# CHARACTERIZATION OF CUBIC GRAPHS $G$ WITH $\operatorname{ir}_{t}(G)=I R_{t}(G)=2$ 

Changiz Eslahchi, Shahab Haghi<br>Department of Mathematics<br>Shahid Beheshti University, G. C.<br>Evin, Tehran, Iran<br>e-mail: eslahchi.ch@gmail.com<br>shahab_ha1365@yahoo.com<br>AND<br>Nader Jafari Rad<br>Department of Mathematics<br>Shahrood University of Technology<br>Shahrood, Iran<br>e-mail: n.jafarirad@gmail.com


#### Abstract

A subset $S$ of vertices in a graph $G$ is called a total irredundant set if, for each vertex $v$ in $G, v$ or one of its neighbors has no neighbor in $S-\{v\}$. The total irredundance number, $\operatorname{ir}(G)$, is the minimum cardinality of a maximal total irredundant set of $G$, while the upper total irredundance number, $I R(G)$, is the maximum cardinality of a such set. In this paper we characterize all cubic graphs $G$ with $\operatorname{ir}_{t}(G)=I R_{t}(G)=2$.


Keywords: total domination, total irredundance, cubic.
2010 Mathematics Subject Classification: 05C69.

## 1. Introduction

Let $G=(V(G), E(G))$ be a simple graph of order $n$. We denote the open neighborhood of a vertex $v$ of $G$ by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V(G), N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=\bigcup_{v \in S} N[v]$. A set of vertices $S$ in $G$ is a total dominating set, (or just

TDS), if $N(S)=V(G)$. The total domination number $\gamma_{t}(G)$, of $G$, is the minimum cardinality of a total dominating set of $G$. For graph theory notation and terminology in general we follow [3].

Total irredundance in graphs was introduced by Hedetniemi et al. in [4], and further studied for example in $[1,2,5]$. A set $S$ of vertices in a graph $G$ is called a total irredundant set (or just TIS) if, for each vertex $v$ in $G, v$ or one of its neighbors has no neighbor in $S-\{v\}$. The total irredundance number, $\operatorname{ir}_{t}(G)$, is the minimum cardinality of a maximal TIS of $G$, while the upper total irredundance number, $I R_{t}(G)$, is the maximum cardinality of a such set.

Favaron et al. in [1] proved that for every cubic graph $G \neq K_{4}, \operatorname{ir}_{t}(G) \geq$ 2. In this paper we characterize all cubic graphs $G$ of order at least six with $i r_{t}(G)=I R_{t}(G)=2$.


Figure 1. Graphs $H_{3}, \ldots, H_{8}$.

## 2. Main Result

It is well known that there are only two cubic graphs of order 6. Let $H_{1}$ and $H_{2}$ be the two cubic graphs of order 6 , and $Q_{3}$ be the (3-dimensional) hypercube. Let $H_{3}, H_{4}, \ldots, H_{8}$ be the graphs shown in Figure 1. We prove the following.

Theorem 1. For a connected cubic graph $G$ of order at least six, $\operatorname{ir}_{t}(G)=$ $I R_{t}(G)=2$ if and only if $G=Q_{3}, H_{1}, H_{2}, \ldots$, or $H_{8}$.

Proof. First it is a routine matter to see that $\operatorname{ir}_{t}\left(Q_{3}\right)=I R_{t}\left(Q_{3}\right)=i r_{t}\left(H_{i}\right)=$ $I R_{t}\left(H_{i}\right)=2$ for $i=1,2, \ldots, 8$. Let $G$ be a connected cubic graph of order $n \geq 6$ with $\operatorname{ir}_{t}(G)=I R_{t}(G)=2$. Since there is no cubic graph of order 6 different from $H_{1}, H_{2}$, we assume that $n \geq 8$. Since $I R_{t}(G)=2$, any minimum maximal TIS of $G$ is also a maximum maximal TIS of $G$.

Lemma 2. There is a minimum maximal TIS $S$ of $G$ such that the two vertices of $S$ are adjacent.

Proof. Suppose to the contrary that there is no minimum maximal TIS $S$ containing two adjacent vertices. Let $x$ and $y$ be two adjacent vertices of $G$. By assumption $S=\{x, y\}$ is not a minimum maximal TIS. Since $I R_{t}(G)=i r_{t}(G)=2$, $I R_{t}(G)$ is maximum among all maximal total irredundant sets, and $i r_{t}(G)$ is minimum among all maximal total irredundant sets, we deduce that $S$ is not a TIS. This implies that there is a vertex $v$ such that $N[v]-N[S-\{v\}]=\emptyset$. We consider the following cases.

