THE CONNECTIVITY OF DOMINATION DOT-CRITICAL GRAPHS WITH NO CRITICAL VERTICES

Michitaka Furuya
Department of Mathematical Information Science,
Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
e-mail: michitaka.furuya@gmail.com

Abstract

An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number.

In A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745, Chen and Shiu constructed for each even integer $k \geq 4$ infinitely many k-dot-critical graphs G with no critical vertices and $\kappa(G)=1$. In this paper, we refine their result and construct for integers $k \geq 4$ and $l \geq 1$ infinitely many k-dot-critical graphs G with no critical vertices, $\kappa(G)=1$ and $\lambda(G)=l$. Furthermore, we prove that every 3-dotcritical graph with no critical vertices is 3 -connected, and it is best possible.

Keywords: dot-critical graph, critical vertex, connectivity.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For $u \in V(G)$, we let $N_{G}(u)$ and $N_{G}[u]$ denote the open neighborhood and the closed neighborhood of u, respectively; thus $N_{G}[u]=N_{G}(u) \cup\{u\}$. For $u v \in E(G)$, we let $G / u v$ denote the graph obtained from G by contracting u and v into a single vertex $x_{u v}$. Formally, $G / u v$ is the graph obtained by adding a new vertex $x_{u v}$ to $G-\{u, v\}$ and joining $x_{u v}$ to those vertices of $G-\{u, v\}$ which are adjacent to at least one of u and v in G. We let $\kappa(G)$ and $\lambda(G)$ denote the connectivity and the edge-connectivity of G, respectively. For $X \subseteq V(G)$, we
let $G[X]$ denote the subgraph of G induced by X. For terms and symbols not defined here, we refer the reader to [3].

Let again G be a graph. For two subsets X, Y of $V(G)$, we say that X dominates Y if $Y \subseteq \bigcup_{x \in X} N_{G}[x]$. A subset of $V(G)$ which dominates $V(G)$ is called a dominating set of G. The minimum cardinality of a dominating set of G is called the domination number of G, and is denoted by $\gamma(G)$. A dominating set of G having cardinality $\gamma(G)$ is called a γ-set of G. An edge $u v$ of G is said to be dot-critical if $\gamma(G / u v)<\gamma(G)$, and we say that G is dot-critical if every edge of G is dot-critical. If G is dot-critical and $\gamma(G)=k, G$ is said to be k-dot-critical. A vertex u of G is said to be critical if $\gamma(G-u)<\gamma(G)$.

Burton and Sumner [1] posed a problem: For $k \geq 4$, what are the best upper bound for the diameter of a connected k-dot-critical graph with no critical vertices? Mojdeh and Mirzamani [5] conjectured that the diameter of connected k-dot-critical graphs with no critical vertices is at most $2 k-3$. Recently, the author and Takatou [4] showed that the conjecture is true. Before that time, Rad [6] proved the conjecture for 2-connected graphs is true, and he posed a new problem.

Problem 1 (Rad [6]). For an integer $k \geq 2$, is it true that a connected k-dotcritical graph with no critical vertices is 2 -connected?

If Problem 1 is true, then the Mojdeh-Mirzamani conjecture follows from Rad's result. However, Chen and Shiu [2] gave its negative answer that for each even integer $k \geq 4$, there exist infinitely many k-dot-critical graphs G with no critical vertices and $\kappa(G)=1$. (In fact, they constructed graphs with edge-connectivity exactly 1.) In Section 2, we extend their result by removing the parity condition of k and adding an edge-connectivity condition as follows.

Theorem 2. For integers $k \geq 4$ and $l \geq 1$, there exist infinitely many k-dotcritical graphs with no critical vertices, $\kappa(G)=1$ and $\lambda(G)=l$.

On the other hand, we prove the following theorem which affirms Problem 1 for $k \in\{2,3\}$ in Section 3.

Theorem 3. For $k \in\{2,3\}$, every k-dot-critical graph with no critical vertices is 3 -connected.

