TETRAVALENT ARC-TRANSITIVE GRAPHS OF ORDER $3 \boldsymbol{p}^{2}$

Mohsen Ghasemi
Department of Mathematics, Urmia University Urmia 57135, Iran
e-mail: m.ghasemi@urmia.ac.ir

Abstract

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on $(s+1)$-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order $3 p^{2}$ is given.

Keywords: s-transitive graphs, symmetric graphs, Cayley graphs.
2010 Mathematics Subject Classification: 05C25, $20 B 25$.

1. Introduction

In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X), E(X)$ and $\operatorname{Aut}(X)$ to denote its vertex set, edge set and its full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X, and $N(u)$ is the neighborhood of u in X, that is, the set of vertices adjacent to u in X. A graph X is locally primitive if for any vertex $v \in V(X)$, the stabilizer $\operatorname{Aut}(X)_{v}$ of v in $\operatorname{Aut}(X)$ is primitive on $N(v)$. An s-arc in a graph is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s-1}, v_{s}\right)$ of vertices of the graph such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. For a subgroup $G \leq \operatorname{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on the set of s-arcs of X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not $(G, s+1)$-arc-transitive. In particular, an $(\operatorname{Aut}(X), s)$ -arc-transitive, $(\operatorname{Aut}(X), s)$-regular or $(\operatorname{Aut}(X), s)$-transitive graph is simply called an s-arc-transitive, s-regular or s-transitive graph, respectively. Note that 0 -arctransitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is edge-transitive if $\operatorname{Aut}(X)$ is transitive on $E(X)$.

Edge-transitive graphs or s-transitive graphs of small valencies have received considerable attention in the literature. For instance, Tutte [29] initiated the investigation of cubic s-transitive graphs by proving that there exist no cubic s transitive graphs for $s \geq 6$, and later much subsequent work was done along this line (see $[7,8,9,10,11,12,13,14,24]$). Gardiner and Praeger [15, 16] generally explored the tetravalent symmetric graphs by considering their automorphism groups. Recently, Li et al. [22] classified all vertex-primitive symmetric graphs of valency 3 or 4 . Moreover, Weiss [31] proved that if X is s-transitive, then $s \in\{1,2,3,4,5,7\}$. Let p be a prime. Conder [6] showed that for a fixed integer n and any integer $s>1$, there are only finitely many cubic s-transitive graphs of order $n p$. Li [20] generalized this result to connected symmetric graphs of any valency, and he also posed the following problem: for small values n and k, classify vertex-transitive locally primitive graphs of order $n p$ and valency k.

In this paper we classify all symmetric graphs of order $n p$ and valency k for certain values of n and k. The classification of s-transitive graphs of order $n p$ and of valency 3 or 4 can be obtained from $[4,5,30]$, where $1 \leq n \leq 3$. Feng et al. [10, 12, 13] classified cubic s-transitive graphs of order $n p$ with $n=4,6,8$ or 10 . Recently, Zhou and Feng [35, 36] classified tetravalent s-transitive graphs of order $4 p$ or $2 p^{2}$. Also Ghasemi and Zhou [18] classified tetravalent s-transitive graphs of order $4 p^{2}$. In this paper, we prove that there are no tetravalent s-transitive graphs of order $3 p^{2}$, for $s>1$.

2. Preliminaries

In this section, we introduce some notation and definitions as well as some preliminary results which will be used later in the paper.

For a regular graph X, use $d(X)$ to represent the valency of X, and for any subset B of $V(X)$, the subgraph of X induced by B will be denoted by $[B]$.

For a positive integer n, denote by \mathbb{Z}_{n} the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_{n}^{*} the multiplicative group of \mathbb{Z}_{n} consisting of numbers coprime to n, by $D_{2 n}$ the dihedral group of order $2 n$, and by C_{n} and K_{n} the cycle and the complete graph of order n, respectively. We call C_{n} an n-cycle.

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_{\alpha}=1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. For any $g \in G, g$ is said to be semiregular if $\langle g\rangle$ is semiregular. The following proposition gives a characterization for Cayley graphs in terms of their automorphism groups.