Case 1. $v \in S$. Without loss of generality assume that $v=x$. Let $N(x)=$ $\left\{y, x_{1}, x_{2}\right\}$. Then $N[y]=\left\{x, x_{1}, x_{2}\right\}$. Since $n \geq 8, x_{1} \notin N\left(x_{2}\right)$. If $N\left(x_{1}\right) \cap N\left(x_{2}\right)-$ $\{x, y\} \neq \emptyset$, then $\left\{w, w_{1}\right\}$ is a TIS of $G$, where $w \in N\left(x_{1}\right) \cap N\left(x_{2}\right)-\{x, y\}$, and $w_{1} \in N(w)-\left\{x_{1}, x_{2}\right\}$. This contradiction implies that $N\left(x_{1}\right) \cap N\left(x_{2}\right)-\{x, y\}=\emptyset$. Now $\left\{x_{1}, w\right\}$ is a TIS of $G$, where $w \in N\left(x_{1}\right)-\{x, y\}$, a contradiction.

Case 2. $v \notin S$. If $N(v) \cap\{x, y\}=\emptyset$ then $v \in N[v]-N[S-\{v\}]$, a contradiction. Thus without loss of generality assume that $v \in N(x)$. We show that $v \notin N(y)$. Suppose to the contrary that $v \in N(y)$. Let $v_{1} \in N(v)-\{x, y\}$. Then $v_{1} \in N(x) \cup N(y)$, since $N[v]-N[S-\{v\}]=\emptyset$. Since $n \geq 8$, we obtain that $\{x, y\} \nsubseteq N\left(v_{1}\right)$. If $v_{1} \in N(x)$, then we consider a vertex $w \in N\left(v_{1}\right)-\{x, v\}$. If $w \notin N(y)$, then $\left\{v_{1}, w\right\}$ is a TIS of $G$, a contradiction. Thus $w \in N(y)$. Now $\left\{w, w_{1}\right\}$ is a TIS of $G$, where $w_{1} \in N(w)-\left\{v_{1}, y\right\}$, a contradiction. We deduce that $v_{1} \notin N(x)$, and so $v_{1} \in N(y)$. Let $w \in N\left(v_{1}\right)-\{v, y\}$. If $w \notin N(x)$, then $\left\{w, v_{1}\right\}$ is a TIS of $G$, a contradiction. Thus $w \in N(x)$. Now $\left\{w, w_{1}\right\}$ is a TIS of $G$, where $w_{1} \in N(w)-\left\{x, v_{1}\right\}$, a contradiction. We conclude that $v \notin N(y)$.

Let $N(v)=\left\{x, v_{1}, v_{2}\right\}$. We next show that $\left\{v_{1}, v_{2}\right\} \nsubseteq N(y)$. Assume to the contrary that $\left\{v_{1}, v_{2}\right\} \subseteq N(y)$. If $x \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$, then $\left\{x, x_{1}\right\}$ is a TIS of $G$, where $x_{1} \in N(x)-\{v, y\}$. This is a contradiction. So without loss of generality we may assume that $x \in N\left(v_{1}\right)$. Let $w \in N\left(v_{2}\right)-\{v, y\}$. Then $\left\{v_{2}, w\right\}$ is a TIS of $G$, a contradiction. We conclude that $\left\{v_{1}, v_{2}\right\} \nsubseteq N(y)$. Without loss of generality, assume that $v_{1} \in N(x)$ and $v_{2} \in N(y)$. Since $n \geq 8$, we may assume without loss of generality that $N\left(v_{1}\right)-\left\{v, v_{2}, x\right\} \neq \emptyset$. Let $w \in N\left(v_{1}\right)-\left\{v, v_{2}, x\right\}$. Then $\left\{v_{1}, w\right\}$ is a TIS of $G$, a contradiction.

Let $S=\{u, v\}$ be a minimum maximal TIS of $G$ such that $u$ is adjacent to $v$. Since $\operatorname{IR}(G)=2, S$ is a maximum maximal TIS of $G$. Since $S$ is a TIS of $G$, we obtain that $|N(u) \cap N(v)| \leq 1$. We proceed with Lemma 3 .