Moreover, we show that Theorem 3 is best possible. In our argument, we make use of the following lemmas, which are proved in [1].

Lemma 4 (Burton and Sumner [1]). A graph is 2-dot-critical with no critical vertices if and only if it is a complete multipartite graph whose partite sets contain at least three vertices.

Figure 1. Graph $G(H, K ; x, Y)$.
Lemma 5 (Burton and Sumner [1]). Let G be a graph with no critical vertices, and let $e=u v \in E(G)$. Then e is dot-critical if and only if u and v belong to a common γ-set of G.

Further, we frequently use the following lemma.
Lemma 6. Let G be a graph with no critical vertices. If $S \subseteq V(G)$ dominates at least $|V(G)|-1$ vertices of G, then $|S| \geq \gamma(G)$.

Proof. If S is a dominating set of G, then $|S| \geq \gamma(G)$. Thus we may assume that S dominates exactly $|V(G)|-1$ vertices of G (i.e. $\left.\left|V(G)-\left(\bigcup_{x \in S} N_{G}[x]\right)\right|=1\right)$. Write $V(G)-\left(\bigcup_{x \in S} N_{G}[x]\right)=\{y\}$. Then S is a dominating set of $G-y$. Since y is not a critical vertex of G, we have $|S| \geq \gamma(G-y) \geq \gamma(G)$.

2. Dot-critical Graphs with a Cutvertex and Given Edge-connectivity

In this section, we show Theorem 2 by constructing some dot-critical graphs.
We first give a general construction of dot-critical graphs G with no critical vertices and $\kappa(G)=1$. Let H be a connected dot-critical graph with no critical vertices, and let x be a vertex of H. Let K be a complete bipartite graph with partite sets X_{1} and X_{2}, and let Y be a non-empty set. We define the graph $G(H, K ; x, Y)$ by $V(G(H, K ; x, Y))=V(H) \cup V(K) \cup Y$ and $E(G(H, K ; x, Y))=$ $E(H) \cup E(K) \cup\left\{u y \mid u \in X_{1} \cup\{x\}, y \in Y\right\}$ (see Figure 1).

Lemma 7. If $H-x$ has no critical vertex and $\left|X_{i}\right| \geq 3$ for $i \in\{1,2\}$, then $G=G(H, K ; x, Y)$ is a dot-critical graph with no critical vertices and $\gamma(G)=$ $\gamma(H)+2$.

Proof. We start with a claim.
Claim 8. Let $S \subseteq V(G)$.
(i) If S dominates $V(H)$ in G, then $|S \cap V(H)| \geq \gamma(H)$.
(ii) If S dominates at least $|V(K)|-1$ vertices of K in G, then $|S \cap(V(K) \cup Y)| \geq$ 2.

Proof. (i) Recall that H contains no critical vertices. Since S dominates $V(H)$, $S \cap V(H)$ dominates $V(H)-\{x\}$ in H. This together with Lemma 6 implies that $|S \cap V(H)| \geq \gamma(H)$.
(ii) Since every vertex in Y is adjacent to exactly $\left|X_{1}\right|(\leq|V(K)|-3)$ vertices of K in G, if $S \cap Y \neq \emptyset$, then $|S \cap(V(K) \cup Y)| \geq 2$, as desired. Thus we may assume that $S \cap Y=\emptyset$. Then $S \cap V(K)$ dominates at least $|V(K)|-1$ vertices of K. Since K is a 2 -dot-critical graph with no critical vertices by Lemma 4, $|S \cap(V(K) \cup Y)|=|S \cap V(K)| \geq \gamma(K)=2$ by Lemma 6 .

We show that $\gamma(G)=\gamma(H)+2$. Let S be a γ-set of H, and let $u \in X_{1}$ and $y \in Y$. Note that $\{u, y\}$ dominates $V(K) \cup Y$. Hence $S \cup\{u, y\}$ is a dominating set of G, and so $\gamma(G) \leq|S|+2=\gamma(H)+2$. Let S^{\prime} be a γ-set of G. Since S^{\prime} dominates $V(H)$ and $V(K)$ in $G, \gamma(G)=\left|S^{\prime}\right|=\left|S^{\prime} \cap V(H)\right|+\left|S^{\prime} \cap(V(K) \cup Y)\right| \geq \gamma(H)+2$ by Claim 8. Consequently, we get $\gamma(G)=\gamma(H)+2$.

