Discussiones Mathematicae Graph Theory 34 (2014) 567–575 doi:10.7151/dmgt.1751

TETRAVALENT ARC-TRANSITIVE GRAPHS OF ORDER $3p^2$

Mohsen Ghasemi

Department of Mathematics, Urmia University Urmia 57135, Iran

e-mail: m.ghasemi@urmia.ac.ir

Abstract

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order $3p^2$ is given.

Keywords: *s*-transitive graphs, symmetric graphs, Cayley graphs. 2010 Mathematics Subject Classification: 05C25, 20B25.

1. INTRODUCTION

In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use V(X), E(X) and Aut(X) to denote its vertex set, edge set and its full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X, and N(u) is the neighborhood of u in X, that is, the set of vertices adjacent to u in X. A graph X is locally primitive if for any vertex $v \in V(X)$, the stabilizer $\operatorname{Aut}(X)_v$ of v in $\operatorname{Aut}(X)$ is primitive on N(v). An s-arc in a graph is an ordered (s+1)-tuple $(v_0, v_1, \ldots, v_{s-1}, v_s)$ of vertices of the graph such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. For a subgroup $G \leq \operatorname{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on the set of s-arcs of X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not (G, s+1)-arc-transitive. In particular, an (Aut(X), s)arc-transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive graph is simply called an s-arc-transitive, s-regular or s-transitive graph, respectively. Note that 0-arctransitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is edge-transitive if Aut(X) is transitive on E(X).

Edge-transitive graphs or s-transitive graphs of small valencies have received considerable attention in the literature. For instance, Tutte [29] initiated the investigation of cubic s-transitive graphs by proving that there exist no cubic stransitive graphs for $s \ge 6$, and later much subsequent work was done along this line (see [7, 8, 9, 10, 11, 12, 13, 14, 24]). Gardiner and Praeger [15, 16] generally explored the tetravalent symmetric graphs by considering their automorphism groups. Recently, Li *et al.* [22] classified all vertex-primitive symmetric graphs of valency 3 or 4. Moreover, Weiss [31] proved that if X is s-transitive, then $s \in \{1, 2, 3, 4, 5, 7\}$. Let p be a prime. Conder [6] showed that for a fixed integer n and any integer s > 1, there are only finitely many cubic s-transitive graphs of order np. Li [20] generalized this result to connected symmetric graphs of any valency, and he also posed the following problem: for small values n and k, classify vertex-transitive locally primitive graphs of order np and valency k.

In this paper we classify all symmetric graphs of order np and valency k for certain values of n and k. The classification of s-transitive graphs of order np and of valency 3 or 4 can be obtained from [4, 5, 30], where $1 \le n \le 3$. Feng *et al.* [10, 12, 13] classified cubic s-transitive graphs of order np with n = 4, 6, 8 or 10. Recently, Zhou and Feng [35, 36] classified tetravalent s-transitive graphs of order 4p or $2p^2$. Also Ghasemi and Zhou [18] classified tetravalent s-transitive graphs of order $4p^2$. In this paper, we prove that there are no tetravalent s-transitive graphs of order $3p^2$, for s > 1.

2. Preliminaries

In this section, we introduce some notation and definitions as well as some preliminary results which will be used later in the paper.

For a regular graph X, use d(X) to represent the valency of X, and for any subset B of V(X), the subgraph of X induced by B will be denoted by [B].

For a positive integer n, denote by \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, by D_{2n} the dihedral group of order 2n, and by C_n and K_n the cycle and the complete graph of order n, respectively. We call C_n an n-cycle.

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing the point α . We say that G is *semiregular* on Ω if $G_{\alpha} = 1$ for every $\alpha \in \Omega$ and *regular* if G is transitive and semiregular. For any $g \in G$, g is said to be *semiregular* if $\langle g \rangle$ is semiregular. The following proposition gives a characterization for Cayley graphs in terms of their automorphism groups.

Proposition 2.1 (Lemma 16.3 [2]). A graph X is isomorphic to a Cayley graph on a group G if and only if its automorphism group has a subgroup isomorphic

to G, acting regularly on the vertex set of X.