Lemma 3. $|N(u) \cap N(v)|=0$.
Proof. Assume to the contrary that $|N(u) \cap N(v)|=1$. Let $N(u) \cap N(v)=\{x\}$, $N[u]-N[v]=\{y\}$ and $N[v]-N[u]=\{z\}$. If $x \in N(y) \cup N(z)$, then $N[x]-N[S-$
$\{x\}]=\emptyset$, a contradiction. Thus $x \notin N(y) \cup N(z)$. Let $N(x)-\{u, v\}=\{w\}$. Since $\{u, v, w\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k]-N[\{u, v, w\}-\{k\}]=$ $\emptyset$. Clearly $k \in\{y, w, z\}$. We show that $k \neq w$. Assume that $k=w$. Then $N[w] \subseteq N[\{u, v, x\}]$. This implies that $w \in N(y) \cap N(z)$. Since $n \geq 8$, we find that $y \notin N(z)$. Let $t_{1} \in N(y)-\{u, w\}$ and $t_{2} \in N(z)-\{v, w\}$. If $t_{1}=t_{2}$, then $\left\{w, z, t_{1}\right\}$ is a TIS of $G$, a contradiction. Thus $t_{1} \neq t_{2}$. Since $\left\{w, z, t_{2}\right\}$ is not a TIS of $G$, we obtain that $N\left[t_{1}\right] \subseteq N\left[\left\{w, z, t_{2}\right\}\right]$. In particular, $t_{1} \in N\left(t_{2}\right)$, and $N\left(t_{1}\right)-\left\{y, t_{2}\right\}=N\left(t_{2}\right)-\left\{z, t_{1}\right\}$. Let $N\left(t_{1}\right)-\left\{y, t_{2}\right\}=\left\{t_{3}\right\}$. Then $\left\{t_{1}, t_{2}, t_{3}\right\}$ is a TIS of $G$, a contradiction. We deduce that $k \neq w$. Without loss of generality assume that $k=y$. Then $N[y] \subseteq N[\{u, v, x\}]$. In particular, $y \in N(w) \cap N(z)$. Since $n \geq 8$, we find that $z \notin N(w)$. Let $N(z)-\{y, v\}=\{t\}$. Since $\{y, z, t\}$ is not a TIS of $G$, there is a vertex $k_{1}$ such that $N\left[k_{1}\right] \subseteq N\left[\{y, z, t\}-\left\{k_{1}\right\}\right]$. Clearly $k_{1} \notin\{y, z, t, u, v, w\}$. We deduce that $k_{1}$ is a vertex with $N\left(k_{1}\right) \subseteq N(w) \cup N(t)$. Let $N\left(k_{1}\right)=\left\{w, t, t_{1}\right\}$, where $t_{1} \in N(t)-\left\{z, k_{1}\right\}$. Then $\left\{t, k_{1}, t_{1}\right\}$ is a TIS of $G$, a contradiction.

Thus $|N(u) \cap N(v)|=0$. Let $N(u)-N(v)=\left\{u_{1}, u_{2}\right\}$ and $N(v)-N(u)=\left\{v_{1}, v_{2}\right\}$. We consider the following cases depending on adjacency among $u_{1}$ and $u_{2}$.

