5-STARS OF LOW WEIGHT IN NORMAL PLANE MAPS WITH MINIMUM DEGREE 5

Oleg V. Borodin ${ }^{1}$
Institute of Mathematics Siberian Branch
Russian Academy of Sciences
and
Novosibirsk State University
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
Anna O. Ivanova ${ }^{2}$
Institute of Mathematics of Ammosov
North-Eastern Federal University
Yakutsk, 677891, Russia
e-mail: shmgnanna@mail.ru

AND

Tommy R. Jensen ${ }^{3}$
Kyungpook National University
Republic of Korea
e-mail: tjensen@knu.ac.kr

Abstract

It is known that there are normal plane maps M_{5} with minimum degree 5 such that the minimum degree-sum $w\left(S_{5}\right)$ of 5 -stars at 5 -vertices is arbitrarily large. In 1940, Lebesgue showed that if an M_{5} has no 4 -stars of cyclic type $(5,6,6,5)$ centered at 5 -vertices, then $w\left(S_{5}\right) \leq 68$. We improve this bound of 68 to 55 and give a construction of a $(5,6,6,5)$-free M_{5} with $w\left(S_{5}\right)=48$.

Keywords: graph, plane map, vertex degree, weight, light subgraph.
2010 Mathematics Subject Classification: 05C10.

[^0]
1. Introduction

A normal plane map (NPM for short) is a plane pseudograph in which loops and multiple edges are allowed, but the degree of each vertex and face is at least three. The degree of a vertex v is denoted by $d(v)$. A k-vertex is a vertex v with $d(v)=k$. A k^{+}-vertex $\left(k^{-}\right.$-vertex) is one of degree at least k (at most k). An NPM with minimum degree δ at least 5 is denoted by M_{5}. The weight of a subgraph of an NPM is the sum of degrees of its vertices. A k-star $S_{k}(v)$ is minor if its center v has degree (in the NPM) at most 5 . All stars considered in this note are minor. By $w\left(S_{k}\right)$ we denote the minimum weight of minor k-stars in a given NPM.

In 1904, Wernicke [15] proved that every M_{5} has a 5 -vertex adjacent to a 6^{-}-vertex. This result was strengthened by Franklin [8] in 1922 to the existence of a 5 -vertex with two 6^{-}-neighbors. In 1940, Lebesgue [14, p. 36] gave an approximate description of the neighborhoods of 5 -vertices in M_{5} s. In particular, this description implies the results in $[15,8]$ and shows that there is a 5 -vertex with three 8^{-}-neighbors.

For M_{5} s, the bounds $w\left(S_{1}\right) \leq 11$ (Wernicke [15]) and $w\left(S_{2}\right) \leq 17$ (Franklin [8]) are tight. It was proved by Lebesgue [14, p. 36] that $w\left(S_{3}\right) \leq 24$, which was improved in 1996 by Jendrol' and Madaras [11] to the tight bound $w\left(S_{3}\right) \leq 23$. Furthermore, Jendrol' and Madaras [11] gave a precise description of minor 3stars in $M_{5} \mathrm{~s}$.

For arbitrary NPMs, the following results concerning $(d-2)$-stars at d vertices, $d \leq 5$, are known. Van den Heuvel and McGuinness [10] proved (in particular) that there is a vertex v such that either $w\left(S_{1}(v)\right) \leq 14$ with $d(v)=3$, or $w\left(S_{2}(v)\right) \leq 22$ with $d(v)=4$, or $w\left(S_{3}(v)\right) \leq 29$ with $d(v)=5$. Balogh et al. [1] proved that there is a 5^{-}-vertex adjacent to at most two 11^{+}-vertices. Harant and Jendrol' [9] strengthened these results by proving (in particular) that either $w\left(S_{1}(v)\right) \leq 13$ with $d(v)=3$, or $w\left(S_{2}(v)\right) \leq 19$ with $d(v)=4$, or $w\left(S_{3}(v)\right) \leq 23$ with $d(v)=5$. Recently, we obtained a precise description of $(d-2)$-stars in NPMs [6].

