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Abstract

It is known that there are normal plane maps M5 with minimum degree
5 such that the minimum degree-sum w(S5) of 5-stars at 5-vertices is ar-
bitrarily large. In 1940, Lebesgue showed that if an M5 has no 4-stars of
cyclic type (5, 6, 6, 5) centered at 5-vertices, then w(S5) ≤ 68. We improve
this bound of 68 to 55 and give a construction of a (5, 6, 6, 5)-free M5 with
w(S5) = 48.
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1. Introduction

A normal plane map (NPM for short) is a plane pseudograph in which loops
and multiple edges are allowed, but the degree of each vertex and face is at least
three. The degree of a vertex v is denoted by d(v). A k-vertex is a vertex v

with d(v) = k. A k+-vertex (k−-vertex) is one of degree at least k (at most k).
An NPM with minimum degree δ at least 5 is denoted by M5. The weight of a
subgraph of an NPM is the sum of degrees of its vertices. A k-star Sk(v) is minor

if its center v has degree (in the NPM) at most 5. All stars considered in this
note are minor. By w(Sk) we denote the minimum weight of minor k-stars in a
given NPM.

In 1904, Wernicke [15] proved that every M5 has a 5-vertex adjacent to a
6−-vertex. This result was strengthened by Franklin [8] in 1922 to the existence
of a 5-vertex with two 6−-neighbors. In 1940, Lebesgue [14, p. 36] gave an
approximate description of the neighborhoods of 5-vertices inM5s. In particular,
this description implies the results in [15, 8] and shows that there is a 5-vertex
with three 8−-neighbors.

ForM5s, the bounds w(S1)≤11 (Wernicke [15]) and w(S2) ≤ 17 (Franklin [8])
are tight. It was proved by Lebesgue [14, p. 36] that w(S3) ≤ 24, which was
improved in 1996 by Jendrol’ and Madaras [11] to the tight bound w(S3) ≤ 23.
Furthermore, Jendrol’ and Madaras [11] gave a precise description of minor 3-
stars in M5s.

For arbitrary NPMs, the following results concerning (d − 2)-stars at d-
vertices, d ≤ 5, are known. Van den Heuvel and McGuinness [10] proved (in
particular) that there is a vertex v such that either w(S1(v)) ≤ 14 with d(v) = 3,
or w(S2(v)) ≤ 22 with d(v) = 4, or w(S3(v)) ≤ 29 with d(v) = 5. Balogh et al. [1]
proved that there is a 5−-vertex adjacent to at most two 11+-vertices. Harant
and Jendrol’ [9] strengthened these results by proving (in particular) that either
w(S1(v)) ≤ 13 with d(v) = 3, or w(S2(v)) ≤ 19 with d(v) = 4, or w(S3(v)) ≤ 23
with d(v) = 5. Recently, we obtained a precise description of (d − 2)-stars in
NPMs [6].

For M5s, Lebesgue [14, p. 36] proved w(S4) ≤ 31, which was improved by
Borodin and Woodall [3] to the tight bound w(S4) ≤ 30. Note that w(S3) ≤ 23
easily implies w(S2) ≤ 17 and immediately follows from w(S4) ≤ 30 (in both
cases, it suffices to delete a vertex of maximum degree from a minor star of
the minimum weight). Recently, we obtained a precise description of 4-stars in
M5s [7].

For arbitrary NPMs, the problem of describing (d − 1)-stars at d-vertices,
d ≤ 5, called pre-complete stars, appears difficult. As follows from the double
n-pyramid, the minimum weight w(Sd−1) of pre-complete stars in NPMs can be
arbitrarily large. Even when w(Sd−1) is restricted by appropriate conditions,



5-stars of Low Weight in Normal Plane Maps with ... 541

the tight upper bounds on it are unknown. Borodin et al. [4, 5] proved (in
particular) that if a planar graph with δ ≥ 3 has no edge joining two 4−-vertices,
then there is a star Sd−1(v) with w(Sd−1(v)) ≤ 38+ d(v), where d(v) ≤ 5 (see [5,
Theorem 2.A]). Jendrol’ and Madaras [12] proved that if the weight of every edge
in a planar graph with δ ≥ 3 is at least 9, then there is a pre-complete star in
which every vertex has degree at most 20, where the bound of 20 is best possible.

The more general problem of describing d-stars at d-vertices, d ≤ 5, called
complete stars, at the moment seems intractable for arbitrary NPMs and difficult
even for M5s. In this note we make a modest contribution for the case of M5s.

The following well-known construction shows that w(S5) is unbounded in
M5s. Take three concentric n-cycles C

i = vi1 . . . v
i
n, where n is large and 1 ≤ i ≤ 3,

and join C2 with C1 by edges v2j v
1
j and v2j v

1
j+1 whenever 1 ≤ j ≤ n (addition

modulo n). The same is done with C2 and C3. Finally, join all vertices of C1 to
a new n-vertex, and do the same with C3.