Case 1. $u_{1} \in N\left(u_{2}\right)$. Assume that $v_{1} \in N\left(v_{2}\right)$. Since $\left\{u, u_{1}, u_{2}\right\}$ and $\left\{v, v_{1}, v_{2}\right\}$ are not maximal TIS of $G$, we obtain that $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\left\{u, v_{1}, v_{2}\right\} \neq$ $\emptyset$ and $N\left(v_{1}\right) \cap N\left(v_{2}\right)-\left\{v, u_{1}, u_{2}\right\} \neq \emptyset$. Let $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\left\{u, v_{1}, v_{2}\right\}=\left\{s_{1}\right\}$ and $N\left(v_{1}\right) \cap N\left(v_{2}\right)-\left\{v, u_{1}, u_{2}\right\}=\left\{s_{2}\right\}$. If $s_{1} \in N\left(s_{2}\right)$, then $G=H_{3}$. Thus assume that $s_{1} \notin N\left(s_{2}\right)$. If $N\left(s_{1}\right) \cap N\left(s_{2}\right) \neq \emptyset$, then $\left\{s_{1}, s_{2}, w\right\}$ is a TIS of $G$, where $w \in N\left(s_{1}\right) \cap N\left(s_{2}\right)$. This contradiction implies that $N\left(s_{1}\right) \cap N\left(s_{2}\right)=\emptyset$. Let $w_{1} \in N\left(s_{1}\right)-\left\{u_{1}, u_{2}\right\}$ and $w_{2} \in N\left(s_{2}\right)-\left\{v_{1}, v_{2}\right\}$. Suppose that $w_{1}$ is adjacent to $w_{2}$. If $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$, then $\left\{s_{1}, s_{2}, w_{1}\right\}$ is a maximal TIS of $G$, a contradiction. So we assume that $N\left(w_{1}\right) \cap N\left(w_{2}\right) \neq \emptyset$. Let $w_{3} \in N\left(w_{1}\right) \cap N\left(w_{2}\right)$. Then $\left\{w_{1}, w_{2}, w_{3}\right\}$ is a TIS of $G$, a contradiction. We deduce that $w_{1} \notin N\left(w_{2}\right)$. If $N\left(w_{1}\right) \cap N\left(w_{2}\right)=\emptyset$, then $\left\{w_{1}, s_{1}, s_{2}\right\}$ is a TIS of $G$, a contradiction. Thus $N\left(w_{1}\right) \cap N\left(w_{2}\right) \neq \emptyset$. Let $w_{3} \in N\left(w_{1}\right) \cap N\left(w_{2}\right)$. If $N\left(w_{1}\right)-\left\{s_{1}\right\} \neq N\left(w_{2}\right)-\left\{s_{2}\right\}$, then $\left\{v, v_{1}, w_{3}\right\}$ is a TIS of $G$, a contradiction. Thus $N\left(w_{1}\right)-\left\{s_{1}\right\}=N\left(w_{2}\right)-\left\{s_{2}\right\}$. Let $N\left(w_{1}\right)-\left\{s_{1}\right\}=\left\{w_{3}, w_{4}\right\}$. If $w_{3} \notin N\left(w_{4}\right)$, then $\left\{u, v, w_{5}\right\}$ is a TIS of $G$, where $w_{5} \in N\left(w_{4}\right)-N\left(w_{3}\right)$. This contradiction implies that $w_{3} \in N\left(w_{4}\right)$. Consequently, $G=H_{8}$. Thus we assume that $v_{1} \notin N\left(v_{2}\right)$. If $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{u\}=\emptyset$, then $\left\{u, u_{1}, u_{2}\right\}$ is a TIS of $G$, a contradiction. Thus $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{u\} \neq \emptyset$. Let $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{u\}=\{w\}$. We show that $w \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$. Without loss of generality assume that $w \in N\left(v_{1}\right)$. Since $\left\{u, v, v_{2}\right\}$ is not a TIS for $G$, there is a vertex $k$ such that $N[k]-N\left[\left\{u, v, v_{2}\right\}-\{k\}\right]=\emptyset$. It is obvious that $k \notin$ $\left\{u, v, v_{1}, v_{2}, u_{1}, u_{2}\right\}$. Thus $k \in N\left(v_{1}\right) \cap N\left(v_{2}\right) \cap N\left(k_{1}\right)$, where $k_{1} \in N\left(v_{2}\right)-\{k, v\}$. Then $\left\{k, k_{1}, v_{2}\right\}$ is a TIS of $G$, a contradiction. We deduce that $w \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$. But there is a vertex $k$ such that $N[k]-N\left[\left\{u, v, v_{2}\right\}-\{k\}\right]=\emptyset$, since $\left\{u, v, v_{2}\right\}$
is not a TIS of $G$. It is obvious that $k \notin\left\{u, v, v_{2}, u_{1}, u_{2}\right\}$. Assume that $k \neq v_{1}$. Thus $k \in N\left(v_{2}\right)$. Since $N[k] \subseteq N\left[\left\{u, v, v_{2}\right\}-\{k\}\right]$, we obtain that $k \in N\left(v_{1}\right)$, and $N(k) \cap N\left(v_{2}\right) \neq \emptyset$. Let $t_{1} \in N(k) \cap N\left(v_{2}\right)$. If $t_{1} \notin N\left(v_{1}\right)$, then $\left\{t_{1}, k, w\right\}$ is a TIS of $G$, a contradiction. Thus $t_{1} \in N\left(v_{1}\right)$. Let $w_{1} \in N(w)-\left\{u_{1}, u_{2}\right\}$. Then $\left\{w, w_{1}, v_{2}\right\}$ is a TIS of $G$, a contradiction. Thus $k=v_{1}$. It follows that $N\left(v_{1}\right)=N\left(v_{2}\right)$. Let $N\left(v_{1}\right)-\{v\}=\left\{t_{1}, t_{2}\right\}$. Since $\left\{w, t_{1}, t_{2}\right\}$ is not a TIS of $G$, there is a vertex $k_{1}$ such that $N\left[k_{1}\right]-N\left[\left\{w, t_{1}, t_{2}\right\}-\left\{k_{1}\right\}\right]=\emptyset$. It is obvious that $k_{1} \notin\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$. Assume that $\left\{w, t_{1}, t_{2}\right\}$ is not independent. If $w \in N\left(t_{1}\right)$, then $\left\{v_{1}, w, t_{3}\right\}$ is a TIS of $G$, where $t_{3} \in N\left(t_{2}\right)-\left\{v_{1}, v_{2}\right\}$. This contradiction implies that $w \notin N\left(t_{1}\right)$. Thus $t_{2} \in N\left(t_{1}\right)$. Now $\left\{w, w_{1}, v_{2}\right\}$ is a TIS of $G$, where $w_{1} \in N(w)-\left\{u_{1}, u_{2}\right\}$, a contradiction. Thus $\left\{w, t_{1}, t_{2}\right\}$ is an independent set. Then $k_{1} \notin\left\{w, t_{1}, t_{2}\right\}$. This implies that $k_{1} \in N(w) \cap N\left(t_{1}\right) \cap N\left(t_{2}\right)$, and thus $G=H_{6}$.