For $M_{5} \mathrm{~s}$, Lebesgue [14, p. 36] proved $w\left(S_{4}\right) \leq 31$, which was improved by Borodin and Woodall [3] to the tight bound $w\left(S_{4}\right) \leq 30$. Note that $w\left(S_{3}\right) \leq 23$ easily implies $w\left(S_{2}\right) \leq 17$ and immediately follows from $w\left(S_{4}\right) \leq 30$ (in both cases, it suffices to delete a vertex of maximum degree from a minor star of the minimum weight). Recently, we obtained a precise description of 4 -stars in $M_{5} \mathrm{~s}$ [7].

For arbitrary NPMs, the problem of describing $(d-1)$-stars at d-vertices, $d \leq 5$, called pre-complete stars, appears difficult. As follows from the double n-pyramid, the minimum weight $w\left(S_{d-1}\right)$ of pre-complete stars in NPMs can be arbitrarily large. Even when $w\left(S_{d-1}\right)$ is restricted by appropriate conditions,
the tight upper bounds on it are unknown. Borodin et al. [4, 5] proved (in particular) that if a planar graph with $\delta \geq 3$ has no edge joining two 4^{-}-vertices, then there is a star $S_{d-1}(v)$ with $w\left(S_{d-1}(v)\right) \leq 38+d(v)$, where $d(v) \leq 5$ (see [5, Theorem 2.A]). Jendrol' and Madaras [12] proved that if the weight of every edge in a planar graph with $\delta \geq 3$ is at least 9 , then there is a pre-complete star in which every vertex has degree at most 20 , where the bound of 20 is best possible.

The more general problem of describing d-stars at d-vertices, $d \leq 5$, called complete stars, at the moment seems intractable for arbitrary NPMs and difficult even for $M_{5} \mathrm{~s}$. In this note we make a modest contribution for the case of $M_{5} \mathrm{~s}$.

The following well-known construction shows that $w\left(S_{5}\right)$ is unbounded in $M_{5} \mathrm{~s}$. Take three concentric n-cycles $C^{i}=v_{1}^{i} \ldots v_{n}^{i}$, where n is large and $1 \leq i \leq 3$, and join C^{2} with C^{1} by edges $v_{j}^{2} v_{j}^{1}$ and $v_{j}^{2} v_{j+1}^{1}$ whenever $1 \leq j \leq n$ (addition modulo n). The same is done with C^{2} and C^{3}. Finally, join all vertices of C^{1} to a new n-vertex, and do the same with C^{3}.

Definition. A 5 -vertex v surrounded by vertices v_{1}, \ldots, v_{5} in a cyclic order is a $(5,6,6,5)$-vertex if there is a $k, k \leq 5$, such that $d\left(v_{k+1}\right)=d\left(v_{k+4}\right)=5$, $d\left(v_{k+2}\right) \leq 6$, and $d\left(v_{k+3}\right) \leq 6$ (addition modulo 5).

Clearly, each 5 -vertex in the M_{5} constructed above is a ($5,6,6,5$)-vertex and, moreover, it has two 5 -neighbors and two 6 -neighbors. Lebesgue [14, p. 36] proved that if an M_{5} has no ($5,6,6,5$)-vertices, then $w\left(S_{5}\right) \leq 68$.

The purpose of this note is to improve the bound of 68 to 55 (Theorem 1) and give a construction of a $(5,6,6,5)$-free M_{5} with $w\left(S_{5}\right)=48$ (see Figure 1). We first truncate all vertices of the dodecahedron, and then join the mid-points of the edges of each triangle and put a 2 -vertex on each edge not incident with a triangle. Finally, we insert a 20 -wheel inside every 20 -face as shown in Figure 1. As a result, every 5 -vertex has neighbors of degrees $5,6,7,5$, and 20 in this order.

Theorem 1. If a normal plane map M_{5} with minimum degree 5 does not contain (5, 6, 6, 5)-vertices, then M_{5} contains a 5 -star of weight at most 55 with a 5 -vertex as its center.

Problem 2. Find best possible version of Theorem 1.