Let X be a connected symmetric graph and let $G \leq Aut(X)$ be arc-transitive on X. For a normal subgroup N of G, the quotient graph X_N of X relative to the orbits of N is defined as the graph with vertices being the orbits of N on V(X) and with two orbits adjacent if there is an edge in X between those two orbits. If X_N and X have the same valency, then X is called a normal cover of X_N . Let X be a connected tetravalent symmetric graph and N an elementary abelian p-group. A classification of connected tetravalent symmetric graphs was obtained when N has at most two orbits in [15] and a characterization of such graphs was given when X_N is a cycle in [16].

The following proposition is due to Praeger *et al.* (refer to Theorem 1.1 [15] and [27]).

Proposition 2.2. Let X be a connected tetravalent (G, 1)-arc-transitive graph. For each normal subgroup N of G, one of the following holds.

- (1) N is transitive on V(X),
- (2) X is bipartite and N acts transitively on each part of the bipartition,
- (3) N has $r \ge 3$ orbits on V(X), the quotient graph X_N is a cycle of length r, and G induces the full automorphism group D_{2r} on X_N ,
- (4) N has $r \ge 5$ orbits on V(X), N acts semiregularly on V(X), the quotient graph X_N is a connected tetravalent G/N-symmetric graph, and X is a G-normal cover of X_N .

Moreover, if X is also (G, 2)-arc-transitive, then case (3) cannot happen.

The following proposition characterizes the vertex stabilizer of the connected tetravalent s-transitive graphs, which can be deduced from Lemma 2.5 [23], or Proposition 2.8 [22], or Theorem 2.2 [21].

Proposition 2.3. Let X be a connected tetravalent (G, s)-transitive graph. Let G_v be the stabilizer of a vertex $v \in V(X)$ in G. Then s = 1, 2, 3, 4 or 7. Furthermore, either G_v is a 2-group for s = 1, or G_v is isomorphic to A_4 or S_4 for s = 2; $A_4 \times \mathbb{Z}_3$, $\mathbb{Z}_3 \times S_4$, $S_3 \times S_4$ for s = 3; $\mathbb{Z}_3^2 \rtimes \operatorname{GL}(2,3)$ for s = 4; or $[3^5] \rtimes \operatorname{GL}(2,3)$ for s = 7, where $[3^5]$ represents an arbitrary group of order 3^5 .

Let X be a tetravalent one-regular graph of order $3p^2$. If $p \leq 13$, then |V(X)| = 12, 27, 75, 147, 363, or 507. Now, a complete census of the tetravalent arc-transitive graphs of order at most 640 has been recently obtained by Potočnik, Spiga and Verret [25, 26]. Therefore, a quick inspection through this list (with the invaluable help of magma (see [3])) gives the number of tetravalent one-regular graphs in the case $p \leq 13$. The following Proposition can be extracted from Theorem 3.4 [17].

Proposition 2.4. Let p be a prime and p > 13. A tetravalent graph X of order $3p^2$ is 1-regular if and only if one of the following holds:

- (i) X is a Cayley graph over $\langle x, y | x^p = y^{6p} = [x, y] = 1 \rangle$, with connection set $\{y, y^{-1}, xy, x^{-1}y^{-1}\},\$
- (ii) X is a connected arc-transitive circulant graph with respect to every connection set S,
- (iii) X is one of the graphs described in Lemma 8.4 [16].

Proposition 2.5 (Theorem 1.2 [16]). Let X be a connected tetravalent symmetric graph of order $3p^2$ where p > 5 is a prime. Let A = Aut(X) and let $N = \mathbb{Z}_p^2$ be a minimal normal subgroup of A. Let K denote the kernel of G acting on N-orbits. If the quotient graph X_N is a 3-cycle, then $K_v \cong \mathbb{Z}_2$, and X is one-regular.

Finally in the following example we introduce G(3p, r), which was first defined in [5].

Example 2.6. For each positive divisor r of p-1 we use H_r to denote the unique subgroup of $\operatorname{Aut}(\mathbb{Z}_p)$ of order r, which is isomorphic to \mathbb{Z}_r . Define a graph G(3p, r) by $V(G(3p, r)) = \{x_i \mid i \in \mathbb{Z}_3, x \in \mathbb{Z}_p\}$, and $E(G(3p, r)) = \{x_iy_{i+1} \mid i \in \mathbb{Z}_3, x, y \in \mathbb{Z}_p, y-x \in H_r\}$. Then G(3p, r) is a connected symmetric graph of order 3p and valency 2r. Also $\operatorname{Aut}(G(3p, p-1)) \cong S_p \times S_3$. For $r \neq p-1$, $\operatorname{Aut}(G(3p, r))$ is isomorphic to $(\mathbb{Z}_p.H_r).S_3$ and acts regularly on the arc set, where X.Y denotes an extension of X by Y.