Case 2. $u_{1} \notin N\left(u_{2}\right)$. According to Case 1, we may assume that $v_{1} \notin N\left(v_{2}\right)$. We consider the following subcases depending on adjacency among $u_{2}$ and $v_{1}$.

Subcase 2.1. $u_{2} \in N\left(v_{1}\right)$. Assume that $u_{1} \in N\left(v_{2}\right)$. We first show that $N\left(u_{2}\right) \cap N\left(v_{1}\right)=\emptyset$. Assume to the contrary that $N\left(u_{2}\right) \cap N\left(v_{1}\right) \neq \emptyset$. Let $w \in N\left(u_{2}\right) \cap N\left(v_{1}\right)$. Since $\left\{u_{2}, v_{1}, w\right\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k]-N\left[\left\{u_{2}, v_{1}, w\right\}-\{k\}\right]=\emptyset$. It is obvious that $k \notin\left\{u_{2}, v, w, u_{1}, v_{2}\right\}$. Thus $k \in\{u, v\}$. Without loss of generality assume that $k=u$. Then $u_{1} \in$ $N(w)$. Let $t \in N\left(v_{2}\right)-\left\{u_{1}, v\right\}$. Then $\left\{v, v_{2}, t\right\}$ is a TIS of $G$, a contradiction. We conclude that $N\left(u_{2}\right) \cap N\left(v_{1}\right)=\emptyset$. Let $w_{1} \in N\left(u_{2}\right)-\left\{u, v_{1}\right\}$ and $w_{2} \in$ $N\left(v_{1}\right)-\left\{u_{2}, v\right\}$. Since $\left\{u, u_{2}, v_{1}\right\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k]-N\left[\left\{u, u_{2}, v_{1}\right\}-\{k\}\right]=\emptyset$. It is easy to see that $k \notin\left\{u, u_{2}, v_{1}, v, u_{1}\right\}$. Thus $k \in\left\{w_{1}, w_{2}\right\}$. Assume that $k=w_{1}$. Then, $w_{1} \in N\left(u_{1}\right) \cap N\left(w_{2}\right)$. Since $\left\{u_{2}, v, v_{1}\right\}$ is not a TIS of $G$, there is a vertex $k_{1}$ such that $N\left[k_{1}\right] \subseteq N\left[\left\{u_{2}, v, v_{1}\right\}\right]$. It is easy to see that $k_{1} \notin\left\{u, v, u_{1}, u_{2}, v_{1}, v_{2}, w_{1}\right\}$. Thus $k_{1}=w_{2}$. This implies that $w_{2} \in N\left(v_{2}\right)$. Consequently, $G=Q_{3}$. Next assume that $k=w_{2}$. Then, $w_{2} \in N\left(w_{1}\right) \cap N\left(u_{1}\right)$. Since $\left\{v, v_{1}, u_{2}\right\}$ is not a TIS of $G$, there is a vertex $k_{2}$ such that $N\left[k_{2}\right] \subseteq N\left[\left\{u_{2}, v_{1}, v\right\}\right]$. It is easy to see that $k_{2} \notin\left\{u, v, u_{1}, u_{2}, v_{1}, v_{2}, w_{2}\right\}$. Thus $k_{2}=w_{1}$. This implies that $w_{1} \in N\left(v_{2}\right)$. Consequently, $G=H_{4}$. Thus we may assume that $u_{1} \notin N\left(v_{2}\right)$. We first show that $N\left(u_{2}\right) \cap N\left(v_{1}\right)=\emptyset$. Assume to the contrary that $N\left(u_{2}\right) \cap N\left(v_{1}\right) \neq \emptyset$. Let $t \in N\left(u_{2}\right) \cap N\left(v_{1}\right)$. Since $\left\{u_{2}, v_{1}, t\right\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k] \subseteq N\left[\left\{u_{2}, v_{1}, t\right\}\right]$, and we observe that $k \notin\left\{u_{2}, v_{1}, t, u_{1}, v_{2}\right\}$. It follows that $k \in\{u, v\}$. Without loss of generality assume that $k=u$. Then $u_{1} \in N(t)$ and $\left\{v, v_{1}, v_{2}\right\}$ is a TIS of $G$, a contradiction. Thus $N\left(u_{2}\right) \cap N\left(v_{1}\right)=\emptyset$. Let $t_{1} \in N\left(u_{2}\right)-\{u\}$ and $t_{2} \in N\left(v_{1}\right)-\{v\}$. Since $\left\{u, v, u_{2}\right\}$ is not a TIS of $G$, there is a vertex $k_{1}$ such that $N\left[k_{1}\right] \subseteq N\left[\left\{u, v, u_{2}\right\}\right]$, and we can see that $k_{1} \notin\left\{u, v, u_{2}, v_{1}, v_{2}\right\}$. This implies that $k=t_{1}$, and thus $t_{1} \in N\left(u_{1}\right) \cap N\left(v_{2}\right)$. Similarly, since $\left\{u, v, v_{1}\right\}$ is not a TIS of $G$, there is a vertex $k_{2}$ such that $N\left[k_{2}\right] \subseteq N\left[\left\{u, v, v_{1}\right\}\right]$, and we can see that $k_{2}=t_{2}$ which implies
that $t_{2} \in N\left(u_{1}\right) \cap N\left(v_{2}\right)$. Consequently, $G=H_{5}$.
Subcase 2.2. $u_{2} \notin N\left(v_{1}\right)$. Since $\left\{u, v, u_{2}\right\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k] \subseteq N\left[\left\{u, v, u_{2}\right\}\right]$, and clearly $k \notin\left\{u, v, u_{2}\right\}$. If $k=v_{1}$, then there are two vertices $t_{1}$ and $t_{2}$ such that $\left\{u_{2}, v_{1}\right\} \subseteq N\left(t_{1}\right) \cap N\left(t_{2}\right)$. If $t_{1} \in N\left(t_{2}\right)$, then $\left\{u_{1}, u_{2}, u\right\}$ is a TIS of $G$, a contradiction. So $t_{1} \notin N\left(t_{2}\right)$. If $u_{1} \in N\left(t_{1}\right) \cap N\left(t_{2}\right)$, then $\left\{v, v_{1}, v_{2}\right\}$ is a TIS of $G$, and if $u_{1} \notin N\left(t_{1}\right)$ or $u_{1} \notin N\left(t_{2}\right)$, then $\left\{u_{1}, u_{2}, u\right\}$ is a TIS of $G$, a contradiction. We conclude that $k \neq v_{1}$. Similarly $k \neq v_{2}$. Thus $k \in\left\{u_{1}, t\right\}$, where $t \in N\left(u_{2}\right)-\{u\}$. We continue according the two possibilities of $k$.

