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Abstract

Let s be a positive integer. A graph is s-transitive if its automorphism
group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime.
In this article a complete classification of tetravalent s-transitive graphs of
order 3p2 is given.
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1. Introduction

In this paper we consider undirected finite connected graphs without loops or mul-
tiple edges. For a graph X we use V (X), E(X) and Aut(X) to denote its vertex
set, edge set and its full automorphism group, respectively. For u, v ∈ V (X),
{u, v} is the edge incident to u and v in X, and N(u) is the neighborhood of u in
X, that is, the set of vertices adjacent to u in X. A graph X is locally primitive

if for any vertex v ∈ V (X), the stabilizer Aut(X)v of v in Aut(X) is primitive
on N(v). An s-arc in a graph is an ordered (s + 1)-tuple (v0, v1, . . . , vs−1, vs)
of vertices of the graph such that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and
vi−1 6= vi+1 for 1 ≤ i ≤ s − 1. For a subgroup G ≤ Aut(X), a graph X is said
to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on
the set of s-arcs of X, respectively. A (G, s)-arc-transitive graph is said to be
(G, s)-transitive if it is not (G, s+1)-arc-transitive. In particular, an (Aut(X), s)-
arc-transitive, (Aut(X), s)-regular or (Aut(X), s)-transitive graph is simply called
an s-arc-transitive, s-regular or s-transitive graph, respectively. Note that 0-arc-
transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or
symmetric. A graph is edge-transitive if Aut(X) is transitive on E(X).
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Edge-transitive graphs or s-transitive graphs of small valencies have received
considerable attention in the literature. For instance, Tutte [29] initiated the
investigation of cubic s-transitive graphs by proving that there exist no cubic s-
transitive graphs for s ≥ 6, and later much subsequent work was done along this
line (see [7, 8, 9, 10, 11, 12, 13, 14, 24]). Gardiner and Praeger [15, 16] generally
explored the tetravalent symmetric graphs by considering their automorphism
groups. Recently, Li et al. [22] classified all vertex-primitive symmetric graphs
of valency 3 or 4. Moreover, Weiss [31] proved that if X is s-transitive, then
s ∈ {1, 2, 3, 4, 5, 7}. Let p be a prime. Conder [6] showed that for a fixed integer
n and any integer s > 1, there are only finitely many cubic s-transitive graphs
of order np. Li [20] generalized this result to connected symmetric graphs of
any valency, and he also posed the following problem: for small values n and k,
classify vertex-transitive locally primitive graphs of order np and valency k.

In this paper we classify all symmetric graphs of order np and valency k for
certain values of n and k. The classification of s-transitive graphs of order np and
of valency 3 or 4 can be obtained from [4, 5, 30], where 1 ≤ n ≤ 3. Feng et al.

[10, 12, 13] classified cubic s-transitive graphs of order np with n = 4, 6, 8 or 10.
Recently, Zhou and Feng [35, 36] classified tetravalent s-transitive graphs of order
4p or 2p2. Also Ghasemi and Zhou [18] classified tetravalent s-transitive graphs
of order 4p2. In this paper, we prove that there are no tetravalent s-transitive
graphs of order 3p2, for s > 1.

2. Preliminaries

In this section, we introduce some notation and definitions as well as some pre-
liminary results which will be used later in the paper.

For a regular graph X, use d(X) to represent the valency of X, and for any
subset B of V (X), the subgraph of X induced by B will be denoted by [B].

For a positive integer n, denote by Zn the cyclic group of order n as well as
the ring of integers modulo n, by Z

∗

n the multiplicative group of Zn consisting of
numbers coprime to n, by D2n the dihedral group of order 2n, and by Cn and Kn

the cycle and the complete graph of order n, respectively. We call Cn an n-cycle.

Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the
stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G
is semiregular on Ω if Gα = 1 for every α ∈ Ω and regular if G is transitive and
semiregular. For any g ∈ G, g is said to be semiregular if 〈g〉 is semiregular. The
following proposition gives a characterization for Cayley graphs in terms of their
automorphism groups.

