vertices in
X. Recall that w; dominates V(C;). Since i and w are arbitrary, every vertex in
X dominates (V(C1) UV(Cy2)) — {wi,w2}. Let z € X and 2’ € V(Cy) — {w1}.
Then {x,2'} is a dominating set of G — wg, which contradicts Lemma 6. This
completes the proof of Theorem 10. [

Next, we construct for k& € {2,3}, infinitely many k-dot-critical graphs with no
critical vertices and connectivity exactly 3. Let p > 4 be an integer. Set Xy =
{z}, Xi ={yin |1 <i<3,1<h <3}, Xo={21,22,23} and X3 = {w; | 1 <i <
p}t. We define the graph H}(p) by V(H5(p)) = X2 U X3 and E(H,(p)) = {uv |
u € Xo,v € X3} (i.e. Hy(p) = K3p). Furthermore, we define the graph Hj(p)

by V(Hj(p)) = Uo<,<3 X; and E(Hj(p)) = <U0§j§2{uv |ueXjve Xj+1}> -
{yinzi | 1 <i < 3,1 < h < 3} (see Figure 3). Then for each k € {2,3}, it is
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Figure 3. Graph H(p).

easy to verify that Hj(p) is a k-dot-critical graph with no critical vertices and
k(H}(p)) = 3. Therefore Theorem 3 is best possible.
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