Next, we show that G has no critical vertex. Let $v \in V(G)$, and let S^{*} be a γ-set of $G-v$. We show that $\left|S^{*}\right| \geq \gamma(H)+2$. Since S^{*} dominates at least $|V(K)|-1$ vertices of K in $G,\left|S^{*} \cap(V(K) \cup Y)\right| \geq 2$ by Claim 8(ii), and hence $\left|S^{*}\right|=\left|S^{*} \cap V(H)\right|+\left|S^{*} \cap(V(K) \cup Y)\right| \geq\left|S^{*} \cap V(H)\right|+2$. Thus it suffices to show that $\left|S^{*} \cap V(H)\right| \geq \gamma(H)$. Since H has no critical vertex, if $S^{*} \cap V(H)$ dominates at least $|V(H)|-1$ vertices of H, then we have $\left|S^{*} \cap V(H)\right| \geq \gamma(H)$ by Lemma 6, as desired. Thus we may assume that $S^{*} \cap V(H)$ dominates at most $|V(H)|-2$ vertices of H. Since $S^{*} \cap V(H)$ dominates $V(H)-\{x, v\}$, this implies that $v \in V(H), x \neq v$ and neither x nor v belongs to $S^{*} \cap V(H)$. In particular, $S^{*} \cap V(H)$ is a dominating set of $H-\{x, v\}$, and hence $\left|S^{*} \cap V(H)\right| \geq \gamma(H-\{x, v\})$. Since $H-x$ has no critical vertex, $\gamma(H-\{x, v\}) \geq \gamma(H-x) \geq \gamma(H)$. This leads to $\left|S^{*} \cap V(H)\right| \geq \gamma(H)$. Consequently, G has no critical vertex.

Finally we show that G is dot-critical. Let $e=v v^{\prime} \in E(G)$. By Lemma 5, it suffices to show that there exists a dominating set of G with cardinality $\gamma(H)+2$ containing both v and v^{\prime}. Since H is a dot-critical graph with no critical vertices, there exists a γ-set of H containing both x and x^{\prime} where $x^{\prime} \in N_{H}(x)$ by Lemma 5 . In particular, there exists a γ-set T of H containing x. Let T^{\prime} be a set which consists of a vertex in X_{1} and a vertex in Y. Note that T^{\prime} dominates $V(K) \cup Y$ in G.

Case 1. $v, v^{\prime} \in V(H)$. Since H is a dot-critical graph with no critical vertices, there exists a γ-set S_{1} of H containing both v and v^{\prime} by Lemma 5 . Then $S_{1} \cup T^{\prime}$ is a dominating set of G with cardinality $\gamma(H)+2$ containing both v and v^{\prime}.

Case 2. $v, v^{\prime} \in V(K) \cup Y$. We can check that $\left\{v, v^{\prime}\right\}$ dominates $V(K) \cup Y$ in G. Hence $T \cup\left\{v, v^{\prime}\right\}$ is a dominating set of G with cardinality $\gamma(H)+2$ containing

Figure 2. Graph $H_{m}(p)$ for odd integer m.
both v and v^{\prime}.
Case 3. $\left|\left\{v, v^{\prime}\right\} \cap V(H)\right|=\left|\left\{v, v^{\prime}\right\} \cap(V(K) \cup Y)\right|=1$. We may assume that $\left\{v, v^{\prime}\right\} \cap V(H)=\{v\}$. Then this forces $v=x$ and $v^{\prime} \in Y$. Let $u^{\prime} \in X_{1}$. Then $T \cup\left\{v^{\prime}, u^{\prime}\right\}$ is a dominating set of G with cardinality $\gamma(H)+2$ containing both v and v^{\prime}.