Proposition 2.1 (Lemma 16.3 [2]). A graph X is isomorphic to a Cayley graph

on a group G if and only if its automorphism group has a subgroup isomorphic
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to G, acting regularly on the vertex set of X.

Let X be a connected symmetric graph and let G ≤ Aut(X) be arc-transitive
on X. For a normal subgroup N of G, the quotient graph XN of X relative to
the orbits of N is defined as the graph with vertices being the orbits of N on
V(X) and with two orbits adjacent if there is an edge in X between those two
orbits. If XN and X have the same valency, then X is called a normal cover of
XN . Let X be a connected tetravalent symmetric graph and N an elementary
abelian p-group. A classification of connected tetravalent symmetric graphs was
obtained when N has at most two orbits in [15] and a characterization of such
graphs was given when XN is a cycle in [16].

The following proposition is due to Praeger et al. (refer to Theorem 1.1 [15]
and [27]).

Proposition 2.2. Let X be a connected tetravalent (G, 1)-arc-transitive graph.

For each normal subgroup N of G, one of the following holds.

(1) N is transitive on V (X),

(2) X is bipartite and N acts transitively on each part of the bipartition,

(3) N has r ≥ 3 orbits on V (X), the quotient graph XN is a cycle of length r,
and G induces the full automorphism group D2r on XN ,

(4) N has r ≥ 5 orbits on V (X), N acts semiregularly on V (X), the quotient

graph XN is a connected tetravalent G/N -symmetric graph, and X is a G-

normal cover of XN .

Moreover, if X is also (G, 2)-arc-transitive, then case (3) cannot happen.

The following proposition characterizes the vertex stabilizer of the connected
tetravalent s-transitive graphs, which can be deduced from Lemma 2.5 [23], or
Proposition 2.8 [22], or Theorem 2.2 [21].

Proposition 2.3. Let X be a connected tetravalent (G, s)-transitive graph. Let

Gv be the stabilizer of a vertex v ∈ V (X) in G. Then s = 1, 2, 3, 4 or 7. Further-

more, either Gv is a 2-group for s = 1, or Gv is isomorphic to A4 or S4 for s = 2;
A4 × Z3, Z3 × S4, S3 × S4 for s = 3; Z2

3 ⋊GL(2, 3) for s = 4; or [35]⋊GL(2, 3)
for s = 7, where [35] represents an arbitrary group of order 35.

Let X be a tetravalent one-regular graph of order 3p2. If p ≤ 13, then |V (X)| =
12, 27, 75, 147, 363, or 507. Now, a complete census of the tetravalent arc-transiti-
ve graphs of order at most 640 has been recently obtained by Potočnik, Spiga
and Verret [25, 26]. Therefore, a quick inspection through this list (with the
invaluable help of magma (see [3])) gives the number of tetravalent one-regular
graphs in the case p ≤ 13. The following Proposition can be extracted from
Theorem 3.4 [17].
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Proposition 2.4. Let p be a prime and p > 13. A tetravalent graph X of order

3p2 is 1-regular if and only if one of the following holds:

(i) X is a Cayley graph over 〈x, y|xp = y6p = [x, y] = 1〉, with connection set

{y, y−1, xy, x−1y−1},

(ii) X is a connected arc-transitive circulant graph with respect to every connec-

tion set S,

(iii) X is one of the graphs described in Lemma 8.4 [16].

Proposition 2.5 (Theorem 1.2 [16]). Let X be a connected tetravalent symmetric

graph of order 3p2 where p > 5 is a prime. Let A = Aut(X) and let N = Z
2
p be a

minimal normal subgroup of A. Let K denote the kernel of G acting on N -orbits.

If the quotient graph XN is a 3-cycle, then Kv
∼= Z2, and X is one-regular.

Finally in the following example we introduce G(3p, r), which was first defined
in [5].