Definition. A 5-vertex v surrounded by vertices v1, . . . , v5 in a cyclic order is
a (5, 6, 6, 5)-vertex if there is a k, k ≤ 5, such that d(vk+1) = d(vk+4) = 5,
d(vk+2) ≤ 6, and d(vk+3) ≤ 6 (addition modulo 5).

Clearly, each 5-vertex in the M5 constructed above is a (5, 6, 6, 5)-vertex and,
moreover, it has two 5-neighbors and two 6-neighbors. Lebesgue [14, p. 36]
proved that if an M5 has no (5, 6, 6, 5)-vertices, then w(S5) ≤ 68.

The purpose of this note is to improve the bound of 68 to 55 (Theorem 1)
and give a construction of a (5, 6, 6, 5)-free M5 with w(S5) = 48 (see Figure 1).
We first truncate all vertices of the dodecahedron, and then join the mid-points
of the edges of each triangle and put a 2-vertex on each edge not incident with a
triangle. Finally, we insert a 20-wheel inside every 20-face as shown in Figure 1.
As a result, every 5-vertex has neighbors of degrees 5, 6, 7, 5, and 20 in this
order.

Theorem 1. If a normal plane map M5 with minimum degree 5 does not contain

(5, 6, 6, 5)-vertices, then M5 contains a 5-star of weight at most 55 with a 5-vertex
as its center.

Problem 2. Find best possible version of Theorem 1.

2. Proof of Theorem 1

It suffices to prove the theorem for triangulations, since adding a diagonal edge
into a non-triangular face of a normal plane map with δ = 5 cannot create a
new minor 5-star, nor can it reduce the weight of any existing minor 5-star. So
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Figure 1. An M5 without (5, 6, 6, 5)-vertices such that w(S5) = 48.

suppose that a triangulation T , with its sets of vertices, edges, and faces denoted
by V , E, and F , respectively, is a counterexample to Theorem 1. Euler’s formula
|V | − |E|+ |F | = 2 for T implies

(1)
∑

v∈V
(d(v)− 6) = −12.

Assign an initial charge µ(v) = d(v)−6 to each v ∈ V , so that only 5-vertices have
negative initial charge. Also, put µ(f) = 0 for each f ∈ F . Using the properties of
our T as a counterexample, we define a local redistribution of charges, preserving
their sum, such that the final charge µ3(x) is non-negative for all x ∈ V ∪ F .
This will contradict the fact that the sum of the final charges is, by (1), equal to
−12. The technique of discharging is often used in solving structural and coloring
problems on plane graphs.

Definition. For integer n, n ≥ 6, put ξ(n) = n−6
n

. For any 6+-vertex v, put
ψ(v) = ξ(d(v)).

In what follows, it is convenient to use the upwards convexity of the increasing
function ξ(n) for integer n ≥ 6, which is checked easily.

Lemma 3. For any integers p and q, where 6 ≤ p < q, we have

ξ(p) + ξ(q) ≤ ξ(p+ 1) + ξ(q − 1).
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The final charge µ3(v) of vertex v is defined by applying the rules R1–R3 as
follows.

R1. Each 6+-vertex v sends ψ(v) to each incident 3-face.

R2. Let f = xyz be a face such that d(x) = 5 and d(z) ≥ 6. Then x receives
from f the following charge:

(a) ψ(z)
2 if d(y) = 5, or

(b) ψ(y) + ψ(z) if d(y) ≥ 6.

The charge of x, where x ∈ V ∪F , after applying R1 and R2 is denoted by µ2(x).

Definition. A 5-vertex v surrounded by vertices v1, . . . , v5 in a cyclic order is
bad if d(v1) = d(v2) = d(v4) = 5 and d(v3) = 7.

Note that each bad 5-vertex v satisfies d(v5) ≥ 29 since w(S5) ≥ 56 by assump-
tion.

R3. Suppose v is bad, and let the neighbors of v2 and v1 in the cyclic order
be v, v3, x, y, v1 and v, v2, y, z, v5, respectively (see Figure 2).

(a) If d(x) = 5 (which means that v2 is also bad), then v1 gives 1
14 to each of

v and v2.

(b) If d(x) ≥ 6 and v1 is also bad (that is d(y) = 7, and d(z) = 5), then v2
gives 1

14 to each of v and v1.

(c) If d(x) ≥ 6 but v1 is not bad, then v2 gives 1
14 only to v.

Clearly, µ3(v) = µ2(v) = 0 for each 6+-vertex v, and µ3(f) = µ2(f) ≥ 0 for
each face f . It remains to show that every 5-vertex receives at least 1 in total by
R1–R3. If v is a bad 5-vertex, then µ2(v) ≥ 5 − 6 + ξ(7) + ξ(28) = − 1

14 , which
implies that µ3(v) ≥ 0.