Subcase 2.2.1. $k=u_{1}$. Then $N\left(u_{1}\right)=N\left(u_{2}\right)$. Let $N\left(u_{1}\right)=\left\{u, t_{1}, t_{2}\right\}$. Since $\left\{u, v, v_{1}\right\}$ is not a TIS of $G$, there is a vertex $k^{\prime}$ such that $N\left[k^{\prime}\right] \subseteq N\left[\left\{u, v, v_{1}\right\}\right]$, and clearly $k^{\prime} \notin\left\{u, v, v_{1}\right\}$. Suppose that $k^{\prime} \neq v_{2}$. We assume that $t_{3} \notin N\left(v_{2}\right)$, since the case $t_{3} \in N\left(v_{2}\right)$ has been checked earlier. Then $\left\{t_{3}, k^{\prime}, u_{2}\right\}$ is a TIS of $G$, a contradiction. Thus $k^{\prime}=v_{2}$. Then $N\left(v_{1}\right)=N\left(v_{2}\right)$. Let $N\left(v_{1}\right)=\left\{t_{3}, t_{4}\right\}$. We show that $t_{1} \in N\left(t_{2}\right)$ and $t_{3} \in N\left(t_{4}\right)$. Assume without loss of generality that $t_{3} \notin N\left(t_{4}\right)$. We show that $t_{1} \notin N\left(t_{2}\right)$. Assume to the contrary that $t_{1} \in N\left(t_{2}\right)$. If $N\left(t_{3}\right) \cap N\left(t_{4}\right) \neq \emptyset$, and $w \in N\left(t_{4}\right) \cap N\left(t_{3}\right)$, then $\left\{u, v, w_{1}\right\}$ is a TIS of $G$, where $w_{1} \in N(w)-\left\{t_{3}, t_{4}\right\}$, a contradiction. Thus $N\left(t_{3}\right) \cap N\left(t_{4}\right)=\emptyset$. Let $w_{1} \in N\left(t_{3}\right)-$ $\left\{v_{1}, v_{2}\right\}$ and $w_{2} \in N\left(t_{4}\right)-\left\{v_{1}, v_{2}\right\}$. If $w_{1} \in N\left(w_{2}\right)$, then $\left\{w_{1}, w_{2}, u\right\}$ is a TIS of $G$, a contradiction. Thus $w_{1} \notin N\left(w_{2}\right)$. Let $w_{3} \in N\left(w_{1}\right)-\left\{t_{3}\right\}$. Since $\left\{u, v, w_{3}\right\}$ is not a TIS of $G$, there is a vertex $k_{1}$ such that $N\left[k_{1}\right] \subseteq N\left[\left\{u, v, w_{3}\right\}\right]$, and it can be easily seen that $k_{1} \in N\left(w_{1}\right) \cap N\left(w_{3}\right)$. Furthermore, $\left|N\left(k_{1}\right) \cap N\left(w_{3}\right)\right|=2$. Let $w_{4} \in$ $N\left(k_{1}\right) \cap N\left(w_{3}\right)-\left\{w_{1}\right\}$. Then $\left\{u, v, w_{4}\right\}$ is a TIS of $G$, a contradiction. We deduce that $t_{1} \notin N\left(t_{2}\right)$. If $t_{1} \in N\left(t_{4}\right)$ and $t_{2} \in N\left(t_{3}\right)$, then $I R_{t}(G)=3$, a contradiction. Thus without loss of generality assume that $t_{1} \notin N\left(t_{4}\right)$. We next show that $t_{2} \notin N\left(t_{3}\right)$. Assume to the contrary that $t_{2} \in N\left(t_{3}\right)$. Let $t_{5} \in N\left(t_{4}\right)-\left\{v_{1}, v_{2}\right\}$, and let $t_{6} \in N\left(t_{5}\right)-\left\{t_{1}, t_{4}\right\}$. Since $\left\{t_{2}, t_{3}, t_{6}\right\}$ is not a TIS of $G$, there is a vertex $k_{2}$ such that $N\left[k_{2}\right] \subseteq N\left[\left\{t_{2}, t_{3}, t_{6}\right\}\right]$. It is obvious that $k_{2} \notin\left\{t_{2}, t_{3}, t_{5}, t_{6}\right\}$. So $k_{2}=t_{1}$ or $k_{2} \in N\left(t_{5}\right) \cap N\left(t_{6}\right) \cap N\left(t_{7}\right)$, where $t_{7} \in N\left(t_{6}\right)-\left\{t_{1}, t_{5}\right\}$. If $k_{2}=t_{1}$, then $t_{1} \in N\left(t_{6}\right)$ and $\{u, v, a\}$ is a TIS of $G$, where $a \in N\left(t_{6}\right)-\left\{t_{1}, t_{5}\right\}$, a contradiction. So $k_{2} \in N\left(t_{5}\right) \cap N\left(t_{6}\right) \cap N\left(t_{7}\right)$. Since $\left\{u, v, t_{7}\right\}$ is not a TIS of $G$, there is a vertex $k_{3}$ such that $N\left[k_{3}\right]-N\left[\left\{u, v, t_{7}\right\}-\left\{k_{3}\right\}\right]=\emptyset$, and we can see that $k_{3}=t_{1}$. Now $t_{1} \in N\left(t_{7}\right)$, and $\left\{v, t_{3}, t_{7}\right\}$ is a TIS of $G$, a contradiction. Thus $t_{2} \notin N\left(t_{3}\right)$. Since $\left\{t_{1}, t_{2}, t_{3}\right\}$ is not a TIS of $G$, there is a vertex $k_{3}$ such that $N\left[k_{3}\right] \subseteq N\left[\left\{t_{1}, t_{2}, t_{3}\right\}\right]$. It is obvious that $k_{3} \notin\left\{t_{1}, t_{2}, t_{3}, u_{1}, u_{2}, v_{1}, v_{2}\right\}$. Thus $k_{3} \in N\left(t_{1}\right) \cap N\left(t_{2}\right) \cap N\left(t_{3}\right)$. Now $\left\{t_{2}, t_{3}, t_{4}\right\}$ is a TIS of $G$, a contradiction. Thus $t_{1} \in N\left(t_{2}\right)$ and $t_{3} \in N\left(t_{4}\right)$. Consequently, $G=H_{7}$.