2. Proof of Theorem 1

It suffices to prove the theorem for triangulations, since adding a diagonal edge into a non-triangular face of a normal plane map with $\delta=5$ cannot create a new minor 5 -star, nor can it reduce the weight of any existing minor 5 -star. So

Figure 1. An M_{5} without (5, 6, 6, 5)-vertices such that $w\left(S_{5}\right)=48$.
suppose that a triangulation T, with its sets of vertices, edges, and faces denoted by V, E, and F, respectively, is a counterexample to Theorem 1. Euler's formula $|V|-|E|+|F|=2$ for T implies

$$
\begin{equation*}
\sum_{v \in V}(d(v)-6)=-12 \tag{1}
\end{equation*}
$$

Assign an initial charge $\mu(v)=d(v)-6$ to each $v \in V$, so that only 5 -vertices have negative initial charge. Also, put $\mu(f)=0$ for each $f \in F$. Using the properties of our T as a counterexample, we define a local redistribution of charges, preserving their sum, such that the final charge $\mu_{3}(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12 . The technique of discharging is often used in solving structural and coloring problems on plane graphs.

Definition. For integer $n, n \geq 6$, put $\xi(n)=\frac{n-6}{n}$. For any 6^{+}-vertex v, put $\psi(v)=\xi(d(v))$.

In what follows, it is convenient to use the upwards convexity of the increasing function $\xi(n)$ for integer $n \geq 6$, which is checked easily.

Lemma 3. For any integers p and q, where $6 \leq p<q$, we have

$$
\xi(p)+\xi(q) \leq \xi(p+1)+\xi(q-1)
$$

The final charge $\mu_{3}(v)$ of vertex v is defined by applying the rules R1-R3 as follows.

R1. Each 6^{+}-vertex v sends $\psi(v)$ to each incident 3 -face.
R2. Let $f=x y z$ be a face such that $d(x)=5$ and $d(z) \geq 6$. Then x receives from f the following charge:
(a) $\frac{\psi(z)}{2}$ if $d(y)=5$, or
(b) $\psi(y)+\psi(z)$ if $d(y) \geq 6$.

The charge of x, where $x \in V \cup F$, after applying R1 and R2 is denoted by $\mu_{2}(x)$.
Definition. A 5 -vertex v surrounded by vertices v_{1}, \ldots, v_{5} in a cyclic order is bad if $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{4}\right)=5$ and $d\left(v_{3}\right)=7$.

Note that each bad 5 -vertex v satisfies $d\left(v_{5}\right) \geq 29$ since $w\left(S_{5}\right) \geq 56$ by assumption.

R3. Suppose v is bad, and let the neighbors of v_{2} and v_{1} in the cyclic order be v, v_{3}, x, y, v_{1} and v, v_{2}, y, z, v_{5}, respectively (see Figure 2).
(a) If $d(x)=5$ (which means that v_{2} is also bad), then v_{1} gives $\frac{1}{14}$ to each of v and v_{2}.
(b) If $d(x) \geq 6$ and v_{1} is also bad (that is $d(y)=7$, and $d(z)=5$), then v_{2} gives $\frac{1}{14}$ to each of v and v_{1}.
(c) If $d(x) \geq 6$ but v_{1} is not bad, then v_{2} gives $\frac{1}{14}$ only to v.

Clearly, $\mu_{3}(v)=\mu_{2}(v)=0$ for each 6^{+}-vertex v, and $\mu_{3}(f)=\mu_{2}(f) \geq 0$ for each face f. It remains to show that every 5 -vertex receives at least 1 in total by R1-R3. If v is a bad 5 -vertex, then $\mu_{2}(v) \geq 5-6+\xi(7)+\xi(28)=-\frac{1}{14}$, which implies that $\mu_{3}(v) \geq 0$.

Our next goal is to show that every non-bad 5 -vertex v satisfies $\mu_{2}(v) \geq 0$, and then we will complete the proof of Theorem 1 by checking that in fact $\mu_{3}(v) \geq 0$.

Remark 4. Suppose a 5 -vertex v is adjacent to a 6^{+}-vertex w; then v receives from w by R1 and R2 one of the charges $\psi(w), \frac{3 \psi(w)}{2}$, or $2 \psi(w)$ depending on the number of 5 -vertices in the two 3 -faces incident with edge $v w$: three, two, or one, respectively.

