
Discussiones Mathematicae
Graph Theory 34 (2014) 547–558
doi:10.7151/dmgt.1750

CHROMATIC POLYNOMIALS OF MIXED

HYPERCYCLES

Julian A. Allagan and David Slutzky

Department of Mathematics

University of North Georgia

Watkinsville, Georgia, USA

e-mail: julian.allagan@ung.edu
david.slutzky@ung.edu

Abstract

We color the vertices of each of the edges of a C-hypergraph (or cohyper-
graph) in such a way that at least two vertices receive the same color and
in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the
cases when the vertices of any of its edges are colored with the same color
(monochromatic) or when they are all colored with distinct colors (rainbow).
In this paper, we determined explicit formulae for the chromatic polynomials
of C-hypercycles and B-hypercycles.
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1. Introduction and Definitions

For basic definitions and terminology we refer the reader to [2, 6, 18]. A hy-

pergraph H of order n is an ordered pair H=(X, E), where |X| = n is a finite
nonempty set of vertices and E is a collection of not necessarily distinct nonempty
subsets of X called (hyper)edges. H is said to be k-uniform, if the size of each of
its edges is exactly k. A hypergraph is said to be linear if each pair of edges has
at most one vertex in common. The degree of a vertex v is the number of edges
containing v. A hyperleaf is a hyperedge which contains exactly one vertex of
degree 2. In this paper all hypergraphs are assumed to be connected, linear and
k-uniform unless stated otherwise. A linear hypercycle of length l is a hypergraph
induced by a set of edges {e1, . . . , el} (l ≥ 3), where

|ei ∩ ej | =

{

1 if j = i + 1 or {i, j} ∈ {1, l},
0 otherwise.
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We note that the term elementary hypercycle has also been used for linear hy-
percycle by Tomescu [15]. A (linear) hypercycle of length 2 induced by the set
of edges {e1, e2} can be defined when |e1 ∩ e2| = 2. In the case where l = 2 and
k = 2 we allow for a loop, but our results are concerned with k > 2 where the
hypercycle of length 2 is a meaningful example (see Example 1.1).

An l-unicyclic hypergraph H=(X, E) is a hypergraph in which there is exactly
one set {e1, . . . , el} which induces a hypercycle. A hypergraph which does not
contain a hypercycle as a subhypergraph is called acyclic.

The concept of mixed-hypergraph coloring has been studied extensively by
Voloshin et al. [9, 10, 18]. A mixed hypergraph H with vertex set X is a triple
(X, C,D) such that C and D are subsets of X, called C-(hyper)edges and D-
(hyper)edges, respectively. Elements of C ∩ D are called B-(hyper)edges (or bi-
edges). A proper coloring of H is a coloring of X such that each C-edge has at
least two vertices with a common color and each D-edge has at least two vertices
with distinct colors.

Given the mixed hypergraph H = (X, C,D), when C = ∅, we write H =
(X,D) and call it a D-hypergraph (or hypergraph). In the case when D = ∅, we
write H = (X, C) and call the mixed hypergraph a C-hypergraph (or cohyper-

graph). In the case when C = D, we write H = (X,B) and call it a B-hypergraph
(or bihypergraph). Several important results and open problems about mixed
hypergraphs and bihypergraphs can be found in [7, 8, 11, 12, 13, 14].

Example 1.1. A hypercycle of length 2. Let H3
2 = (X, E), where X = {v1, v2, v3,

v4} and E = {e1, e2} with e1 = {v1, v2, v3} and e2 = {v1, v2, v4}. Then Figure 1
is a representation of H3

2.

v1

v2

v3

v4

e2

e1

Figure 1. Linear 3-uniform hypercycle of length 2.

The chromatic polynomial P (H, λ) of a mixed hypergraph H is the function
that counts the number of proper λ-colorings, which are mappings, f : X →
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{1, 2, . . . , λ} with the condition that every C-edge has at least two vertices with
a common color and every D-edge has at least two vertices with distinct colors.
We encourage the reader to refer to [9, 10, 18] for detailed information about
chromatic polynomials, research, and applications of mixed hypergraph colorings.