This completes the proof of Lemma 7.
Proof of Theorem 2. We give two constructions of graphs $H_{m}(p)(m \geq 2, p \geq$ 5) depending on the parity of m.

Let $m \geq 2$ be an even integer. The following example can be found in [5]. Let $p \geq 5$ be an integer. Let $Z_{0}, \ldots, Z_{2 m-3}$ be disjoint sets with $\left|Z_{i}\right|=p(0 \leq$ $i \leq 2 m-3)$. We define the graph $H_{m}(p)$ by $V\left(H_{m}(p)\right)=\bigcup_{0 \leq j \leq 2 m-3} Z_{j}$ and $E\left(H_{m}(p)\right)=\bigcup_{0 \leq j \leq 2 m-4}\left\{u v \mid u \in Z_{j}, v \in Z_{j+1}\right\}$.

Let $m \geq 3$ be an odd integer. The following example was constructed in [4]. Let $p \geq 5$ be an integer. Set $Z_{0}=\{a\}$ and $Z_{1}=\left\{b_{i, h} \mid 0 \leq i \leq\right.$ $p, 1 \leq h \leq 3\}$, and for each $2 \leq j \leq 2 m-3$, set $Z_{j}=\left\{c_{i}^{(j)} \mid 1 \leq i \leq p\right\}$. We define the graph $H_{m}(p)$ by $V\left(H_{m}(p)\right)=\bigcup_{0 \leq j \leq 2 m-3} Z_{j}$ and $E\left(H_{m}(p)\right)=$ $\left(\bigcup_{0 \leq j \leq 2 m-4}\left\{u v \mid u \in X_{j}, v \in X_{j+1}\right\}\right)-\left\{b_{i, h} c_{i}^{(2)} \mid 1 \leq i \leq p, 1 \leq h \leq 3\right\}$ (see Figure 2).

Then for integers $m \geq 2$ and $p \geq 5, H_{m}(p)$ is an m-dot-critical graph with no critical vertices and $H_{m}(p)-x$ has no critical vertex for every $x \in Z_{2 m-3}$ (see $[4,5])$. Furthermore, we can verify that $H_{m}(p)$ is p-edge-connected by a tedious argument (and we omit its details).

Fix two integers $k \geq 4$ and $l \geq 1$. Let p_{1} and p_{2} be integers with $p_{1} \geq$ $\max \{l, 5\}$ and $p_{2} \geq \max \{l, 3\}$. Let K be a complete bipartite graph which is
isomorphic to $K_{p_{2}, p_{2}}$, and let X_{1} and X_{2} be the partite sets of K. Let Y be a set with $|Y|=l$. We consider the graph $G=G\left(K, H_{k-2}\left(p_{1}\right) ; x, Y\right)$ where $x \in Z_{2(k-2)-3}$. Then by Lemma $7, G$ is a k-dot-critical graph with no critical vertices. Since G is connected and $G-x$ is disconnected, we have $\kappa(G)=1$.

Claim 9. $\lambda(G)=l$.
Proof. Let $F \subseteq E(G)$ with $|F| \leq l-1$. First, we show that for each $u \in V(G)$, there exists a path of $G-F$ joining u and x. Since $H_{k-2}\left(p_{1}\right)$ is l-edge-connected, if $u \in V\left(H_{k-2}\left(p_{1}\right)\right)$, then there exists a path of $H_{k-2}\left(p_{1}\right)-F$ joining u and x. Thus we may assume that $u \in V(K) \cup Y$. Since $|F| \leq l-1$ and $|Y|=l$, $N_{G-F}(x) \cap Y \neq \emptyset$. Let $v \in N_{G-F}(x) \cap Y$. Since $G[V(K) \cup Y]$ is isomorphic to $K_{p_{2}, p_{2}+l}, G[V(K) \cup Y]$ is l-edge-connected. Hence there exists a path P of $G[V(K) \cup Y]-F$ joining u and v. By combining P with the edge $v x$, we can construct a path of $G-F$ joining u and x. Consequently, there exists a path of $G-F$ joining u and x for $u \in V(G)$, and hence $G-F$ is connected. Since F is arbitrary, this implies that G is l-edge-connected. On the other hand, since the set F^{\prime} of edges between x and Y satisfies that $\left|F^{\prime}\right|=l$ and $G-F^{\prime}$ is disconnected, G is not $(l+1)$-edge-connected. Therefore we have $\lambda(G)=l$.