3. MAIN RESULTS

In this section, we classify tetravalent s-transitive graphs of order $3p^2$ for each prime p. To do so, we need the following lemmas.

Lemma 3.1. Let p be a prime and let n > 1 be an integer. Let X be a connected tetravalent graph of order $3p^n$. If $G \leq Aut(X)$ is transitive on the arc set of X, then every minimal normal subgroup of G is solvable.

Proof. Let $v \in V(X)$. Since G is arc-transitive on X, by Proposition 2.3, G_v either is a 2-group or has order dividing $2^4 \cdot 3^6$. It follows that $|G| \mid 2^4 \cdot 3^7 \cdot p^n$ or $|G| = 2^m \cdot 3 \cdot p^n$ for some integer m. Let N be a minimal normal subgroup of G.

Suppose that N is non-solvable. Then p > 3 because a $\{2,3\}$ -group is solvable by a theorem of Burnside Theorem 8.5.3 [28]. Since N is minimal, it is a product of isomorphic non-abelian simple groups. Since $|N| | 2^4 \cdot 3^7 \cdot p^n$, or $|N| = 2^m \cdot 3 \cdot p^n$ by [19], pp.12–14, each direct factor of N is one of the following: $A_5, A_6, PSL(2,7), PSL(2,8), PSL(2,17), PSL(3,3), PSU(3,3)$ or PSU(4,2).

An inspection of the orders of such groups gives n = 2 and $|N| | 2^4 \cdot 3^7 \cdot p^n$. It follows that X is (G, 2)-arc transitive and we have $N \cong A_5 \times A_5$. Then p = 5 and

|X| = 75. However, from [32] we know that all tetravalent arc-transitive graphs of order 75 are 1-transitive, a contradiction.

Lemma 3.2. Let X be a connected tetravalent G-arc-transitive graph of order $3p^2$, where p > 13. Assume that G has a normal subgroup N of prime order. If N has at least three orbits on V(X), then either X_N is of valency 4 or G is regular on the arcs of X.

Proof. By our assumption N has at least three orbits on V(X). If N has $r \ge 5$ orbits on V(X), then by Proposition 2.2, X_N has valency 4 and X is a normal cover of X_N . Thus we may suppose that N has $r \ge 3$ orbits. Thus $d(X_N) = 2$ and $|X_N| = 3p$ or $|X_N| = p^2$.

First suppose that $|X_N| = 3p$. Thus $X_N \cong C_{3p}$ and hence $G/K \cong \operatorname{Aut}(C_{3p}) \cong D_{6p}$. Let Δ and Δ' be two adjacent orbits of N in V(X). Then the subgraph $[\Delta \cup \Delta']$ of X induced by $\Delta \cup \Delta'$ has valency 2. Since p > 13, one has $[\Delta \cup \Delta'] \cong C_{2p}$. The subgroup K^* of K fixing Δ pointwise also fixes Δ' pointwise. The connectivity of X and the transitivity of G/K on $V(X_N)$ imply that $K^* = 1$, and consequently, $K \leq \operatorname{Aut}([\Delta \cup \Delta']) \cong D_{4p}$. Since K fixes Δ , one has $|K| \leq 2p$. It follows that $|G| = |G/K||K| \leq 12p^2$, and hence G is regular on the arcs of X.

Now suppose that $|X_N| = p^2$. Thus $X_N \cong C_{p^2}$. It follows that $G/K \cong D_{2p^2}$. Let Δ and Δ' be two adjacent orbits of N in V(X). Then the subgraph $[\Delta \cup \Delta']$ of X induced by $\Delta \cup \Delta'$ has valency 2. Clearly, we have $[\Delta \cup \Delta'] \cong C_6$. The subgroup K^* of K fixing Δ pointwise also fixes Δ' pointwise. The connectivity of X and the transitivity of G/K on $V(X_N)$ imply that $K^* = 1$, and consequently, $K \leq \operatorname{Aut}([\Delta \cup \Delta']) \cong D_{12}$. Since K fixes Δ , one has $|K| \leq 6$. It follows that $|G| = |G/K||K| \leq 12p^2$, and hence G is regular on the arcs of X. Now the proof is complete.