For simplicity, throughout this paper, we will denote by Hk
l = (X, E) a linear

k-uniform hypergraph of length l, where |E|=l. We also denote the falling factorial
λ(t) = λ(λ− 1)(λ− 2) · · · (λ− t+ 1). Further, we define the following parameters
γ(i) = γk(λ, i) = (λ − i)(k−i) and ζ(i) = ζk(λ, i) = λk−i − γk(i) with 0 ≤ i ≤ k.
The values of these parameters with i = 1 and i = 2 play a recurring role in the
formulas of this paper, and we conjecture that the values for i > 2 will play a
role in the corresponding formulas for non-linear mixed hypergraphs. Note that
γ(i) counts the number of rainbows formed using k − i vertices and λ− i colors
and ζ(i) counts the number of ways to color k − i vertices so that either at least
two of the k − i vertices receive the same color from the λ− i colors, or at least
one of the k − i vertices receives one of the other i specified colors.

2. The Chromatic Polynomials of Some Acyclic Mixed

Hypergraphs

Theorem 1. Let Πk
l =(X, C) be a k-uniform linear connected acyclic C-hypergraph

of length l. Then P (Πk
l , λ)=λ(ζ(1))l.

Proof. We proceed by induction on l.

For l = 1, consider the only edge e ∈ C. There are λ ways to color each
of its k vertices, giving λk colorings in total. But of these, exactly λ(k) assign
distinct colors to all k vertices. So the total number of proper λ-colorings is
λk − λ(k) = λ(λk−1 − (λ− 1)(k−1))1.

Assume the above formula is true for any k-uniform acyclic hypergraph with
at most l − 1 edges, for some l ≥ 2. Let Πk

l = (X ′, E ′) a k-uniform acyclic
hypergraph with l edges. Since Πk

l is acyclic, it contains a hyperleaf, say e1. Let
Πk

l−1 be the connected acyclic hypergraph Πk
l − e1. Thus, Πk

l−1 = (X ′′, E ′′) is
a k-uniform acyclic hypergraph with l − 1 edges, where E ′′ = E ′ − e1. By the
inductive hypothesis, P (Πk

l−1, λ) = λ(λk−1 − (λ− 1)(k−1))l−1. Since Πk
l is linear

and e1 is a hyperleaf, X ′′ ∩ e1 is a single vertex v.

For each coloring f of the P (Πk
l−1, λ) proper colorings of Πk

l−1, there exist

λk−1 − (λ − 1)(k−1) colorings of X(e1) \ v in which not all vertices have colors
distinct to f(v). This produces all (λk−1 − (λ − 1)(k−1))P (Πk

l−1, λ) = λ(λk−1 −

(λ− 1)(k−1))l = λ(ζ(1))l proper colorings of Πk
l .

Remark 2. Most of the formulas in this paper are proven with an inductive
argument similar to that of Theorem 1. We leave those inductive arguments to
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the reader and will indicate the place for the argument by ending subsequent
proofs with, ”the result follows by induction on l.”

Theorem 3. Let Πk
l = (X,B) be a k-uniform linear connected acyclic B-hyper-

graph of length l. Then P (Πk
l , λ) = λ(ζ(1) − 1)l.

Proof. Consider l = 1. There are λk ways to color each of its vertices while
exactly λ assign the same color to all vertices and λ(k) assign different colors to
all k vertices of Πk

l . Hence there are exactly λk−λ(k)−λ = λ(λk−1−(λ−1)(k−1)−1)
ways to color the edge so that not all of its vertices are either colored with the
same or with different colors. The result follows by induction on l.

Theorem 4. Let Πk
l = (X,D) be a k-uniform linear connected acyclic D-hyper-

graph. Then P (Πk
l , λ) = λ(ζ(1) + γ(1) − 1))l.