Example 2.6. For each positive divisor r of p − 1 we use Hr to denote the

unique subgroup of Aut(Zp) of order r, which is isomorphic to Zr. Define a graph

G(3p, r) by V (G(3p, r)) = {xi | i ∈ Z3, x ∈ Zp}, and E(G(3p, r)) = {xiyi+1 | i ∈
Z3, x, y ∈ Zp, y−x ∈ Hr}. Then G(3p, r) is a connected symmetric graph of order

3p and valency 2r. Also Aut(G(3p, p−1)) ∼= Sp×S3. For r 6= p− 1, Aut(G(3p, r))
is isomorphic to (Zp.Hr).S3 and acts regularly on the arc set, where X.Y denotes

an extension of X by Y .

3. Main Results

In this section, we classify tetravalent s-transitive graphs of order 3p2 for each
prime p. To do so, we need the following lemmas.

Lemma 3.1. Let p be a prime and let n > 1 be an integer. Let X be a connected

tetravalent graph of order 3pn. If G ≤ Aut(X) is transitive on the arc set of X,

then every minimal normal subgroup of G is solvable.

Proof. Let v ∈ V (X). Since G is arc-transitive on X, by Proposition 2.3, Gv

either is a 2-group or has order dividing 24 · 36. It follows that |G| | 24 · 37 · pn or
|G| = 2m · 3 · pn for some integer m. Let N be a minimal normal subgroup of G.

Suppose that N is non-solvable. Then p > 3 because a {2, 3}-group is solv-
able by a theorem of Burnside Theorem 8.5.3 [28]. Since N is minimal, it is
a product of isomorphic non-abelian simple groups. Since |N | | 24 · 37 · pn, or
|N | = 2m · 3 · pn by [19], pp.12–14, each direct factor of N is one of the following:
A5, A6,PSL(2, 7),PSL(2, 8),PSL(2, 17),PSL(3, 3),PSU(3, 3) or PSU(4, 2).

An inspection of the orders of such groups gives n = 2 and |N | | 24 ·37 ·pn. It
follows that X is (G, 2)-arc transitive and we have N ∼= A5×A5. Then p = 5 and
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|X| = 75. However, from [32] we know that all tetravalent arc-transitive graphs
of order 75 are 1-transitive, a contradiction.

Lemma 3.2. Let X be a connected tetravalent G-arc-transitive graph of order

3p2, where p > 13. Assume that G has a normal subgroup N of prime order.

If N has at least three orbits on V (X), then either XN is of valency 4 or G is

regular on the arcs of X.

Proof. By our assumption N has at least three orbits on V (X). If N has r ≥ 5
orbits on V (X), then by Proposition 2.2, XN has valency 4 and X is a normal
cover of XN . Thus we may suppose that N has r ≥ 3 orbits. Thus d(XN ) = 2
and |XN | = 3p or |XN | = p2.

First suppose that |XN | = 3p. ThusXN
∼= C3p and henceG/K ∼= Aut(C3p) ∼=

D6p. Let ∆ and ∆′ be two adjacent orbits of N in V (X). Then the subgraph
[∆∪∆′] ofX induced by ∆∪∆′ has valency 2. Since p > 13, one has [∆∪∆′] ∼= C2p.
The subgroup K∗ of K fixing ∆ pointwise also fixes ∆′ pointwise. The connec-
tivity of X and the transitivity of G/K on V (XN ) imply that K∗ = 1, and
consequently, K ≤ Aut([∆ ∪∆′]) ∼= D4p. Since K fixes ∆, one has |K| ≤ 2p. It
follows that |G| = |G/K||K| ≤ 12p2, and hence G is regular on the arcs of X.

Now suppose that |XN | = p2. Thus XN
∼= Cp2 . It follows that G/K ∼= D2p2 .