Definition. The type of a 5 -vertex v is the vector $\left(d_{1}, \ldots, d_{5}\right)$ of the degrees of the neighbors of v in the non-decreasing order. (So, d_{1} is the smallest degree among the neighbors of v, d_{2} is the second smallest, and so on.)

Lemma 5. If v is a non-bad 5 -vertex, then $\mu_{2}(v) \geq 0$.

Figure 2. Rule R3.

Proof. Clearly, $\mu_{2}(v)=-1+\mu_{1,2}^{+}(v)$, where $\mu_{1,2}^{+}(v)$ denotes the total donation to v from its neighbors by R1 and R2. Thus it suffices to prove that $\mu_{1,2}^{+}(v) \geq 1$. It will be helpful to note that

$$
\begin{equation*}
\frac{3}{2} \xi(27)=\frac{3}{2} \cdot \frac{21}{27}=\frac{7}{6}>\frac{8}{7}>1 \tag{2}
\end{equation*}
$$

Let v be of type $\left(d_{1}, \ldots, d_{5}\right)$; then $d_{1}+\cdots+d_{5} \geq 56-5=51$ since T is a counterexample to Theorem 1.

Now our proof splits into four cases.
Case 1. $6 \leq d_{1}$. By Remark 4, $\mu_{1,2}^{+}(v)=2\left(\psi\left(d_{1}\right)+\cdots+\psi\left(d_{5}\right)\right)$. This is smallest when $d_{1}=\cdots=d_{4}=6$ and $d_{5}=27$, as otherwise it can be made smaller by using Lemma 3 , or just by reducing d_{5} if $d_{5}>27$. Thus $\mu_{1,2}^{+}(v) \geq 2 \xi(27)>1$ by (2).

Case 2. $5=d_{1}<d_{2}$. By Remark 4, $\mu_{1,2}^{+}(v) \geq \frac{3}{2}\left(\xi\left(d_{2}\right)+\cdots+\xi\left(d_{5}\right)\right)$, which is smallest when $d_{2}=\cdots=d_{4}=6$ and $d_{5}=28$. Thus $\mu_{1,2}^{+}(v) \geq \frac{3}{2} \xi(28)>1$ by (2).

Case 3. $5=d_{1}=d_{2}<d_{3}$. If the two 5 -neighbors of v form a 3 -face with v, then $\mu_{1,2}^{+}(v) \geq \frac{3}{2}\left(\xi\left(d_{3}\right)+\xi\left(d_{4}\right)+\xi\left(d_{5}\right)\right)$, which is smallest when $d_{3}=d_{4}=6$ and $d_{5}=29$. Thus $\mu_{1,2}^{+}(v) \geq \frac{3}{2} \xi(29)>1$ by (2).

So assume that the two 5 -neighbors of v do not form a 3 -face with v. By Remark $4, \mu_{1,2}^{+}(v) \geq \frac{3}{2}(\xi(a)+\xi(b))+\xi(c)$, where a, b, c is a permutation of d_{3}, d_{4}, d_{5} such that the a-vertex and b-vertex form a 3 -face with v. Recall that v is not a $(5,6,6,5)$-vertex by assumption. So if $d_{3}=d_{4}=6$ then $c=6$ and $\max \{a, b\} \geq 29$; thus $\mu_{1,2}^{+}(v) \geq \frac{3}{2} \xi(29)>1$ by (2). Otherwise, $d_{4} \geq 7$ and $\mu_{1,2}^{+}(v) \geq \frac{3}{2} \xi(7)+\xi(28)=$ $\frac{3}{2} \cdot \frac{1}{7}+\frac{22}{28}=1$.

Case 4. $5=d_{1}=d_{2}=d_{3}<d_{4}$. Then $d_{4}+d_{5} \geq 36$. If $6 \leq d_{4} \leq 7$, then the d_{4}-vertex and the d_{5}-vertex form a 3 -face with v, since v is neither bad nor a ($5,6,6,5$)-vertex by assumption; thus $\mu_{1,2}^{+}(v) \geq \frac{3}{2} \xi\left(d_{5}\right) \geq \frac{3}{2} \xi(29)>1$ by (2). If $d_{4} \geq 8$, then $\mu_{1,2}^{+}(v) \geq \xi(8)+\xi(28)=\frac{29}{28}>1$.