Proof. Consider the case when l = 1 and name the edge e. There are λk ways
to color each of its vertices while exactly λ assign the same color to all vertices,
bringing the number of proper λ-colorings to λk − λ = λ(λk−1 − 1)1. The result
follows by induction on l.

Corollary 5. Let Πk
l = (X, C,D) be a k-uniform linear connected acyclic mixed

hypergraph. Then P (Πk
l , λ) = λ (γ(1))p1 (ζ(1) − 1)p2 (ζ(1) + γ(1) − 1)p3, where

|C − D| = p1, |B| = |C ∩ D| = p2 and |D − C| = p3.

Proof. The result follows from induction on l = p1 +p2 +p3, by first considering
the edges of C − D, then the edges of B, and finally the edges of D − C.

3. The Chromatic Polynomials of Some Cyclic Hypergraphs of

Lengths 2 and 3

Theorem 6. Let Hk
2 = (X, C) be a k-uniform C-hypercycle of length 2. Then

P (Hk
2 , λ) = λn−1 + λ(2)(ζ(2))2.

Proof. Let Hk
2 = (X, C) be a k-uniform linear hypercycle induced by the set of

edges {c1, c2}. Consider their two vertices of degree 2, say, v1 and v2. In each
proper coloring of Hk

2 , one of the following is true.

Case (i). f(v1) = f(v2). There are λ ways to color both vertices. Then the
remaining k−2 vertices of each edge can be properly colored in λk−2 ways. Hence
the number of colorings is

(1) λ(λk−2)2.
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Case (ii). f(v1) 6= f(v2). There are λ(λ − 1) different ways to color both

vertices. But there are
(

λk−2 − (λ− 2)(k−2)
)2

ways to color the remaining vertices
of each edge, giving the number of colorings

(2) λ(λ− 1)
(

λk−2 − (λ− 2)(k−2)
)2

.

By combining (1) and (2) we obtain

(3) P (Hk
2 , λ) = λ2k−3 + λ(λ− 1)

(

λk−2 − (λ− 2)(k−2)
)2

as desired.

Theorem 7. Let Hk
2 = (X,B) be a k-uniform B-hypercycle of length 2. Then

P (Hk
2 , λ) = λ (ζ(2) + γ(2) − 1)2 + λ(2)(ζ(2))2.

Proof. This proof is very similar to the one in Theorem 6. Let Hk
2 = (X,B) be a

k-uniform linear hypergraph induced by the set of edges {b1, b2}. Consider their
two vertices of degree 2, say, v1 and v2. In each proper λ-coloring of Hk

2 , one of
the following is true.

Case (i). f(v1) = f(v2). There are λ ways to color both vertices. Then the
remaining k − 2 vertices of each edge can be properly colored in λk−2 − 1 ways.
Hence the number of colorings is

(4) λ(λk−2 − 1)2.

Case (ii). f(v1) 6= f(v2). There are λ(λ − 1) different ways to color both

vertices. But there are
(

λk−2 − (λ− 2)(k−2)
)2

ways to color the remaining vertices
of each edge, giving the number of colorings

(5) λ(λ− 1)
(

λk−2 − (λ− 2)(k−2)
)2

.

By combining (4) and (5) we obtain that

(6) P (Hk
2 , λ) = λ(λk−2 − 1)2 + λ(λ− 1)

(

λk−2 − (λ− 2)(k−2)
)2

.
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Figure 2. Linear 3-uniform C-hypercycle of length 3.

Example 2.1. A proper 3-coloring of a linear 3-uniform C-hypercycle of length
3. Let H3

3=(X, C), where X = {v1, v2, v3, v4, v5, v6} and C = {c1, c2, c3} with c1 =
{v1, v3, v4}, c2 = {v1, v2, v5} and c3 = {v2, v3, v6}. Figure 2 is a representation
of H3

3, a linear 3-uniform hypercycle of length 3. Letting for instance f(v1) =
f(v4) = 1, f(v2) = f(v5) = 2, and f(v3) = f(v5) = 3, we have a proper 3-coloring
of H3

3.