Let ∆ and ∆′ be two adjacent orbits of N in V (X). Then the subgraph [∆∪∆′]
of X induced by ∆ ∪ ∆′ has valency 2. Clearly, we have [∆ ∪ ∆′] ∼= C6. The
subgroup K∗ of K fixing ∆ pointwise also fixes ∆′ pointwise. The connectivity of
X and the transitivity of G/K on V (XN ) imply that K∗ = 1, and consequently,
K ≤ Aut([∆ ∪ ∆′]) ∼= D12. Since K fixes ∆, one has |K| ≤ 6. It follows that
|G| = |G/K||K| ≤ 12p2, and hence G is regular on the arcs of X. Now the proof
is complete.

Theorem 3.3. Let p be a prime and let X be a connected tetravalent graph of

order 3p2. Then X is s-transitive for some positive integer s if and only if it is

isomorphic to one of the graphs in Proposition 2.4.

Proof. Let X be a tetravalent s-transitive graph of order 3p2 for a positive
integer s. By [25, 26], we may assume that p > 13. If X is one-regular, then X
is one of the graphs in Proposition 2.4 and so s = 1. In what follows, we assume
that p > 13 and that X is not one-regular. Set A = Aut(X) and let P be a Sylow
p-subgroup. Then |P | = p2 and by Lemma 3.1, A is solvable. First we prove a
claim.

Claim 1. P is not normal in A.

Proof. Suppose to, the contrary that P EA. If P is a minimal normal subgroup
of A then by Proposition 2.5, X is one-regular, a contradiction. Suppose that
P contains a non-trivial subgroup, say N , which is normal in A. Consider the
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quotient graphXN ofX relative to the orbit set of N , and letK be the kernel of A
on V (XN ). Since p > 13, one has |XN | = 3p. By Lemma 3.2 either X is a normal
cover of XN or d(XN ) = 2 and X is one-regular. Since X is not one-regular, we
may suppose that d(XN ) = 4. By [30], G(3p, 2) is the only tetravalent symmetric
graph of order 3p, (see Example 2.6). Also |Aut(G(3p, 2))| = 12p and G(3p, 2)
is one-regular. Thus |A/M | = 12p and so |A| = 12p2. Thus X is one-regular, a
contradiction.

Let M be the maximal normal 2-subgroup of A and assume |M | > 1. Con-
sider the quotient graph XM of X relative to the orbit set of M , and let K be
the kernel of A acting on V (XM ). Since p > 13, every orbit of M has length 2
or 4, a contradiction. So A has no non-trivial normal 2-subgroup.

Now we are ready to complete the proof. Let M be a minimal normal subgroup
of A. Clearly, M is a 3-group or a p-group. First suppose that M is a p-group.
Thus |M | = p or p2. If |M | = p2, then M = P is a Sylow p-subgroup of A.
By Claim 1, P is not normal in A, a contradiction. Suppose that |M | = p. By
Lemma 3.2 either X is a normal cover of XM or d(XM ) = 2 and X is one-regular.
Since X is not one-regular, we may suppose that d(XM ) = 4. By [30], G(3p, 2)
is the only tetravalent symmetric graph of order 3p (see Example 2.6). Also
|Aut(G(3p, 2))| = 12p and G(3p, 2) is one-regular. Thus |A/M | = 12p and so
|A| = 12p2. Thus X is one-regular, a contradiction.

Now suppose that M is a 3-group. Thus |XM | = p2. If d(XM ) = 4, then
by Proposition 2.5, K = M is semiregular on V (XM ). Therefore K = M ∼= Z3.
Since P > 13, PM = P × M is abelian. Clearly, PM is transitive on V (X).
Thus PM is regular on V (X), because |PM | = 3p2. Thus X is a Cayley graph
on abelian group of order 3p2. By Theorem 1.2 [1], X is normal. If PM is cyclic,
then by [33] X is one-regular, a contradiction. Thus PM is not cyclic. Now
by Proposition 3.3 [34], X is one-regular, a contradiction. If d(XM ) = 2, then
XM

∼= Cp2 . By Lemma 3.2, X is one-regular, a contradiction.
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