Lemma 6. If v is a non-bad 5 -vertex, then $\mu_{3}(v) \geq 0$.
Proof. If v gives nothing to bad 5 -vertices by R3, then $\mu_{3}(v)=\mu_{2}(v) \geq 0$ by Lemma 5. So we may assume that v gives either $\frac{1}{14}$ or $\frac{1}{7}$ in total to bad 5 -vertices by R3. It suffices to prove that $\mu_{1,2}^{+}(v) \geq \frac{8}{7}$.

We may assume that v is either the vertex v_{1} in $\mathrm{R} 3(\mathrm{a})$ or the vertex v_{2} in R3(b) or R3(c). In both cases, $d(x)+d(y) \geq 34$ since $w\left(S_{5}\left(v_{2}\right)\right) \geq 56$. In the first case, $d(x)=5$ and $d(y) \geq 29$ (see Figure 2), and so $\mu_{1,2}^{+}(v) \geq 2 \xi(29)>\frac{8}{7}$ by (2). In the second case, $\mu_{1,2}^{+}(v) \geq \frac{3}{2}(\xi(6)+\xi(28))=\frac{3}{2} \xi(28)>\frac{8}{7}$ by (2).

Thus we have proved $\mu_{3}(x) \geq 0$ for every $x \in V \cup F$, which contradicts (1) and completes the proof of Theorem 1 .

Acknowledgements

The authors are greatly indebted to the anonymous referees for suggestions on improving the presentation.

References

[1] J. Balogh, M. Kochol, A. Pluhár and X. Yu, Covering planar graphs with forests, J. Combin. Theory (B) 94 (2005) 147-158. doi:10.1016/j.jctb.2004.12.002
[2] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph, Mat. Zametki 46(5) (1989) 9-12 (in Russian).
[3] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164. doi:10.7151/dmgt. 1071
[4] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. Van den Heuvel, The structure of plane triangulations in terms of clusters and stars, Diskretn. Anal. Issled. Oper. Ser. 1 8(2) (2001) 15-39 (in Russian).
[5] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. Van den Heuvel, Minimal degrees and chromatic numbers of squares of planar graphs, Diskretn. Anal. Issled. Oper. Ser. 18(4) (2001) 9-33 (in Russian).
[6] O.V. Borodin and A.O. Ivanova, Describing ($d-2$)-stars at d-vertices, $d \leq 5$, in normal plane maps, Discrete Math. 313 (2013) 1700-1709. doi:10.1016/j.disc.2013.04.026
[7] O.V. Borodin and A.O. Ivanova, Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5, Discrete Math. 313 (2013) 1710-1714. doi:10.1016/j.disc.2013.04.025
[8] P. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225-236. doi:10.2307/2370527
[9] J. Harant and S. Jendrol', On the existence of specific stars in planar graphs, Graphs Combin. 23 (2007) 529-543. doi:10.1007/s00373-007-0747-7
[10] J. Van den Heuvel and S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124. doi:10.1002/jgt. 10077
[11] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimal degree five, Discuss. Math. Graph Theory 16 (1996) 207-217. doi:10.7151/dmgt. 1035
[12] S. Jendrol' and T. Madaras, Note on an existence of small degree vertices with at most one big degree neighbour in planar graphs, Tatra Mt. Math. Publ. 30 (2005) 149-153.
[13] A. Kotzig, From the theory of eulerian polyhedra, Mat. Čas. 13 (1963) 20-34 (in Russian).
[14] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27-43.
[15] P. Wernicke, Ü ber den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413426.
doi:10.1007/BF01444968

[^0]: ${ }^{1}$ This work was supported by grant 12-01-00631 of the Russian Foundation for Basic Research.
 ${ }^{2}$ The author was supported by grants 12-01-00448 and 12-01-98510 of the Russian Foundation for Basic Research.
 ${ }^{3}$ This research was supported by the Kyungpook National University Research Fund, 2009.