Proposition 2.1 (Lemma 16.3 [2]). A graph X is isomorphic to a Cayley graph on a group G if and only if its automorphism group has a subgroup isomorphic
to G, acting regularly on the vertex set of X.
Let X be a connected symmetric graph and let $G \leq A u t(X)$ be arc-transitive on X. For a normal subgroup N of G, the quotient graph X_{N} of X relative to the orbits of N is defined as the graph with vertices being the orbits of N on $\mathrm{V}(X)$ and with two orbits adjacent if there is an edge in X between those two orbits. If X_{N} and X have the same valency, then X is called a normal cover of X_{N}. Let X be a connected tetravalent symmetric graph and N an elementary abelian p-group. A classification of connected tetravalent symmetric graphs was obtained when N has at most two orbits in [15] and a characterization of such graphs was given when X_{N} is a cycle in [16].

The following proposition is due to Praeger et al. (refer to Theorem 1.1 [15] and [27]).

Proposition 2.2. Let X be a connected tetravalent ($G, 1$)-arc-transitive graph. For each normal subgroup N of G, one of the following holds.
(1) N is transitive on $V(X)$,
(2) X is bipartite and N acts transitively on each part of the bipartition,
(3) N has $r \geq 3$ orbits on $V(X)$, the quotient graph X_{N} is a cycle of length r, and G induces the full automorphism group $D_{2 r}$ on X_{N},
(4) N has $r \geq 5$ orbits on $V(X), N$ acts semiregularly on $V(X)$, the quotient graph X_{N} is a connected tetravalent G / N-symmetric graph, and X is a G normal cover of X_{N}.
Moreover, if X is also ($G, 2$)-arc-transitive, then case (3) cannot happen.
The following proposition characterizes the vertex stabilizer of the connected tetravalent s-transitive graphs, which can be deduced from Lemma 2.5 [23], or Proposition 2.8 [22], or Theorem 2.2 [21].

Proposition 2.3. Let X be a connected tetravalent (G, s)-transitive graph. Let G_{v} be the stabilizer of a vertex $v \in V(X)$ in G. Then $s=1,2,3,4$ or 7 . Furthermore, either G_{v} is a 2-group for $s=1$, or G_{v} is isomorphic to A_{4} or S_{4} for $s=2$; $A_{4} \times \mathbb{Z}_{3}, \mathbb{Z}_{3} \times S_{4}, S_{3} \times S_{4}$ for $s=3 ; \mathbb{Z}_{3}^{2} \rtimes \mathrm{GL}(2,3)$ for $s=4$; or $\left[3^{5}\right] \rtimes \mathrm{GL}(2,3)$ for $s=7$, where $\left[3^{5}\right]$ represents an arbitrary group of order 3^{5}.

Let X be a tetravalent one-regular graph of order $3 p^{2}$. If $p \leq 13$, then $|V(X)|=$ $12,27,75,147,363$, or 507 . Now, a complete census of the tetravalent arc-transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and Verret $[25,26]$. Therefore, a quick inspection through this list (with the invaluable help of magma (see [3])) gives the number of tetravalent one-regular graphs in the case $p \leq 13$. The following Proposition can be extracted from Theorem 3.4 [17].

Proposition 2.4. Let p be a prime and $p>13$. A tetravalent graph X of order $3 p^{2}$ is 1-regular if and only if one of the following holds:
(i) X is a Cayley graph over $\left\langle x, y \mid x^{p}=y^{6 p}=[x, y]=1\right\rangle$, with connection set $\left\{y, y^{-1}, x y, x^{-1} y^{-1}\right\}$,
(ii) X is a connected arc-transitive circulant graph with respect to every connection set S,
(iii) X is one of the graphs described in Lemma 8.4 [16].

Proposition 2.5 (Theorem $1.2[16]$). Let X be a connected tetravalent symmetric graph of order $3 p^{2}$ where $p>5$ is a prime. Let $A=\operatorname{Aut}(X)$ and let $N=\mathbb{Z}_{p}^{2}$ be a minimal normal subgroup of A. Let K denote the kernel of G acting on N-orbits. If the quotient graph X_{N} is a 3-cycle, then $K_{v} \cong \mathbb{Z}_{2}$, and X is one-regular.
Finally in the following example we introduce $G(3 p, r)$, which was first defined in [5].
Example 2.6. For each positive divisor r of $p-1$ we use H_{r} to denote the unique subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ of order r, which is isomorphic to \mathbb{Z}_{r}. Define a graph $G(3 p, r)$ by $V(G(3 p, r))=\left\{x_{i} \mid i \in \mathbb{Z}_{3}, x \in \mathbb{Z}_{p}\right\}$, and $E(G(3 p, r))=\left\{x_{i} y_{i+1} \mid i \in\right.$ $\left.\mathbb{Z}_{3}, x, y \in \mathbb{Z}_{p}, y-x \in H_{r}\right\}$. Then $G(3 p, r)$ is a connected symmetric graph of order $3 p$ and valency $2 r$. Also $\operatorname{Aut}(G(3 p, p-1)) \cong S_{p} \times S_{3}$. For $r \neq p-1$, Aut $(G(3 p, r))$ is isomorphic to $\left(\mathbb{Z}_{p} . H_{r}\right) . S_{3}$ and acts regularly on the arc set, where X.Y denotes an extension of X by Y.