Theorem 8. Let Hk
3 = (X, C) be a k-uniform C-hypercycle of length 3. Then

P (Hk
3 , λ) = λn−2 + 3λ(2)(λk−2)(ζ(2))2 + λ(3)(ζ(2))3.

Proof. Let Hk
3 = (X, C) be a k-uniform linear hypergraph induced by the set

of edges {c1, c2, c3}. Consider the three intersecting vertices v1, v2, v3 such that
c1 ∩ c2 = {v1}, c2 ∩ c3 = {v2}, c3 ∩ c1 = {v3}. In each proper λ-coloring of Hk

3 ,
one of the following is true.

Case (i). All three vertices v1, v2, v3 have the same color. There are λ ways
to color the three vertices. Then the remaining k − 2 vertices of each edge can
be properly colored in λk−2 ways. Hence the number of colorings is

(7) λ(λk−2)3.

Case (ii). Two colors are used to color these three vertices. Suppose f(v1) 6=
f(v2) = f(v3). Then there are λ(λ − 1) ways to color the three vertices. Now
there are λk−2 ways to color the remaining vertices of c3 (which does not contain

v1) while there are
(

λk−2 − (λ− 2)(k−2)
)2

ways to color the remaining vertices of
c1 and c2 (which contain v1). Since there are three different ways of choosing the
one vertex of different color, the number of colorings is

(8) 3λ(λ− 1)(λk−2)
(

λk−2 − (λ− 2)(k−2)
)2

.
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Case (iii). All three vertices v1, v2, v3 have different colors. There are λ(λ−1)

(λ− 2) different ways to color the three vertices. There are
(

λk−2−(λ−2)(k−2)
)3

ways to color the remaining vertices of each edge. The total number of colorings
in this case is

(9) λ(λ− 1)(λ− 2)
(

λk−2 − (λ− 2)(k−2)
)3

.

Now we combine (7), (8), and (9) to obtain the desired result.

Theorem 9. Let Hk
3 = (X,B) be a k-uniform B-hypercycle of length 3. Then

P (Hk
3 , λ) = λ (ζ(2) + γ(2) − 1)3 + 3λ(2) (ζ(2) + γ(2) − 1) (ζ(2))2 + λ(3)(ζ(2))3.

Proof. Using similar steps as in the proof of Theorem 8, we obtain that the total
number of colorings P (Hk

3λ = λ(λk−2 − 1)3 + 3λ(λ − 1)(λk−2 − 1)(λk−2 − (λ −
2)(k−2))2 + λ(λ− 1)(λ− 2)(λk−2 − (λ− 2)(k−2))3, giving the desired result.

The chromatic polynomials of mixed hypergraphs are often computed using a
recursive algorithm, commonly known as splitting-contraction [18]. To derive
an explicit form for such formulas using the splitting-contraction algorithm is at
least ♯P-hard. However, using some combinatorial and recursive arguments, we
obtained some (albeit not so simple) forms of these polynomials. These gener-
alized formulas are presented in the next section and are built on the chromatic
polynomials of the cyclic mixed hypergraphs already discussed in this section.

4. Chromatic Polynomials of Cyclic Hypergraphs of Arbitrary

Length

Theorem 10. Let Hk
l = (X,D) be a k-uniform D-hypercycle. Then

P (Hk
l , λ) = (λ− 1)l

(

∑k−2

i=0
λi

)l

+ (−1)l(λ− 1) for all l ≥ 2.