Since p_{1} and p_{2} are arbitrary, there exist infinitely many connected k-dot-critical graphs G with no critical vertices, $\kappa(G)=1$ and $\lambda(G)=l$. Therefore Theorem 2 holds.

3. Dot-critical Graphs with Small Domination Number

In this section, we prove Theorem 3 and its best possibility. By Lemma 4, every 2 -dot-critical graph with no critical vertices is 3 -connected. Thus it suffices to show the following theorem.

Theorem 10. Every 3-dot-critical graph with no critical vertices is 3-connected.
Proof. Let G be a 3 -dot-critical graph with no critical vertices.
Claim 11. The graph G is connected.
Proof. Suppose that G is disconnected. Then there exists a component C of G with $\gamma(C)=1$. Let $u \in V(C)$ be a vertex which dominates $V(C)$. If $V(C)=\{u\}$, then u is a critical vertex of G, which contradicts the assumption that G has no critical vertex. Thus $N_{C}(u) \neq \emptyset$. Let $v \in N_{C}(u)$. By Lemma 5 , there exists a γ-set S of G containing both u and v. Then $S-\{v\}$ is a dominating set of G with cardinality 2 , which is a contradiction.

Let X be a minimum cutset of G. Suppose that $|X| \leq 2$.

Claim 12. The graph $G-X$ contains no isolated vertex.
Proof. Suppose that $G-X$ contains an isolated vertex u. Let $x \in X$. By the minimality of $X, u x \in E(G)$. By Lemma 5 , there exists a γ-set S of G containing both u and x. Then $S-\{u\}$ dominates $V(G)-(X-\{x\})$. In particular, $S-\{u\}$ dominates at least $|V(G)|-1$ vertices of G, which contradicts Lemma 6 .

Let C_{1} and C_{2} be two vertex-disjoint non-empty graphs such that $V\left(C_{1}\right) \cup$ $V\left(C_{2}\right)=V(G)-X$ and there exists no edge of G between $V\left(C_{1}\right)$ and $V\left(C_{2}\right)$ (i.e. C_{i} is a graph which consists of the union of some components of $G-X$).

Claim 13. Let $i \in\{1,2\}$.
(i) There exists a vertex of G which dominates $V\left(C_{i}\right)$.
(ii) Every vertex of G dominating $V\left(C_{i}\right)$ belongs to $V\left(C_{i}\right)-\left(\bigcup_{x \in X} N_{G}(x)\right)$.

Proof. (i) Let $u \in V\left(C_{3-i}\right)$. By Claim 12, $N_{C_{3-i}}(u) \neq \emptyset$. Let $v \in N_{C_{3-i}}(u)$. By Lemma 5, there exists a γ-set S of G containing both u and v. Then the unique vertex in $S-\{u, v\}$ dominates $V\left(C_{i}\right)$.
(ii) Let w_{i} be a vertex which dominates $V\left(C_{i}\right)$. By (i), there exists a vertex w_{3-i} which dominates $V\left(C_{3-i}\right)$. If $w_{i} \in \bigcup_{x \in X} N_{G}[x]$, then w_{i} dominates a vertex in X, and hence $\left\{w_{1}, w_{2}\right\}$ dominates at least $|V(G)|-1$ vertices of G, which contradicts Lemma 6. Thus $w_{i} \notin \bigcup_{x \in X} N_{G}[x]$. Consequently, we have $w_{i} \in$ $V\left(C_{i}\right)-\left(\bigcup_{x \in X} N_{G}(x)\right)$.