Our next goal is to show that every non-bad 5-vertex v satisfies µ2(v) ≥ 0, and
then we will complete the proof of Theorem 1 by checking that in fact µ3(v) ≥ 0.

Remark 4. Suppose a 5-vertex v is adjacent to a 6+-vertex w; then v receives
from w by R1 and R2 one of the charges ψ(w), 3ψ(w)

2 , or 2ψ(w) depending on
the number of 5-vertices in the two 3-faces incident with edge vw: three, two, or
one, respectively.

Definition. The type of a 5-vertex v is the vector (d1, . . . , d5) of the degrees of
the neighbors of v in the non-decreasing order. (So, d1 is the smallest degree
among the neighbors of v, d2 is the second smallest, and so on.)

Lemma 5. If v is a non-bad 5-vertex, then µ2(v) ≥ 0.
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Figure 2. Rule R3.

Proof. Clearly, µ2(v) = −1 + µ+1,2(v), where µ
+
1,2(v) denotes the total donation

to v from its neighbors by R1 and R2. Thus it suffices to prove that µ+1,2(v) ≥ 1.
It will be helpful to note that

(2)
3

2
ξ(27) =

3

2
·
21

27
=

7

6
>

8

7
> 1.

Let v be of type (d1, . . . , d5); then d1 + · · · + d5 ≥ 56 − 5 = 51 since T is a
counterexample to Theorem 1.

Now our proof splits into four cases.

Case 1. 6 ≤ d1. By Remark 4, µ+1,2(v) = 2(ψ(d1) + · · · + ψ(d5)). This is
smallest when d1 = · · · = d4 = 6 and d5 = 27, as otherwise it can be made smaller
by using Lemma 3, or just by reducing d5 if d5 > 27. Thus µ+1,2(v) ≥ 2ξ(27) > 1
by (2).

Case 2. 5 = d1 < d2. By Remark 4, µ+1,2(v) ≥
3
2(ξ(d2)+ · · ·+ ξ(d5)), which is

smallest when d2 = · · · = d4 = 6 and d5 = 28. Thus µ+1,2(v) ≥
3
2ξ(28) > 1 by (2).
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Case 3. 5 = d1 = d2 < d3. If the two 5-neighbors of v form a 3-face with v,
then µ+1,2(v) ≥

3
2(ξ(d3) + ξ(d4) + ξ(d5)), which is smallest when d3 = d4 = 6 and

d5 = 29. Thus µ+1,2(v) ≥
3
2ξ(29) > 1 by (2).

So assume that the two 5-neighbors of v do not form a 3-face with v. By
Remark 4, µ+1,2(v) ≥

3
2(ξ(a)+ξ(b))+ξ(c), where a, b, c is a permutation of d3, d4, d5

such that the a-vertex and b-vertex form a 3-face with v. Recall that v is not a
(5, 6, 6, 5)-vertex by assumption. So if d3 = d4 = 6 then c = 6 and max{a, b} ≥ 29;
thus µ+1,2(v) ≥

3
2ξ(29) > 1 by (2). Otherwise, d4 ≥ 7 and µ+1,2(v) ≥

3
2ξ(7)+ξ(28) =

3
2 · 1

7 + 22
28 = 1.

Case 4. 5 = d1 = d2 = d3 < d4. Then d4 + d5 ≥ 36. If 6 ≤ d4 ≤ 7, then
the d4-vertex and the d5-vertex form a 3-face with v, since v is neither bad nor
a (5, 6, 6, 5)-vertex by assumption; thus µ+1,2(v) ≥

3
2ξ(d5) ≥

3
2ξ(29) > 1 by (2). If

d4 ≥ 8, then µ+1,2(v) ≥ ξ(8) + ξ(28) = 29
28 > 1.

Lemma 6. If v is a non-bad 5-vertex, then µ3(v) ≥ 0.

Proof. If v gives nothing to bad 5-vertices by R3, then µ3(v) = µ2(v) ≥ 0 by
Lemma 5. So we may assume that v gives either 1

14 or 1
7 in total to bad 5-vertices

by R3. It suffices to prove that µ+1,2(v) ≥
8
7 .

We may assume that v is either the vertex v1 in R3(a) or the vertex v2 in
R3(b) or R3(c). In both cases, d(x) + d(y) ≥ 34 since w(S5(v2)) ≥ 56. In the
first case, d(x) = 5 and d(y) ≥ 29 (see Figure 2), and so µ+1,2(v) ≥ 2ξ(29) > 8

7

by (2). In the second case, µ+1,2(v) ≥
3
2(ξ(6) + ξ(28)) = 3

2ξ(28) >
8
7 by (2).

Thus we have proved µ3(x) ≥ 0 for every x ∈ V ∪ F , which contradicts (1) and
completes the proof of Theorem 1.
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