Theorem 3.3. Let p be a prime and let X be a connected tetravalent graph of order $3p^2$. Then X is s-transitive for some positive integer s if and only if it is isomorphic to one of the graphs in Proposition 2.4.

Proof. Let X be a tetravalent s-transitive graph of order $3p^2$ for a positive integer s. By [25, 26], we may assume that p > 13. If X is one-regular, then X is one of the graphs in Proposition 2.4 and so s = 1. In what follows, we assume that p > 13 and that X is not one-regular. Set $A = \operatorname{Aut}(X)$ and let P be a Sylow p-subgroup. Then $|P| = p^2$ and by Lemma 3.1, A is solvable. First we prove a claim.

Claim 1. P is not normal in A.

Proof. Suppose to, the contrary that $P \trianglelefteq A$. If P is a minimal normal subgroup of A then by Proposition 2.5, X is one-regular, a contradiction. Suppose that P contains a non-trivial subgroup, say N, which is normal in A. Consider the

quotient graph X_N of X relative to the orbit set of N, and let K be the kernel of A on $V(X_N)$. Since p > 13, one has $|X_N| = 3p$. By Lemma 3.2 either X is a normal cover of X_N or $d(X_N) = 2$ and X is one-regular. Since X is not one-regular, we may suppose that $d(X_N) = 4$. By [30], G(3p, 2) is the only tetravalent symmetric graph of order 3p, (see Example 2.6). Also $|\operatorname{Aut}(G(3p, 2))| = 12p$ and G(3p, 2)is one-regular. Thus |A/M| = 12p and so $|A| = 12p^2$. Thus X is one-regular, a contradiction.

Let M be the maximal normal 2-subgroup of A and assume |M| > 1. Consider the quotient graph X_M of X relative to the orbit set of M, and let K be the kernel of A acting on $V(X_M)$. Since p > 13, every orbit of M has length 2 or 4, a contradiction. So A has no non-trivial normal 2-subgroup.

Now we are ready to complete the proof. Let M be a minimal normal subgroup of A. Clearly, M is a 3-group or a p-group. First suppose that M is a p-group. Thus |M| = p or p^2 . If $|M| = p^2$, then M = P is a Sylow p-subgroup of A. By Claim 1, P is not normal in A, a contradiction. Suppose that |M| = p. By Lemma 3.2 either X is a normal cover of X_M or $d(X_M) = 2$ and X is one-regular. Since X is not one-regular, we may suppose that $d(X_M) = 4$. By [30], G(3p, 2)is the only tetravalent symmetric graph of order 3p (see Example 2.6). Also $|\operatorname{Aut}(G(3p, 2))| = 12p$ and G(3p, 2) is one-regular. Thus |A/M| = 12p and so $|A| = 12p^2$. Thus X is one-regular, a contradiction.

Now suppose that M is a 3-group. Thus $|X_M| = p^2$. If $d(X_M) = 4$, then by Proposition 2.5, K = M is semiregular on $V(X_M)$. Therefore $K = M \cong \mathbb{Z}_3$. Since P > 13, $PM = P \times M$ is abelian. Clearly, PM is transitive on V(X). Thus PM is regular on V(X), because $|PM| = 3p^2$. Thus X is a Cayley graph on abelian group of order $3p^2$. By Theorem 1.2 [1], X is normal. If PM is cyclic, then by [33] X is one-regular, a contradiction. Thus PM is not cyclic. Now by Proposition 3.3 [34], X is one-regular, a contradiction. If $d(X_M) = 2$, then $X_M \cong C_{p^2}$. By Lemma 3.2, X is one-regular, a contradiction.