By Claim 13, for each $i \in\{1,2\}$, there exists a vertex $w_{i} \in V\left(C_{i}\right)-\left(\bigcup_{x \in X} N_{G}(x)\right)$ which dominates $V\left(C_{i}\right)$. Let $i \in\{1,2\}$ and $w \in N_{C_{i}}\left(w_{i}\right)$. We show that w is adjacent to all vertices in X. By Lemma 5 , there exists a γ-set S of G containing both w_{i} and w. Then the unique vertex a in $S-\left\{w_{i}, w\right\}$ dominates $V\left(C_{3-i}\right)$. By Claim 13(ii), $a \in V\left(C_{3-i}\right)-\left(\bigcup_{x \in X} N_{G}(x)\right)$. Since S is a dominating set of G and neither w_{i} nor a belongs to $\bigcup_{x \in X} N_{G}(x), w$ is adjacent to all vertices in X. Recall that w_{i} dominates $V\left(C_{i}\right)$. Since i and w are arbitrary, every vertex in X dominates $\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right)-\left\{w_{1}, w_{2}\right\}$. Let $x \in X$ and $x^{\prime} \in V\left(C_{1}\right)-\left\{w_{1}\right\}$. Then $\left\{x, x^{\prime}\right\}$ is a dominating set of $G-w_{2}$, which contradicts Lemma 6. This completes the proof of Theorem 10.

Next, we construct for $k \in\{2,3\}$, infinitely many k-dot-critical graphs with no critical vertices and connectivity exactly 3 . Let $p \geq 4$ be an integer. Set $X_{0}=$ $\{x\}, X_{1}=\left\{y_{i, h} \mid 1 \leq i \leq 3,1 \leq h \leq 3\right\}, X_{2}=\left\{z_{1}, z_{2}, z_{3}\right\}$ and $X_{3}=\left\{w_{i} \mid 1 \leq i \leq\right.$ $p\}$. We define the graph $H_{2}^{\prime}(p)$ by $V\left(H_{2}^{\prime}(p)\right)=X_{2} \cup X_{3}$ and $E\left(H_{2}^{\prime}(p)\right)=\{u v \mid$ $\left.u \in X_{2}, v \in X_{3}\right\}$ (i.e. $\left.H_{2}^{\prime}(p)=K_{3, p}\right)$. Furthermore, we define the graph $H_{3}^{\prime}(p)$ by $V\left(H_{3}^{\prime}(p)\right)=\bigcup_{0 \leq j \leq 3} X_{j}$ and $E\left(H_{3}^{\prime}(p)\right)=\left(\bigcup_{0 \leq j \leq 2}\left\{u v \mid u \in X_{j}, v \in X_{j+1}\right\}\right)-$ $\left\{y_{i, h} z_{i} \mid 1 \leq i \leq 3,1 \leq h \leq 3\right\}$ (see Figure 3). Then for each $k \in\{2,3\}$, it is

Figure 3. Graph $H_{3}^{\prime}(p)$.
easy to verify that $H_{k}^{\prime}(p)$ is a k-dot-critical graph with no critical vertices and $\kappa\left(H_{k}^{\prime}(p)\right)=3$. Therefore Theorem 3 is best possible.

Acknowledgment

The author is grateful to referees for their careful reading.

References

[1] T. Burton and D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18.
doi:10.1016/j.disc.2005.06.029
[2] X. Chen and W.C. Shiu, A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745. doi:10.1016/j.dam.2009.07.014
[3] R. Diestel, Graph Theory 4th Edition (Verlag, Heidelberg, Springer, 2010).
[4] M. Furuya and M. Takatou, Upper bound on the diameter of a domination dotcritical graph, Graphs Combin. 29 (2013) 79-85.
doi:10.1007/s00373-011-1095-1
[5] D.A. Mojdeh and S. Mirzamani, On the diameter of dot-critical graphs, Opuscula Math. 29 (2009) 165-175.
[6] N.J. Rad, On the diameter of a domination dot-critical graph, Discrete Appl. Math. 157 (2009) 1647-1649.
doi:10.1016/j.dam.2008.10.015