One of the authors proved this theorem in [1] and it has been established inde-
pendently by Borowiecki and  Lazuka in [4], as Walter pointed out in [19], simply
because

(λ− 1)l(
∑k−2

i=0 λi)l + (−1)l(λ− 1) =
(

(λ− 1)
∑k−2

i=0 λi
)l

+ (−1)l(λ− 1)

= (λk−1 − 1)l + (−1)l(λ− 1).
A considerable amount of literature has been written concerning the chromatic
polynomials of certain families of D-hypergraphs by Borowiecki et al. and Tomes-
cu et al., just to name a few researchers [3, 4, 5, 15]. However, very little is known
about these formulas as they relate to mixed hypergraphs in general, particularly,
the C-hypergraphs and B-hypergraphs. We present here some new results about
these particular members of mixed hypergraphs.
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Theorem 11. Let Hk
l = (X, C) be a k-uniform C-hypercycle of length l ≥ 3.

Then

(10) P (Hk
l , λ) = ζ(2)P (Πk

l−1, λ) + γ(2)P (Hk
l−1, λ),

where Πk
l is a k-uniform linear connected acyclic C-hypergraph of length l ≥ 3.

Proof. Let Hk
l = (X, E) be any k-uniform C-hypercycle of length l ≥ 3 induced

by the set of edges {c1, . . . , cl}. Let u and v be the two vertices of degree 2 in cl.
In any proper coloring of the edge cl using at most λ colors, either (i) u and v

have the same color, or (ii) u and v have different colors. We therefore count the
number of such colorings for each case in turn.

Case (i). There are λk−2 ways to color the remaining k−2 vertices in cl\{u, v}
so that at least two vertices receive the same color, and there are P (Hk

l−1, λ)
ways to color the remaining vertices so that f(u) = f(v). Hence, there are
λk−2P (Hk

l−1, λ) colorings.

Case (ii). Let Πk
l−1 be the hyperpath of length l − 1 induced by {c1, . . . , cl−1}.

There are λk−2− (λ− 2)(k−2) colorings of the vertices in cl\{u, v}. For each such
coloring, the number of colorings of the remaining vertices is

P (Πk
l−1, λ) − P (Hk

l−1, λ),

since the first term counts the number of colorings where u and v may have the
same or different colors, and the second term counts the number of colors where
u and v have the same color. So there are

(

λk−2 − (λ− 2)(k−2)
)

P (Πk
l−1, λ) + (λ− 2)(k−2)P (Hk

l−1, λ)

colorings altogether.

Corollary 12. Let Hk
l = (X, C) be a k-uniform C-hypercycle of length l ≥ 3.

Then
P (Hk

l , λ) = (γ(2))l−2λ2k−3 + λζ(2)
∑l−2

j=1
(γ(2))j−1(ζ(1))l−j

+ λ(2)(ζ(2))2(γ(2))l−2.

Proof. When l = 2, the middle term is set to zero to yield P (Hk
2 , λ) = λ2k−3 +

λ(2)(ζ(2))2, which becomes the basis of the recursive argument for the proof.
When l = 3, the formula in Theorem 8 can be expanded (although messy) to
support this result. Now, for l ≥ 3, we obtain from (10) that

P (Hk
l , λ) = (γ(2))l−2P (Hk

2 , λ) + ζ(2)
∑l−2

j=1
(γ(2))j−1P (Πk

l−j , λ).

Using Theorems 1 and 6 we obtain the result after substitution.
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Theorem 13. Let Hk
l = (X,B) be a k-uniform B-hypercycle of length l ≥ 3.

Then

(11) P (Hk
l , λ) = ζ(2)P (Πk

l−1, λ) + (γ(2) − 1)P (Hk
l−1, λ),

where Πk
l−1 is a k-uniform linear connected acyclic B-hypergraph.

Proof. Let Hk
l = (X,B) be any k-uniform B-hypercycle of length l induced by

the set of edges {b1, . . . , bl} (l ≥ 3). Let u and v be the 2 vertices of degree 2 in
bl. In any proper coloring of the edge bl using λ-colors, either (i) u and v have the
same color, or (ii) u and v have different colors. We therefore count the number
of such colorings for each case in turn.