References

- Y.G. Baik, Y.-Q. Feng, H.S. Sim and M.Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq. 5 (1998) 297–304.
- [2] N. Biggs, Algebraic Graph Theory, Second Ed. (Cambridge University Press, Cambridge, 1993).
- W. Bosma, C. Cannon and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput. 24 (1997) 235–265. doi:10.1006/jsco.1996.0125
- C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) 247–256. doi:10.1090/S0002-9947-1971-0279000-7

- [5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory (B) 42 (1987) 196–211. doi:10.1016/0095-8956(87)90040-2
- [6] M. Conder, *Orders of symmetric cubic graphs*, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008).
- M. Conder and C.E. Praeger, *Remarks on path-transitivity on finite graphs*, European J. Combin. **17** (1996) 371–378. doi:10.1006/eujc.1996.0030
- [8] D.Ž. Djoković and G.L. Miller, *Regular groups of automorphisms of cubic graphs*, J. Combin. Theory (B) **29** (1980) 195–230. doi:10.1016/0095-8956(80)90081-7
- Y.-Q. Feng and J.H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004) 345–356. doi:10.1017/S1446788700009903
- [10] Y.-Q. Feng and J.H. Kwak, *Classifying cubic symmetric graphs of order* 10p or 10p², Sci. China (A) **49** (2006) 300–319. doi:10.1007/s11425-006-0300-9
- [11] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Aust. Math. Soc. 81 (2006) 153–164. doi:10.1017/S1446788700015792
- [12] Y.-Q. Feng and J.H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory (B) 97 (2007) 627–646. doi:10.1016/j.jctb.2006.11.001
- [13] Y.-Q. Feng, J.H. Kwak and K.S. Wang, Classifying cubic symmetric graphs of order 8p or 8p², European J. Combin. 26 (2005) 1033–1052. doi:10.1016/j.ejc.2004.06.015
- [14] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952) 240–247. doi:10.4153/CJM-1952-022-9
- [15] A. Gardiner and C.E. Praeger, On 4-valent symmetric graphs, European. J. Combin. 15 (1994) 375–381. doi:10.1006/eujc.1994.1041
- [16] A. Gardiner and C.E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin. 15 (1994) 383–397. doi:10.1006/eujc.1994.1042
- M. Ghasemi, A classification of tetravalent one-regular graphs of order 3p², Colloq. Math. 128 (2012) 15–24. doi:10.4064/cm128-1-3
- [18] M. Ghasemi and J.-X. Zhou, *Tetravalent s-transitive graphs of order* 4p², Graphs Combin. 29 (2013) 87–97. doi:10.007/s00373-011-1093-3

- [19] D. Gorenstein, Finite Simple Groups (Plenum Press, New York, 1982). doi:10.1007/978-1-4684-8497-7
- [20] C.H. Li, *Finite s-arc-transitive graphs*, The Second Internetional Workshop on Group Theory and Algebraic Combinatorics, (Peking University, Beijing, 2008).
- [21] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \ge 4$, Trans. Amer. Math. Soc. **353** (2001) 3511–3529. doi:10.1090/S0002-9947-01-02768-4
- [22] C.H. Li, Z.P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004) 749–770. doi:10.1016/j.jalgebra.2004.03.005
- [23] C.H. Li, Z.P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory (B) 96 (2006) 164–181. doi:10.1016/j.jctb.2005.07.003
- [24] R.C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory
 (B) 10 (1971) 163–182. doi:10.1016/0095-8956(71)90075-X
- [25] P. Potočnik, P. Spiga and G. Verret. http://www.matapp.unimib.it/spiga/
- [26] P. Potočnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices. arXiv:1201.5317v1 [math.CO].
- [27] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993) 227– 239. doi:10.1112/jlms/s2-47.2.227
- [28] D.J.S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982).
- [29] W.T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947) 459–474. doi:10.1017/S0305004100023720
- [30] R.J. Wang and M.Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory (B) 58 (1993) 197–216. doi:10.1006/jctb.1993.1037
- [31] R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica 1 (1981) 309–311. doi:10.1007/BF02579337
- [32] S. Wilson and P. Potočnik, A Census of edge-transitive tetravalent graphs. http://jan.ucc.nau.edu/swilson/C4Site/index.html.
- [33] M.Y. Xu, A note on one-regular graphs, Chinese Sci. Bull. 45 (2000) 2160–2162.
- [34] J. Xu and M.Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math. 25 (2001) 355–363. doi:10.1007/s10012-001-0355-z

- [35] J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009) 6081–6086.
 doi:10.1016/j.disc.2009.05.014
- [36] J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010) 277–288. doi:10.1017/S1446788710000066

Received 27 December 2012 Revised 4 July 2013 Accepted 4 July 2013