3. Main Results

In this section, we classify tetravalent s-transitive graphs of order $3 p^{2}$ for each prime p. To do so, we need the following lemmas.

Lemma 3.1. Let p be a prime and let $n>1$ be an integer. Let X be a connected tetravalent graph of order $3 p^{n}$. If $G \leq \operatorname{Aut}(X)$ is transitive on the arc set of X, then every minimal normal subgroup of G is solvable.

Proof. Let $v \in V(X)$. Since G is arc-transitive on X, by Proposition 2.3, G_{v} either is a 2-group or has order dividing $2^{4} \cdot 3^{6}$. It follows that $|G| \mid 2^{4} \cdot 3^{7} \cdot p^{n}$ or $|G|=2^{m} \cdot 3 \cdot p^{n}$ for some integer m. Let N be a minimal normal subgroup of G.

Suppose that N is non-solvable. Then $p>3$ because a $\{2,3\}$-group is solvable by a theorem of Burnside Theorem 8.5.3 [28]. Since N is minimal, it is a product of isomorphic non-abelian simple groups. Since $|N| \mid 2^{4} \cdot 3^{7} \cdot p^{n}$, or $|N|=2^{m} \cdot 3 \cdot p^{n}$ by [19], pp.12-14, each direct factor of N is one of the following: $A_{5}, A_{6}, \operatorname{PSL}(2,7), \operatorname{PSL}(2,8), \operatorname{PSL}(2,17), \operatorname{PSL}(3,3), \operatorname{PSU}(3,3)$ or $\operatorname{PSU}(4,2)$.

An inspection of the orders of such groups gives $n=2$ and $|N| \mid 2^{4} \cdot 3^{7} \cdot p^{n}$. It follows that X is $(G, 2)$-arc transitive and we have $N \cong A_{5} \times A_{5}$. Then $p=5$ and
$|X|=75$. However, from [32] we know that all tetravalent arc-transitive graphs of order 75 are 1-transitive, a contradiction.

Lemma 3.2. Let X be a connected tetravalent G-arc-transitive graph of order $3 p^{2}$, where $p>13$. Assume that G has a normal subgroup N of prime order. If N has at least three orbits on $V(X)$, then either X_{N} is of valency 4 or G is regular on the arcs of X.

Proof. By our assumption N has at least three orbits on $V(X)$. If N has $r \geq 5$ orbits on $V(X)$, then by Proposition 2.2, X_{N} has valency 4 and X is a normal cover of X_{N}. Thus we may suppose that N has $r \geq 3$ orbits. Thus $d\left(X_{N}\right)=2$ and $\left|X_{N}\right|=3 p$ or $\left|X_{N}\right|=p^{2}$.

First suppose that $\left|X_{N}\right|=3 p$. Thus $X_{N} \cong C_{3 p}$ and hence $G / K \cong \operatorname{Aut}\left(C_{3 p}\right) \cong$ $D_{6 p}$. Let Δ and Δ^{\prime} be two adjacent orbits of N in $V(X)$. Then the subgraph $\left[\Delta \cup \Delta^{\prime}\right]$ of X induced by $\Delta \cup \Delta^{\prime}$ has valency 2 . Since $p>13$, one has $\left[\Delta \cup \Delta^{\prime}\right] \cong C_{2 p}$. The subgroup K^{*} of K fixing Δ pointwise also fixes Δ^{\prime} pointwise. The connectivity of X and the transitivity of G / K on $V\left(X_{N}\right)$ imply that $K^{*}=1$, and consequently, $K \leq \operatorname{Aut}\left(\left[\Delta \cup \Delta^{\prime}\right]\right) \cong D_{4 p}$. Since K fixes Δ, one has $|K| \leq 2 p$. It follows that $|G|=|G / K||K| \leq 12 p^{2}$, and hence G is regular on the arcs of X.