Subcase 2.2.2. $k=t$, where $t \in N\left(u_{2}\right)-\{u\}$. We show that $t \notin N\left(u_{1}\right) \cap N\left(v_{1}\right)$. Assume to the contrary that $t \in N\left(u_{1}\right) \cap N\left(v_{1}\right)$. Since $\left\{u, u_{1}, u_{2}\right\}$ is not a TIS of $G$, there is a vertex $k$ such that $N[k] \subseteq N\left[\left\{u, u_{1}, u_{2}\right\}-\{k\}\right]$, and we can see that
$k \notin\left\{u, u_{2}, v, t, v_{1}, v_{2}\right\}$. Then $k=u_{1}$ which implies that $N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{t\} \neq \emptyset$. Let $t_{1} \in N\left(u_{1}\right) \cap N\left(u_{2}\right)-\{t\}$. Since $\left\{v, v_{1}, v_{2}\right\}$ is not a TIS of $G$, there is a vertex $a$ such that $N[a] \subseteq N\left[\left\{v, v_{1}, v_{2}\right\}-\{a\}\right]$, and we observe that $a$ is a vertex adjacent to both $v_{1}$ and $v_{2}$. Let $a_{1} \in N\left(v_{2}\right)-\{a, v\}$. Then $a \in N\left(a_{1}\right)$, and $\left\{v_{2}, a_{1}, a\right\}$ is a TIS of $G$, a contradiction. Thus $t \notin N\left(u_{1}\right) \cap N\left(v_{1}\right)$. Similarly, $t \notin N\left(u_{1}\right) \cap N\left(v_{2}\right)$. If $t \in N\left(v_{1}\right)$, then we let $t_{1} \in N\left(u_{2}\right)-\{t, u\}$. It follows that $t \in N\left(t_{1}\right)$. If $t_{1} \in N\left(v_{2}\right)$ then $\left\{u, u_{1}, u_{2}\right\}$ is a TIS of $G$, and if $t_{1} \notin N\left(v_{2}\right)$ then $\left\{u_{2}, t_{1}, t_{2}\right\}$ is a TIS of $G$, both are contradictions. We deduce that $t \notin N\left(v_{1}\right)$, and similarly $t \notin N\left(v_{2}\right)$. Thus $t \in N\left(u_{1}\right)$. Let $t_{1} \in N\left(u_{2}\right)-\{t, u\}$. Then $t_{1} \in N(t)$. We show that $t_{1} \notin N\left(v_{1}\right) \cup N\left(v_{2}\right)$. Assume to the contrary that $t_{1} \in N\left(v_{1}\right) \cup N\left(v_{2}\right)$. Without loss of generality assume that $t_{1} \in N\left(v_{1}\right)$. Since $\left\{t_{1}, t_{2}, v_{2}\right\}$ is not a TIS of $G$, there are two vertices $t_{2}$ and $t_{3}$ such that $\left\{t_{2}, t_{3}\right\} \subseteq N\left(v_{2}\right), t_{2} \in N\left(v_{1}\right)$ and $t_{3} \in N\left(t_{2}\right)$. Then $\left\{v_{2}, t_{2}, t_{3}\right\}$ is a TIS of $G$, a contradiction. Thus $t_{1} \notin$ $N\left(v_{1}\right) \cup N\left(v_{2}\right)$. Since $\left\{u, v, u_{2}\right\}$ is not a TIS of $G$, we find that $t_{1} \in N\left(u_{1}\right)$. Since $\left\{u, v, v_{1}\right\}$ is not a TIS of $G$, there is a vertex $b$ such that $N[b] \subseteq N\left[\left\{u, v, v_{1}\right\}\right]$, and we observe that $b \notin\left\{u, v, u_{1}, u_{2}, v_{1}\right\}$. If $b=v_{2}$, then there are two vertices $t_{1}^{*}, t_{2}^{*} \in N\left(v_{1}\right) \cap N\left(v_{2}\right)-\{v\}$. But this is an earlier possibility in the Subcase 2.2.1, which has been discussed. Thus $b \in N\left(v_{1}\right)-\{v\}$. Let $t_{4} \in N\left(v_{1}\right)-\{v, b\}$. Then $b \in N\left(t_{4}\right) \cap N\left(v_{2}\right)$. If $t_{4} \notin N\left(v_{2}\right)$, then $\left\{u_{2}, t_{4}, b\right\}$ is a TIS of $G$, a contradiction. Thus $t_{4} \in N\left(v_{2}\right)$. Consequently, $G=H_{7}$.

## References

[1] O. Favaron, T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Total irredundance in graphs, Discrete Math. 256 (2002) 115-127. doi:10.1016/S0012-365X(00)00459-3
[2] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Stable and unstable graphs with total irredundance number zero, Ars Combin. 61 (2001) 34-46.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[4] S.M. Hedetniemi, S.T. Hedetniemi and D.P. Jacobs, Total irredundance in graphs: theory and algorithms, Ars Combin. 35 (1993) 271-284.
[5] Q.X. Tu and Z.Q. Hu, Structures of regular graphs with total irredundance number zero, Math. Appl. (Wuhan) 18 (2005) 41-44 (in Chinese).