Case (i). There are λk−2 − 1 ways to color the remaining k − 2 vertices in
bl\{u, v} so that at least two vertices (of the remaining k − 2 vertices) receive
different colors, and there are P (Hk

l−1, λ) ways to color the remaining vertices so

that f(u) = f(v). Hence, there are (λk−2 − 1)P (Hk
l−1, λ) colorings.

Case (ii). Let Πk
l−1 be the hyperpath of length l − 1 induced by {b1, . . . , bl−1}.

There are λk−2− (λ− 2)(k−2) colorings of the vertices in bl\{u, v}. For each such
coloring the number of colorings of the remaining vertices is

P (Πk
l−1, λ) − P (Hk

l−1, λ),

since the first term counts the number of colorings where u and v may have the
same or different colors, and the second term counts the number of colors where
u and v have the same color. So there are

(

λk−2 − (λ− 2)(k−2)
)

P (Πk
l−1, λ) +

(

(λ− 2)(k−2) − 1
)

P (Hk
l−1, λ)

colorings altogether.

Corollary 14. Let Hk
l = (X,B) be a k-uniform B-hypercycle of length l ≥ 3.

Then

P (Hk
l , λ) = λ(ζ(2) + γ(2) − 1)2(γ(2) − 1)l−2

+ λζ(2)
∑l−2

j=1
(γ(2) − 1)j−1(ζ(1) − 1)l−j + λ(2)(ζ(2))2(γ(2) − 1)l−2.

Proof. When l = 2, the middle term is set to zero to yield P (Hk
2 , λ) = λ (ζ(2) +

γ(2) − 1)2 + λ(2)(ζ(2))2, which becomes the basis of the recursive argument for
the proof just as in the previous corollary. For l ≥ 3, we obtain from (11) that

P (Hk
l , λ) = (γ(2) − 1)l−2P (Hk

2 , λ) + ζ(2)
∑l−2

j=1
(γ(2) − 1)j−1P (Πk

l−j , λ). Using

Theorems 3 and 7 we obtain the desired formula.
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These results obtained in this section can easily be rewritten to obtain the chro-
matic polynomials of several other families of linear connected uniform hyper-
graphs. In particular the chromatic polynomials of unicyclic mixed hypergraphs
and mixed hypercacti [9] can be written and are left as exercises for the reader.
As it is, rewriting these formulas in terms of the standard basis is doable but
messy. Further work could look for simpler forms for these expressions or address
the remaining open problems of interpreting the coefficients of these polynomials
and finding their roots.

Furthermore, by using γ and ζ as functions of |e| (i.e., of any value other than
just k), it is reasonable to extend the formulas discussed in this paper to non-
uniform mixed hypergraphs (see Corollary 16). Recently, Walter [19] has found
the formulas for some non-uniform D-hypergraphs. As a step in this direction,
we close this paper with a more general result concerning non-uniform acyclic
mixed hypergraphs.

It is easy to verify that the chromatic polynomials of an isolated hyperedge,
cohyperedge and bihypereredge are as follows.

Proposition 15. Let e be an isolated hyperedge. Then the chromatic polynomials

of e when viewed as a D-hyperedge, C-hyperedge, or B-hyperedge are

(12)

PD(e) = λ(λ|e|−1 − 1),

PC(e) = λ
(

λ|e|−1 − (λ− 1)|e|−1
)

= λζ|e|(1),

PB(e) = λ
(

λ|e|−1 − (λ− 1)|e|−1 − 1
)

= λ(ζ|e|(1) − 1),

respectively.

For instance, the case when e ∈ D, there are λ|e| − λ = λ(λ|e|−1 − 1) ways to
properly color each hyperedge.

From (12), we can extend Corollary 5 (following the argument used in The-
orem 1) to obtain the following.

Corollary 16. Let H = (X, C,D) be an acyclic mixed hypergraph. Then the

chromatic polynomial of any (non-uniform) acyclic mixed hypergraph is given by

P (H) = λ
∏

e1∈D,e2∈C
e3∈B

(λ|e1|−1 − 1)ζ|e2|(1)(ζ|e3|(1) − 1).
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