Now suppose that $\left|X_{N}\right|=p^{2}$. Thus $X_{N} \cong C_{p^{2}}$. It follows that $G / K \cong D_{2 p^{2}}$. Let Δ and Δ^{\prime} be two adjacent orbits of N in $V(X)$. Then the subgraph $\left[\Delta \cup \Delta^{\prime}\right]$ of X induced by $\Delta \cup \Delta^{\prime}$ has valency 2. Clearly, we have $\left[\Delta \cup \Delta^{\prime}\right] \cong C_{6}$. The subgroup K^{*} of K fixing Δ pointwise also fixes Δ^{\prime} pointwise. The connectivity of X and the transitivity of G / K on $V\left(X_{N}\right)$ imply that $K^{*}=1$, and consequently, $K \leq \operatorname{Aut}\left(\left[\Delta \cup \Delta^{\prime}\right]\right) \cong D_{12}$. Since K fixes Δ, one has $|K| \leq 6$. It follows that $|G|=|G / K||K| \leq 12 p^{2}$, and hence G is regular on the arcs of X. Now the proof is complete.

Theorem 3.3. Let p be a prime and let X be a connected tetravalent graph of order $3 p^{2}$. Then X is s-transitive for some positive integer s if and only if it is isomorphic to one of the graphs in Proposition 2.4.

Proof. Let X be a tetravalent s-transitive graph of order $3 p^{2}$ for a positive integer s. By [25, 26], we may assume that $p>13$. If X is one-regular, then X is one of the graphs in Proposition 2.4 and so $s=1$. In what follows, we assume that $p>13$ and that X is not one-regular. Set $A=\operatorname{Aut}(X)$ and let P be a Sylow p-subgroup. Then $|P|=p^{2}$ and by Lemma 3.1, A is solvable. First we prove a claim.

Claim 1. P is not normal in A.
Proof. Suppose to, the contrary that $P \unlhd A$. If P is a minimal normal subgroup of A then by Proposition 2.5, X is one-regular, a contradiction. Suppose that P contains a non-trivial subgroup, say N, which is normal in A. Consider the
quotient graph X_{N} of X relative to the orbit set of N, and let K be the kernel of A on $V\left(X_{N}\right)$. Since $p>13$, one has $\left|X_{N}\right|=3 p$. By Lemma 3.2 either X is a normal cover of X_{N} or $d\left(X_{N}\right)=2$ and X is one-regular. Since X is not one-regular, we may suppose that $d\left(X_{N}\right)=4$. By [30], $G(3 p, 2)$ is the only tetravalent symmetric graph of order $3 p$, (see Example 2.6). Also $|\operatorname{Aut}(G(3 p, 2))|=12 p$ and $G(3 p, 2)$ is one-regular. Thus $|A / M|=12 p$ and so $|A|=12 p^{2}$. Thus X is one-regular, a contradiction.

Let M be the maximal normal 2-subgroup of A and assume $|M|>1$. Consider the quotient graph X_{M} of X relative to the orbit set of M, and let K be the kernel of A acting on $V\left(X_{M}\right)$. Since $p>13$, every orbit of M has length 2 or 4 , a contradiction. So A has no non-trivial normal 2-subgroup.

Now we are ready to complete the proof. Let M be a minimal normal subgroup of A. Clearly, M is a 3 -group or a p-group. First suppose that M is a p-group. Thus $|M|=p$ or p^{2}. If $|M|=p^{2}$, then $M=P$ is a Sylow p-subgroup of A. By Claim 1, P is not normal in A, a contradiction. Suppose that $|M|=p$. By Lemma 3.2 either X is a normal cover of X_{M} or $d\left(X_{M}\right)=2$ and X is one-regular. Since X is not one-regular, we may suppose that $d\left(X_{M}\right)=4$. By [30], $G(3 p, 2)$ is the only tetravalent symmetric graph of order $3 p$ (see Example 2.6). Also $|\operatorname{Aut}(G(3 p, 2))|=12 p$ and $G(3 p, 2)$ is one-regular. Thus $|A / M|=12 p$ and so $|A|=12 p^{2}$. Thus X is one-regular, a contradiction.

Now suppose that M is a 3 -group. Thus $\left|X_{M}\right|=p^{2}$. If $d\left(X_{M}\right)=4$, then by Proposition $2.5, K=M$ is semiregular on $V\left(X_{M}\right)$. Therefore $K=M \cong \mathbb{Z}_{3}$. Since $P>13, P M=P \times M$ is abelian. Clearly, $P M$ is transitive on $V(X)$. Thus $P M$ is regular on $V(X)$, because $|P M|=3 p^{2}$. Thus X is a Cayley graph on abelian group of order $3 p^{2}$. By Theorem 1.2 [1], X is normal. If $P M$ is cyclic, then by [33] X is one-regular, a contradiction. Thus $P M$ is not cyclic. Now by Proposition 3.3 [34], X is one-regular, a contradiction. If $d\left(X_{M}\right)=2$, then $X_{M} \cong C_{p^{2}}$. By Lemma 3.2, X is one-regular, a contradiction.

References

[1] Y.G. Baik, Y.-Q. Feng, H.S. Sim and M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998) 297-304.
[2] N. Biggs, Algebraic Graph Theory, Second Ed. (Cambridge University Press, Cambridge, 1993).
[3] W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997) 235-265. doi:10.1006/jsco.1996.0125
[4] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247-256.
doi:10.1090/S0002-9947-1971-0279000-7
[5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory (B) 42 (1987) 196-211. doi:10.1016/0095-8956(87)90040-2
[6] M. Conder, Orders of symmetric cubic graphs, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008).
[7] M. Conder and C.E. Praeger, Remarks on path-transitivity on finite graphs, European J. Combin. 17 (1996) 371-378. doi:10.1006/eujc.1996.0030
[8] D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory (B) 29 (1980) 195-230. doi:10.1016/0095-8956(80)90081-7
[9] Y.-Q. Feng and J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004) 345-356. doi:10.1017/S1446788700009903
[10] Y.-Q. Feng and J.H. Kwak, Classifying cubic symmetric graphs of order 10 p or $10 p^{2}$, Sci. China (A) 49 (2006) 300-319. doi:10.1007/s11425-006-0300-9
[11] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Aust. Math. Soc. 81 (2006) 153-164. doi:10.1017/S1446788700015792
[12] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory (B) 97 (2007) 627-646. doi:10.1016/j.jctb.2006.11.001
[13] Y.-Q. Feng, J.H. Kwak and K.S. Wang, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European J. Combin. 26 (2005) 1033-1052. doi:10.1016/j.ejc.2004.06.015
[14] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952) 240-247. doi:10.4153/CJM-1952-022-9
[15] A. Gardiner and C.E. Praeger, On 4-valent symmetric graphs, European. J. Combin. 15 (1994) 375-381. doi:10.1006/eujc.1994.1041
[16] A. Gardiner and C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin. 15 (1994) 383-397. doi:10.1006/eujc.1994.1042
[17] M. Ghasemi, A classification of tetravalent one-regular graphs of order $3 p^{2}$, Colloq. Math. 128 (2012) 15-24. doi:10.4064/cm128-1-3
[18] M. Ghasemi and J.-X. Zhou, Tetravalent s-transitive graphs of order $4 p^{2}$, Graphs Combin. 29 (2013) 87-97.
doi:10.007/s00373-011-1093-3
[19] D. Gorenstein, Finite Simple Groups (Plenum Press, New York, 1982). doi:10.1007/978-1-4684-8497-7
[20] C.H. Li, Finite s-arc-transitive graphs, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008).
[21] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353 (2001) 3511-3529. doi:10.1090/S0002-9947-01-02768-4
[22] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004) 749-770.
doi:10.1016/j.jalgebra.2004.03.005
[23] C.H. Li, Z.P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory (B) 96 (2006) 164-181. doi:10.1016/j.jctb.2005.07.003
[24] R.C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory (B) 10 (1971) 163-182. doi:10.1016/0095-8956(71)90075-X
[25] P. Potočnik, P. Spiga and G. Verret. http://www.matapp.unimib.it/spiga/
[26] P. Potočnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices. arXiv:1201.5317v1 [math.CO].
[27] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993) 227239.
doi:10.1112/jlms/s2-47.2.227
[28] D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982).
[29] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947) 459-474. doi:10.1017/S0305004100023720
[30] R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory (B) 58 (1993) 197-216. doi:10.1006/jctb.1993.1037
[31] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (1981) 309-311. doi:10.1007/BF02579337
[32] S. Wilson and P. Potočnik, A Census of edge-transitive tetravalent graphs. http://jan. ucc.nau.edu/swilson/C4Site/index.html.
[33] M.Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000) 2160-2162.
[34] J. Xu and M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001) 355-363.
doi:10.1007/s10012-001-0355-z
[35] J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009) 6081-6086.
doi:10.1016/j.disc.2009.05.014
[36] J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010) 277-288.
doi:10.1017/S1446788710000066
Received 27 December 2012
Revised 4 July 2013
Accepted 4 July 2013

